6.66. We start with Y_{1} and Y_{2} which have the joint pdf $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)$. Define

$$
\begin{aligned}
& U_{1}=h_{1}\left(Y_{1}, Y_{2}\right)=Y_{1}+Y_{2} \\
& U_{2}=h_{2}\left(Y_{1}, Y_{2}\right)=Y_{2} .
\end{aligned}
$$

(a) Note that

$$
\begin{aligned}
& u_{1}=h_{1}\left(y_{1}, y_{2}\right)=y_{1}+y_{2} \\
& u_{2}=h_{2}\left(y_{1}, y_{2}\right)=y_{2}
\end{aligned}
$$

is a linear transformation; i.e.,

$$
\mathbf{u}=\binom{u_{1}}{u_{2}}=\binom{y_{1}+y_{2}}{y_{2}}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{y_{1}}{y_{2}}=\mathbf{A} \mathbf{y}
$$

where

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{y}=\binom{y_{1}}{y_{2}}
$$

The transformation is $1: 1$ because \mathbf{A}^{-1} exists. Because the transformation is 1:1, the inverse transformation exists and is given by

$$
\begin{aligned}
& y_{1}=h_{1}^{-1}\left(y_{1}, y_{2}\right)=u_{1}-u_{2} \\
& y_{2}=h_{2}^{-1}\left(u_{1}, u_{2}\right)=u_{2} .
\end{aligned}
$$

The Jacobian is

$$
J=\operatorname{det}\left|\begin{array}{ll}
\frac{\partial h_{1}^{-1}\left(u_{1}, u_{2}\right)}{\partial u_{1}} & \frac{\partial h_{1}^{-1}\left(u_{1}, u_{2}\right)}{\partial u_{2}} \\
\frac{\partial h_{2}^{-1}\left(u_{1}, u_{2}\right)}{\partial u_{1}} & \frac{\partial h_{2}^{-1}\left(u_{1}, u_{2}\right)}{\partial u_{2}}
\end{array}\right|=\operatorname{det}\left|\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right|=1(1)-(-1)(0)=1 .
$$

Therefore, the joint pdf of $\mathbf{U}=\left(U_{1}, U_{2}\right)$, where nonzero, is

$$
\begin{aligned}
f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right) & =f_{Y_{1}, Y_{2}}\left(h_{1}^{-1}\left(u_{1}, u_{2}\right), h_{2}^{-1}\left(u_{1}, u_{2}\right)\right)|J| \\
& =f_{Y_{1}, Y_{2}}\left(u_{1}-u_{2}, u_{2}\right)|1| \\
& =f_{Y_{1}, Y_{2}}\left(u_{1}-u_{2}, u_{2}\right) .
\end{aligned}
$$

(b) The marginal pdf of U_{1} is obtained by taking the joint pdf $f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)$ and integrating over u_{2}. Therefore,

$$
f_{U_{1}}\left(u_{1}\right)=\int_{\mathbb{R}} f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right) d u_{2}=\int_{\mathbb{R}} f_{Y_{1}, Y_{2}}\left(u_{1}-u_{2}, u_{2}\right) d u_{2}
$$

as claimed.
(c) If we additionally assume $Y_{1} \Perp Y_{2}$, then we know

$$
f_{Y_{1}, Y_{2}}\left(u_{1}-u_{2}, u_{2}\right)=f_{Y_{1}}\left(u_{1}-u_{2}\right) f_{Y_{2}}\left(u_{2}\right) ;
$$

i.e., the joint pdf factors into the product of the marginal pdfs. Therefore, part (b) becomes

$$
f_{U_{1}}\left(u_{1}\right)=\int_{\mathbb{R}} f_{Y_{1}}\left(u_{1}-u_{2}\right) f_{Y_{2}}\left(u_{2}\right) d u_{2}
$$

as claimed.

Remark: The formula

$$
f_{U_{1}}\left(u_{1}\right)=\int_{\mathbb{R}} f_{Y_{1}}\left(u_{1}-u_{2}\right) f_{Y_{2}}\left(u_{2}\right) d u_{2}
$$

is called the convolution formula to derive the pdf of $U_{1}=Y_{1}+Y_{2}$. This formula, in theory, can always be used to derive the pdf of the sum of independent continuous random variables (there is a discrete version as well that convolves pmfs). Of course, if the goal is to derive the distribution of the sum $Y_{1}+Y_{2}$, then the mgf method is so much easier. However, the mgf method does not always work; e.g., mgfs may not exist, the mgf of the sum may not be one that we recognize, etc. The cdf method is always available too to derive the cdf of $U_{1}=Y_{1}+Y_{2}$ and then take derivatives to get the pdf. I think of using the convolution formula as a "last resort," but it does work. I have also seen Exam P problems that ask students to apply the convolution method.
6.71. We start with independent random variables $Y_{1} \sim \operatorname{exponential}(\beta)$ and $Y_{2} \sim \operatorname{exponential}(\beta)$. For $y_{1}>0$ and $y_{2}>0$, the joint pdf of Y_{1} and Y_{2} is

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=f_{Y_{1}}\left(y_{1}\right) f_{Y_{2}}\left(y_{2}\right)=\frac{1}{\beta} e^{-y_{1} / \beta} \times \frac{1}{\beta} e^{-y_{2} / \beta}=\frac{1}{\beta^{2}} e^{-\left(y_{1}+y_{2}\right) / \beta} .
$$

Summarizing,

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\left\{\begin{array}{cc}
\frac{1}{\beta^{2}} e^{-\left(y_{1}+y_{2}\right) / \beta}, & y_{1}>0, y_{2}>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Note the support of $\left(Y_{1}, Y_{2}\right)$ is

$$
R_{Y_{1}, Y_{2}}=\left\{\left(y_{1}, y_{2}\right): y_{1}>0, y_{2}>0\right\} ;
$$

i.e., the entire first quadrant. The graph of $R_{Y_{1}, Y_{2}}$ is shown at the top of the last page (left). The joint pdf $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)$ is a three-dimensional function which takes the value $\frac{1}{\beta^{2}} e^{-\left(y_{1}+y_{2}\right) / \beta}$ over this region and is otherwise equal to zero. Our goal is to find the joint pdf of

$$
\begin{aligned}
& U_{1}=h_{1}\left(Y_{1}, Y_{2}\right)=Y_{1}+Y_{2} \\
& U_{2}=h_{2}\left(Y_{1}, Y_{2}\right)=\frac{Y_{1}}{Y_{2}} .
\end{aligned}
$$

We use a bivariate transformation. We first find the support of $\left(U_{1}, U_{2}\right)$. Note that

$$
y_{1}>0, y_{2}>0 \quad \Longrightarrow \quad u_{1}=y_{1}+y_{2}>0
$$

and $u_{2}=y_{1} / y_{2}>0$ as well. Therefore, the support of $\left(U_{1}, U_{2}\right)$ is

$$
R_{U_{1}, U_{2}}=\left\{\left(u_{1}, u_{2}\right): u_{1}>0, u_{2}>0\right\} ;
$$

i.e., also the entire first quadrant; see the top of the last page (right). That is, the support of $\left(Y_{1}, Y_{2}\right)$ and the support of $\left(U_{1}, U_{2}\right)$ is the same set.

To verify the transformation above is one-to-one, we show $h\left(y_{1}, y_{2}\right)=h\left(y_{1}^{*}, y_{2}^{*}\right) \Longrightarrow y_{1}=y_{1}^{*}$ and $y_{2}=y_{2}^{*}$, where

$$
h\binom{y_{1}}{y_{2}}=\binom{h_{1}\left(y_{1}, y_{2}\right)}{h_{2}\left(y_{1}, y_{2}\right)}=\binom{y_{1}+y_{2}}{\frac{y_{1}}{y_{2}}} .
$$

Suppose $h\left(y_{1}, y_{2}\right)=h\left(y_{1}^{*}, y_{2}^{*}\right)$. The first equation implies $y_{1}+y_{2}=y_{1}^{*}+y_{2}^{*} \Longleftrightarrow y_{1}=y_{1}^{*}+y_{2}^{*}-y_{2}$. Plugging this into the second equation implies

$$
\begin{aligned}
\frac{y_{1}^{*}+y_{2}^{*}-y_{2}}{y_{2}}=\frac{y_{1}^{*}}{y_{2}^{*}} & \Longleftrightarrow y_{1}^{*} y_{2}^{*}+y_{2}^{*} y_{2}^{*}-y_{2} y_{2}^{*}=y_{1}^{*} y_{2} \\
& \Longleftrightarrow y_{1}^{*} y_{2}^{*}+y_{2}^{*} y_{2}^{*}=y_{1}^{*} y_{2}+y_{2} y_{2}^{*} \\
& \Longleftrightarrow y_{2}^{*}\left(y_{1}^{*}+y_{2}^{*}\right)=y_{2}\left(y_{1}^{*}+y_{2}^{*}\right) \Longleftrightarrow y_{2}=y_{2}^{*}
\end{aligned}
$$

The first equation then implies $y_{1}=y_{1}^{*}$. Therefore, the transformation is 1:1.
The inverse transformation is found by solving

$$
\begin{aligned}
& u_{1}=y_{1}+y_{2} \\
& u_{2}=\frac{y_{1}}{y_{2}} .
\end{aligned}
$$

for $y_{1}=h_{1}^{-1}\left(u_{1}, u_{2}\right)$ and $y_{2}=h_{2}^{-1}\left(u_{1}, u_{2}\right)$. The second equation implies $u_{2} y_{2}=y_{1}$, so the first equation becomes

$$
u_{1}=u_{2} y_{2}+y_{2} \Longrightarrow u_{1}=y_{2}\left(1+u_{2}\right) \Longrightarrow y_{2}=\frac{u_{1}}{1+u_{2}}
$$

Therefore,

$$
u_{2}=\frac{y_{1}}{y_{2}}=\frac{y_{1}}{\frac{u_{1}}{1+u_{2}}} \Longrightarrow y_{1}=\frac{u_{1} u_{2}}{1+u_{2}}
$$

Summarizing, we have

$$
\begin{aligned}
& y_{1}=h_{1}^{-1}\left(u_{1}, u_{2}\right)=\frac{u_{1} u_{2}}{1+u_{2}} \\
& y_{2}=h_{2}^{-1}\left(u_{1}, u_{2}\right)=\frac{u_{1}}{1+u_{2}} .
\end{aligned}
$$

The Jacobian is

$$
\begin{aligned}
J=\operatorname{det}\left|\begin{array}{cc}
\frac{\partial h_{1}^{-1}\left(u_{1}, u_{2}\right)}{\partial u_{1}} & \frac{\partial h_{1}^{-1}\left(u_{1}, u_{2}\right)}{\partial u_{2}} \\
\frac{\partial h_{2}^{-1}\left(u_{1}, u_{2}\right)}{\partial u_{1}} & \frac{\partial h_{2}^{-1}\left(u_{1}, u_{2}\right)}{\partial u_{2}}
\end{array}\right| & =\operatorname{det}\left|\begin{array}{cc}
\frac{u_{2}}{1+u_{2}} & \frac{u_{1}}{\left(1+u_{2}\right)^{2}} \\
\frac{1}{1+u_{2}} & -\frac{u_{1}}{\left(1+u_{2}\right)^{2}}
\end{array}\right| \\
& =\frac{u_{2}}{1+u_{2}}\left[-\frac{u_{1}}{\left(1+u_{2}\right)^{2}}\right]-\frac{u_{1}}{\left(1+u_{2}\right)^{2}}\left(\frac{1}{1+u_{2}}\right) \\
& =-\frac{u_{1} u_{2}}{\left(1+u_{2}\right)^{3}}-\frac{u_{1}}{\left(1+u_{2}\right)^{3}} \\
& =-\frac{u_{1}\left(1+u_{2}\right)}{\left(1+u_{2}\right)^{3}}=-\frac{u_{1}}{\left(1+u_{2}\right)^{2}}
\end{aligned}
$$

Therefore, the joint pdf of $\mathbf{U}=\left(U_{1}, U_{2}\right)$, where nonzero, is

$$
\begin{aligned}
f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right) & =f_{Y_{1}, Y_{2}}\left(h_{1}^{-1}\left(u_{1}, u_{2}\right), h_{2}^{-1}\left(u_{1}, u_{2}\right)\right)|J| \\
& =f_{Y_{1}, Y_{2}}\left(\frac{u_{1} u_{2}}{1+u_{2}}, \frac{u_{1}}{1+u_{2}}\right)\left|-\frac{u_{1}}{\left(1+u_{2}\right)^{2}}\right| .
\end{aligned}
$$

Note that
$f_{Y_{1}, Y_{2}}\left(\frac{u_{1} u_{2}}{1+u_{2}}, \frac{u_{1}}{1+u_{2}}\right)=\frac{1}{\beta^{2}} e^{-\left(\frac{u_{1} u_{2}}{1+u_{2}}+\frac{u_{1}}{1+u_{2}}\right) / \beta}=\frac{1}{\beta^{2}} e^{-\left(\frac{u_{1} u_{2}+u_{1}}{1+u_{2}}\right) / \beta}=\frac{1}{\beta^{2}} e^{-u_{1}\left(\frac{1+u_{2}}{1+u_{2}}\right) / \beta}=\frac{1}{\beta^{2}} e^{-u_{1} / \beta}$.
Therefore, for $u_{1}>0$ and $u_{2}>0$,

$$
f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)=\frac{1}{\beta^{2}} e^{-u_{1} / \beta}\left|-\frac{u_{1}}{\left(1+u_{2}\right)^{2}}\right|=\frac{1}{\beta^{2}} u_{1} e^{-u_{1} / \beta} \frac{1}{\left(1+u_{2}\right)^{2}} .
$$

Summarizing,

$$
f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)=\left\{\begin{array}{cc}
\frac{1}{\beta^{2}} u_{1} e^{-u_{1} / \beta} \frac{1}{\left(1+u_{2}\right)^{2}}, & u_{1}>0, u_{2}>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

(b) Note that we can write

$$
f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)=\underbrace{\frac{1}{\beta^{2} u_{1} e^{-u_{1} / \beta}}}_{g_{1}\left(u_{1}\right)} \underbrace{\frac{1}{\left(1+u_{2}\right)^{2}}}_{g_{2}\left(u_{2}\right)} ;
$$

that is, we can factor the joint pdf $f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)$ into the product of two nonnegative functions $g_{1}\left(u_{1}\right)$ and $g_{2}\left(u_{2}\right)$. By Theorem 5.5 (WMS, pp 250), U_{1} and U_{2} are independent. You should be able to see that $U_{1} \sim \operatorname{gamma}(2, \beta)$. I think U_{2} has a Pareto-type distribution with a horizontal shift.
6.74. We are given $Y_{1}, Y_{2}, \ldots, Y_{n}$ are mutually independent and identically distributed (i.e., iid) $\mathcal{U}(0, \theta)$ random variables, where $\theta>0$. Recall the $\mathcal{U}(0, \theta)$ pdf is given by

$$
f_{Y}(y)= \begin{cases}\frac{1}{\theta}, & 0<y<\theta \\ 0, & \text { otherwise }\end{cases}
$$

and the $\mathcal{U}(0, \theta)$ cdf is

$$
F_{Y}(y)= \begin{cases}0, & y \leq 0 \\ \frac{y}{\theta}, & 0<y<\theta \\ 1, & y \geq \theta\end{cases}
$$

(a) They are asking for the cdf of $Y_{(n)}$, the maximum order statistic. We derived this in the notes; in general,

$$
\begin{aligned}
F_{Y_{(n)}}(y)=P\left(Y_{(n)} \leq y\right) & =P\left(Y_{1} \leq y, Y_{2} \leq y, \ldots, Y_{n} \leq y\right) \\
& =P\left(Y_{1} \leq y\right) P\left(Y_{2} \leq y\right) \cdots P\left(Y_{n} \leq y\right) \\
& =[P(Y \leq y)]^{n} \\
& =\left[F_{Y}(y)\right]^{n} .
\end{aligned}
$$

Therefore,

$$
F_{Y_{(n)}}(y)=\left\{\begin{array}{cl}
0, & y \leq 0 \\
\left(\frac{y}{\theta}\right)^{n}, & 0<y<\theta \\
1, & y \geq \theta
\end{array}\right.
$$

(b) They are asking for the pdf of $Y_{(n)}$. For $0<y<\theta$, we have

$$
f_{Y_{(n)}}(y)=n f_{Y}(y)\left[F_{Y}(y)\right]^{n-1}=n\left(\frac{1}{\theta}\right)\left(\frac{y}{\theta}\right)^{n-1}=\frac{n y^{n-1}}{\theta^{n}} .
$$

Summarizing,

$$
f_{Y_{(n)}}(y)=\left\{\begin{array}{cl}
\frac{n y^{n-1}}{\theta^{n}}, & 0<y<\theta \\
0, & \text { otherwise }
\end{array}\right.
$$

(c) The mean of $Y_{(n)}$ is

$$
\begin{aligned}
E\left(Y_{(n)}\right)=\int_{\mathbb{R}} y f_{Y_{(n)}}(y) d y & =\int_{0}^{\theta} y \frac{n y^{n-1}}{\theta^{n}} d y \\
& =\frac{n}{\theta^{n}} \int_{0}^{\theta} y^{n} d y=\left.\frac{n}{\theta^{n}}\left(\frac{y^{n+1}}{n+1}\right)\right|_{0} ^{\theta}=\frac{n}{n+1} \frac{\theta^{n+1}}{\theta^{n}}=\left(\frac{n}{n+1}\right) \theta .
\end{aligned}
$$

The second moment of $Y_{(n)}$ is

$$
\begin{aligned}
E\left(Y_{(n)}^{2}\right)=\int_{\mathbb{R}} y^{2} f_{Y_{(n)}}(y) d y & =\int_{0}^{\theta} y^{2} \frac{n y^{n-1}}{\theta^{n}} d y \\
& =\frac{n}{\theta^{n}} \int_{0}^{\theta} y^{n+1} d y=\left.\frac{n}{\theta^{n}}\left(\frac{y^{n+2}}{n+2}\right)\right|_{0} ^{\theta}=\frac{n}{n+2} \frac{\theta^{n+2}}{\theta^{n}}=\left(\frac{n}{n+2}\right) \theta^{2} .
\end{aligned}
$$

Therefore, the variance of $Y_{(n)}$ is

$$
\begin{aligned}
V\left(Y_{(n)}\right)=E\left(Y_{(n)}^{2}\right)-\left[E\left(Y_{(n)}\right)\right]^{2} & =\left(\frac{n}{n+2}\right) \theta^{2}-\left[\left(\frac{n}{n+1}\right) \theta\right]^{2} \\
& =\left[\frac{n}{n+2}-\left(\frac{n}{n+1}\right)^{2}\right] \theta^{2}=\left[\frac{n}{(n+1)^{2}(n+2)}\right] \theta^{2} .
\end{aligned}
$$

6.75. Let $Y_{1}, Y_{2}, Y_{3}, Y_{4}, Y_{5}$ denote your waiting times for the bus (in minutes). Individual waiting times are distributed as $\mathcal{U}(0,15)$. Assume $Y_{1}, Y_{2}, Y_{3}, Y_{4}, Y_{5}$ are mutually independent. From Exercise 6.74, the pdf of $Y_{(5)}$, the longest waiting time (i.e., the maximum of the 5 times) is

$$
f_{Y_{(5)}}(y)=\left\{\begin{array}{cl}
\frac{5 y^{4}}{15^{5}}, & 0<y<15 \\
0, & \text { otherwise }
\end{array}\right.
$$

This pdf is shown above. The probability your longest wait time $Y_{(5)}$ is less than 10 minutes is

$$
P\left(Y_{(5)}<10\right)=\int_{0}^{10} f_{Y_{(5)}}(y) d y=\int_{0}^{10} \frac{5 y^{4}}{15^{5}} d y=\frac{1}{15^{5}}\left(\left.y^{5}\right|_{0} ^{10}\right)=\frac{10^{5}}{15^{5}} \approx 0.132 .
$$

The probability $P\left(Y_{(5)}<10\right)$ is shaded above.
6.84. Suppose $Y_{1}, Y_{2}, \ldots, Y_{n}$ are mutually independent random variables, all with the same $\operatorname{Weibull}(m, \alpha)$ distribution; i.e., $Y_{1}, Y_{2}, \ldots, Y_{n}$ are iid $\operatorname{Weibull}(m, \alpha)$. Note: The phrase "random sample" means "iid." The Weibull (m, α) pdf is

$$
f_{Y}(y)=\left\{\begin{array}{cc}
\frac{m}{\alpha} y^{m-1} e^{-y^{m} / \alpha}, & y>0 \\
0, & \text { otherwise } .
\end{array}\right.
$$

The Weibull $(m, \alpha) \operatorname{cdf}$ is

$$
F_{Y}(y)=\left\{\begin{array}{cc}
0, & y \leq 0 \\
1-e^{-y^{m} / \alpha}, & y>0 .
\end{array}\right.
$$

To see where the cdf comes from, let's derive it. Clearly, $F_{Y}(y)=0$, when $y \leq 0$. For $y>0$, we have

$$
F_{Y}(y)=P(Y \leq y)=\int_{0}^{y} \frac{m}{\alpha} t^{m-1} e^{-t^{m} / \alpha} d t .
$$

In the last integral, let

$$
u=t^{m} \Longrightarrow d u=m t^{m-1} d t .
$$

The limits change under this transformation; as $t: 0 \rightarrow y$, we have $u: 0 \rightarrow y^{m}$. Therefore, the last integral becomes

$$
\int_{0}^{y} \frac{m}{\alpha} t^{m-1} e^{-t^{m} / \alpha} d t=\int_{0}^{y^{m}} \frac{m}{\alpha} t^{m-1} e^{-u / \alpha} \frac{d u}{m t^{m-1}}=\int_{0}^{y^{m}} \frac{1}{\alpha} e^{-u / \alpha} d u,
$$

which is the exponential $(\alpha) \operatorname{cdf}$ evaluated at $u=y^{m}$. Therefore, the result.
We find to find the pdf of $Y_{(1)}$, the minimum order statistic. Recall in general,

$$
f_{Y_{(1)}}(y)=n f_{Y}(y)\left[1-F_{Y}(y)\right]^{n-1} .
$$

Therefore, for $y>0$, we have

$$
\begin{aligned}
f_{Y_{(1)}}(y) & =n\left(\frac{m}{\alpha} y^{m-1} e^{-y^{m} / \alpha}\right)\left[1-\left(1-e^{-y^{m} / \alpha}\right)\right]^{n-1} \\
& =n\left(\frac{m}{\alpha} y^{m-1} e^{-y^{m} / \alpha}\right)\left(e^{-y^{m} / \alpha}\right)^{n-1}=\frac{m n}{\alpha} y^{m-1}\left(e^{-y^{m} / \alpha}\right)^{n}=\frac{m n}{\alpha} y^{m-1} e^{-n y^{m} / \alpha} .
\end{aligned}
$$

Summarizing,

$$
f_{Y_{(1)}}(y)=\left\{\begin{array}{cc}
\frac{m n}{\alpha} y^{m-1} e^{-n y^{m} / \alpha}, & y>0 \\
0, & \text { otherwise } .
\end{array}\right.
$$

Note: We can write the nonzero part of $f_{Y_{(1)}}(y)$ as

$$
\frac{m n}{\alpha} y^{m-1} e^{-n y^{m} / \alpha}=\frac{m}{(\alpha / n)} y^{m-1} e^{-y^{m} /(\alpha / n)}
$$

which we recognize as a Weibull pdf with parameters m and α / n. Therefore,

$$
Y_{1}, Y_{2}, \ldots, Y_{n} \sim \operatorname{iid} \operatorname{Weibull}(m, \alpha) \Longrightarrow Y_{(1)} \sim \operatorname{Weibull}(m, \alpha / n)
$$

6.87. We are given Y_{1} and Y_{2} (two stock opening prices), which have the common pdf

$$
f_{Y}(y)=\left\{\begin{array}{cc}
\frac{1}{2} e^{-(y-4) / 2}, & y \geq 4 \\
0, & \text { otherwise }
\end{array}\right.
$$

Note that this is an exponential $(1 / 2)$ pdf with a horizontal shift of 4 units to the right; see the figure at the top of the next page (left).
(a) The common cdf is

$$
F_{Y}(y)=\left\{\begin{array}{cc}
0, & y<4 \\
1-e^{-(y-4) / 2}, & y \geq 4 .
\end{array}\right.
$$

To see where the cdf comes from, let's derive it. Clearly, $F_{Y}(y)=0$, when $y<4$. For $y \geq 4$, we have

$$
F_{Y}(y)=P(Y \leq y)=\int_{4}^{y} \frac{1}{2} e^{-(t-4) / 2} d t .
$$

In the last integral, let

$$
u=t-4 \quad \Longrightarrow \quad d u=d t
$$

The limits change under this transformation; as $t: 4 \rightarrow y$, we have $u: 0 \rightarrow y-4$. Therefore, the last integral becomes

$$
\int_{4}^{y} \frac{1}{2} e^{-(t-4) / 2} d t=\int_{0}^{y-4} \frac{1}{2} e^{-u / 2} d u=\frac{1}{2}\left(-\left.2 e^{-u / 2}\right|_{0} ^{y-4}\right)=\left(\left.e^{-u / 2}\right|_{y-4} ^{0}\right)=1-e^{-(y-4) / 2}
$$

The investor is going to buy the stock that is less expensive at the opening; therefore, s/he is going pay $Y_{(1)}=\min \left\{Y_{1}, Y_{2}\right\}$. Therefore, we want to find the pdf of the minimum order statistic $Y_{(1)}$, where Y_{1}, Y_{2} are iid from $f_{Y}(y)$. For $y \geq 4$, we have

$$
\begin{aligned}
f_{Y_{(1)}}(y)=n f_{Y}(y)\left[1-F_{Y}(y)\right]^{n-1} & =2\left[\frac{1}{2} e^{-(y-4) / 2}\right]\left[1-\left(1-e^{-(y-4) / 2}\right)\right]^{2-1} \\
& =e^{-(y-4) / 2} e^{-(y-4) / 2}=e^{-(y-4)}
\end{aligned}
$$

Summarizing,

$$
f_{Y_{(1)}}(y)=\left\{\begin{array}{cc}
e^{-(y-4)}, & y \geq 4 \\
0, & \text { otherwise }
\end{array}\right.
$$

Note that this is an exponential(1) pdf with a horizontal shift of 4 units to the right; see the figure at the top of this page (right).
(b) We want to find the expected cost per share s/he will pay; i.e., we want to find $E\left(Y_{(1)}\right)$. The mean of $Y_{(1)}$ is

$$
E\left(Y_{(1)}\right)=\int_{\mathbb{R}} y f_{Y_{(1)}}(y) d y=\int_{4}^{\infty} y e^{-(y-4)} d y
$$

In the last integral, let

$$
u=y-4 \quad \Longrightarrow \quad d u=d y .
$$

The limits change under this transformation; as $y: 4 \rightarrow \infty$, we have $u: 0 \rightarrow \infty$. Therefore, the last integral becomes

$$
\int_{4}^{\infty} y e^{-(y-4)} d y=\int_{0}^{\infty}(u+4) e^{-u} d u=E(U+4)
$$

where $U \sim \operatorname{exponential}(1)$. Therefore, $E\left(Y_{(1)}\right)=E(U+4)=E(U)+4=1+4=5$.
6.88. We are given $Y_{1}, Y_{2}, \ldots, Y_{n}$ are iid from a shifted exponential distribution; i.e., the common pdf is

$$
f_{Y}(y)=\left\{\begin{array}{cc}
e^{-(y-\theta)}, & y>\theta \\
0, & \text { otherwise } .
\end{array}\right.
$$

Note that this is the exponential(1) pdf shifted θ units to the right. In this example, $\theta>0$ denotes the minimum time the worker needs to complete a task. More generally, θ is called the location or shift parameter. The pdf of Y is shown above.
(a) They are asking for the cdf of $Y_{(1)}$, the minimum order statistic. Therefore, we need to first derive the cdf of Y. Clearly $F_{Y}(y)=0$ when $y \leq \theta$. For $y>\theta$, we have

$$
F_{Y}(y)=P(Y \leq y)=\int_{\theta}^{y} e^{-(t-\theta)} d t
$$

In the last integral, let

$$
u=t-\theta \quad \Longrightarrow \quad d u=d t .
$$

The limits change under this transformation; as $t: \theta \rightarrow y$, we have $u: 0 \rightarrow y-\theta$. Therefore, the last integral becomes

$$
\int_{\theta}^{y} e^{-(t-\theta)} d t=\int_{0}^{y-\theta} e^{-u} d u=\left(-\left.e^{-u}\right|_{0} ^{y-\theta}\right)=1-e^{-(y-\theta)} .
$$

Summarizing,

$$
F_{Y}(y)=\left\{\begin{array}{cc}
0, & y \leq \theta \\
1-e^{-(y-\theta)}, & y>\theta
\end{array}\right.
$$

For $y>\theta$, the pdf of $Y_{(1)}$ is

$$
\begin{aligned}
f_{Y_{(1)}}(y)=n f_{Y}(y)\left[1-F_{Y}(y)\right]^{n-1} & =n e^{-(y-\theta)}\left\{1-\left[1-e^{-(y-\theta)}\right]\right\}^{n-1} \\
& =n e^{-(y-\theta)}\left[e^{-(y-\theta)}\right]^{n-1} \\
& =n\left[e^{-(y-\theta)}\right]^{n}=n e^{-n(y-\theta)}
\end{aligned}
$$

Summarizing,

$$
f_{Y_{(1)}}(y)=\left\{\begin{array}{cc}
n e^{-n(y-\theta)}, & y>\theta \\
0, & \text { otherwise }
\end{array}\right.
$$

Note that this is an exponential $(1 / n)$ pdf with a horizontal shift of θ units to the right.
(b) The mean of $Y_{(1)}$ is

$$
E\left(Y_{(1)}\right)=\int_{\mathbb{R}} y f_{Y_{(1)}}(y) d y=\int_{\theta}^{\infty} y n e^{-n(y-\theta)} d y .
$$

In the last integral, let

$$
u=y-\theta \quad \Longrightarrow \quad d u=d y
$$

The limits change under this transformation; as $y: \theta \rightarrow \infty$, we have $u: 0 \rightarrow \infty$. Therefore, the last integral becomes

$$
\int_{\theta}^{\infty} y n e^{-n(y-\theta)} d y=\int_{0}^{\infty}(u+\theta) n e^{-n u} d u=E(U+\theta)
$$

where $U \sim \operatorname{exponential}(1 / n)$; note that $n e^{-n u}$ is the exponential $(1 / n)$ pdf and we are integrating over $(0, \infty)$. Therefore, $E\left(Y_{(1)}\right)=E(U+\theta)=E(U)+\theta=\frac{1}{n}+\theta$.
6.103. Suppose $Y_{1} \sim \mathcal{N}(0,1), Y_{2} \sim \mathcal{N}(0,1)$, and $Y_{1} \Perp Y_{2}$. The joint pdf of Y_{1} and Y_{2} is

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=f_{Y_{1}}\left(y_{1}\right) f_{Y_{2}}\left(y_{2}\right)=\frac{1}{\sqrt{2 \pi}} e^{-y_{1}^{2} / 2} \times \frac{1}{\sqrt{2 \pi}} e^{-y_{2}^{2} / 2}=\frac{1}{2 \pi} e^{-\left(y_{1}^{2}+y_{2}^{2}\right) / 2},
$$

for all $\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$. Summarizing,

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\left\{\begin{array}{cc}
\frac{1}{2 \pi} e^{-\left(y_{1}^{2}+y_{2}^{2}\right) / 2}, & -\infty<y_{1}<\infty,-\infty<y_{2}<\infty \\
0, & \text { otherwise }
\end{array}\right.
$$

To find the distribution of Y_{1} / Y_{2}, we will perform a bivariate transformation with

$$
\begin{aligned}
U_{1} & =h_{1}\left(Y_{1}, Y_{2}\right)=\frac{Y_{1}}{Y_{2}} \\
U_{2} & =h_{2}\left(Y_{1}, Y_{2}\right)=Y_{2}
\end{aligned}
$$

to get $f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)$, the joint pdf of U_{1} and U_{2}. We will then integrate $f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)$ over u_{2} to get the (marginal) pdf of $U_{1}=Y_{1} / Y_{2}$.

We first find the support of $\left(U_{1}, U_{2}\right)$. Note that

$$
-\infty<y_{1}<\infty, \quad-\infty<y_{2}<\infty \quad \Longrightarrow \quad u_{1}=\frac{y_{1}}{y_{2}} \in(-\infty, \infty)
$$

and $u_{2}=y_{2} \in(-\infty, \infty)$ as well. Therefore, the support of $\left(U_{1}, U_{2}\right)$ is

$$
R_{U_{1}, U_{2}}=\left\{\left(u_{1}, u_{2}\right):-\infty<u_{1}<\infty,-\infty<u_{2}<\infty\right\}=\mathbb{R}^{2}
$$

To verify the transformation above is one-to-one, we show $h\left(y_{1}, y_{2}\right)=h\left(y_{1}^{*}, y_{2}^{*}\right) \Longrightarrow y_{1}=y_{1}^{*}$ and $y_{2}=y_{2}^{*}$, where

$$
h\binom{y_{1}}{y_{2}}=\binom{h_{1}\left(y_{1}, y_{2}\right)}{h_{2}\left(y_{1}, y_{2}\right)}=\binom{\frac{y_{1}}{y_{2}}}{y_{2}} .
$$

Suppose $h\left(y_{1}, y_{2}\right)=h\left(y_{1}^{*}, y_{2}^{*}\right)$. The second equation immediately implies $y_{2}=y_{2}^{*}$. Plugging this into the first equation implies $y_{1}=y_{1}^{*}$. Therefore, the transformation is $1: 1$.

The inverse transformation is found by solving

$$
\begin{aligned}
& u_{1}=\frac{y_{1}}{y_{2}} \\
& u_{2}=y_{2} .
\end{aligned}
$$

for $y_{1}=h_{1}^{-1}\left(u_{1}, u_{2}\right)$ and $y_{2}=h_{2}^{-1}\left(u_{1}, u_{2}\right)$. The second equation implies $y_{2}=u_{2}$, so the first equation becomes

$$
u_{1}=\frac{y_{1}}{u_{2}} \Longrightarrow y_{1}=u_{1} u_{2}
$$

Summarizing, we have

$$
\begin{aligned}
& y_{1}=h_{1}^{-1}\left(u_{1}, u_{2}\right)=u_{1} u_{2} \\
& y_{2}=h_{2}^{-1}\left(u_{1}, u_{2}\right)=u_{2}
\end{aligned}
$$

The Jacobian is

$$
J=\operatorname{det}\left|\begin{array}{ll}
\frac{\partial h_{1}^{-1}\left(u_{1}, u_{2}\right)}{\partial u_{1}} & \frac{\partial h_{1}^{-1}\left(u_{1}, u_{2}\right)}{\partial u_{2}} \\
\frac{\partial h_{2}^{-1}\left(u_{1}, u_{2}\right)}{\partial u_{1}} & \frac{\partial h_{2}^{-1}\left(u_{1}, u_{2}\right)}{\partial u_{2}}
\end{array}\right|=\operatorname{det}\left|\begin{array}{cc}
u_{2} & u_{1} \\
0 & 1
\end{array}\right|=u_{2}(1)-u_{1}(0)=u_{2}
$$

Therefore, the joint pdf of $\mathbf{U}=\left(U_{1}, U_{2}\right)$, where nonzero, is

$$
\begin{aligned}
f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right) & =f_{Y_{1}, Y_{2}}\left(h_{1}^{-1}\left(u_{1}, u_{2}\right), h_{2}^{-1}\left(u_{1}, u_{2}\right)\right)|J| \\
& =f_{Y_{1}, Y_{2}}\left(u_{1} u_{2}, u_{2}\right)\left|u_{2}\right| \\
& =\frac{\left|u_{2}\right|}{2 \pi} e^{-\left[\left(u_{1} u_{2}\right)^{2}+u_{2}^{2}\right] / 2}=\frac{\left|u_{2}\right|}{2 \pi} e^{-u_{2}^{2}\left(1+u_{1}^{2}\right) / 2}
\end{aligned}
$$

Summarizing,

$$
f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)=\left\{\begin{array}{cc}
\frac{\left|u_{2}\right|}{2 \pi} e^{-u_{2}^{2}\left(1+u_{1}^{2}\right) / 2}, & -\infty<u_{1}<\infty, \quad-\infty<u_{2}<\infty \\
0, & \text { otherwise }
\end{array}\right.
$$

We are done performing the bivariate transformation. Now, to find the marginal pdf of $U_{1}=$ Y_{1} / Y_{2}, we integrate $f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)$ over u_{2}. To do this, first we write

$$
f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)=\frac{\left|u_{2}\right|}{2 \pi} e^{-u_{2}^{2}\left(1+u_{1}^{2}\right) / 2}=\frac{\left|u_{2}\right|}{2 \pi} e^{-u_{2}^{2} / \beta}
$$

where

$$
\beta=\frac{2}{1+u_{1}^{2}}
$$

For $-\infty<u_{1}<\infty$, the marginal pdf of U_{1} is

$$
f_{U_{1}}\left(u_{1}\right)=\int_{-\infty}^{\infty} f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right) d u_{2}=\int_{-\infty}^{\infty} \underbrace{\frac{\left|u_{2}\right|}{2 \pi} e^{-u_{2}^{2} / \beta}}_{=g\left(u_{2}\right)} d u_{2}
$$

where the function $g\left(u_{2}\right)=\frac{\left|u_{2}\right|}{2 \pi} e^{-u_{2}^{2} / \beta}$. Note that $g\left(-u_{2}\right)=g\left(u_{2}\right)$ for all $-\infty<u_{2}<\infty$; i.e., g is a nonnegative even function and therefore $g\left(u_{2}\right)$ is symmetric about 0 . Therefore,

$$
\int_{-\infty}^{\infty} \frac{\left|u_{2}\right|}{2 \pi} e^{-u_{2}^{2} / \beta} d u_{2}=2 \int_{0}^{\infty} \frac{u_{2}}{2 \pi} e^{-u_{2}^{2} / \beta} d u_{2}=\frac{1}{\pi} \int_{0}^{\infty} u_{2} e^{-u_{2}^{2} / \beta} d u_{2}
$$

In the last integral, let

$$
v=u_{2}^{2} \quad \Longrightarrow \quad d v=2 u_{2} d u_{2}
$$

The limits do not change under this transformation; as $u_{2}: 0 \rightarrow \infty$, we have $v: 0 \rightarrow \infty$. Therefore,

$$
\begin{aligned}
f_{U_{1}}\left(u_{1}\right)=\frac{1}{\pi} \int_{0}^{\infty} u_{2} e^{-u_{2}^{2} / \beta} d u_{2} & =\frac{1}{\pi} \int_{0}^{\infty} u_{2} e^{-v / \beta} \frac{d v}{2 u_{2}} \\
& =\frac{1}{2 \pi} \int_{0}^{\infty} e^{-v / \beta} d v=\frac{\beta}{2 \pi} \underbrace{\int_{0}^{\infty} \frac{1}{\beta} e^{-v / \beta} d v}_{=1}
\end{aligned}
$$

because $\frac{1}{\beta} e^{-v / \beta}$ is the exponential (β) pdf and we are integrating over $(0, \infty)$. Finally, we have

$$
f_{U_{1}}\left(u_{1}\right)=\frac{\beta}{2 \pi}=\frac{1}{2 \pi}\left(\frac{2}{1+u_{1}^{2}}\right)=\frac{1}{\pi\left(1+u_{1}^{2}\right)}
$$

Summarizing,

$$
f_{U_{1}}\left(u_{1}\right)=\left\{\begin{array}{cc}
\frac{1}{\pi\left(1+u_{1}^{2}\right)}, & -\infty<u_{1}<\infty \\
0, & \text { otherwise }
\end{array}\right.
$$

We recognize this as the standard Cauchy pdf. Therefore, we have shown

$$
Y_{1} \sim \mathcal{N}(0,1), Y_{2} \sim \mathcal{N}(0,1), Y_{1} \Perp Y_{2} \Longrightarrow \frac{Y_{1}}{Y_{2}} \sim \text { (standard) Cauchy. }
$$

6.105. The pdf of Y is

$$
f_{Y}(y)=\left\{\begin{array}{cc}
\frac{y^{\alpha-1}}{B(\alpha, \beta)(1+y)^{\alpha+\beta}}, & y>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

where recall

$$
B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$

is the beta function. To find the pdf of $U=h(Y)=1 /(1+Y)$, we will use the transformation method. Note that

$$
y>0 \quad \Longrightarrow \quad 1+y>1 \quad \Longrightarrow \quad u=\frac{1}{1+y} \in(0,1)
$$

Therefore, the support of U is $R_{U}=\{u: 0<u<1\}$. Note $u=h(y)=1 /(1+y)$ is a monotone decreasing function over $(0, \infty)$ because

$$
\frac{d}{d y} h(y)=\frac{d}{d y}\left(\frac{1}{1+y}\right)=(-1)(1+y)^{-2}<0
$$

for all $y>0$. Therefore, $h(y)=1 /(1+y)$ is one-to-one and we can use the transformation method. The inverse transformation is found as follows:

$$
u=h(y)=\frac{1}{1+y} \Longrightarrow 1+y=\frac{1}{u} \quad \Longrightarrow \quad y=h^{-1}(u)=\frac{1}{u}-1 .
$$

The derivative of the inverse transformation is

$$
\frac{d}{d u} h^{-1}(u)=\frac{d}{d u}\left(\frac{1}{u}-1\right)=-\frac{1}{u^{2}} .
$$

Therefore, for $0<u<1$, the pdf of U is

$$
\begin{aligned}
f_{U}(u) & =f_{Y}\left(h^{-1}(u)\right)\left|\frac{d}{d u} h^{-1}(u)\right| \\
& =\frac{\left(\frac{1}{u}-1\right)^{\alpha-1}}{B(\alpha, \beta)\left[1+\left(\frac{1}{u}-1\right)\right]^{\alpha+\beta}}\left|-\frac{1}{u^{2}}\right| \\
& =\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}\left(\frac{1-u}{u}\right)^{\alpha-1} u^{\alpha+\beta} \times \frac{1}{u^{2}} \\
& =\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}(1-u)^{\alpha-1} u^{\alpha+\beta-\alpha+1-2}=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} u^{\beta-1}(1-u)^{\alpha-1} .
\end{aligned}
$$

Summarizing, the pdf of $U=h(Y)=1 /(1+Y)$ is

$$
f_{U}(u)=\left\{\begin{array}{cc}
\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} u^{\beta-1}(1-u)^{\alpha-1}, & 0<y<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

We recognize this as our usual beta distribution with parameters β and α.
6.107. We derived a general expression for the pdf of $U=Y^{2}$ in the notes; see pp 6-7. The pdf of U, where nonzero, is

$$
f_{U}(u)=\frac{1}{2 \sqrt{u}}\left[f_{Y}(\sqrt{u})+f_{Y}(-\sqrt{u})\right]
$$

If $Y \sim \mathcal{U}(-1,3)$, then the pdf of Y is

$$
f_{Y}(y)=\left\{\begin{array}{lc}
\frac{1}{4}, & -1<y<3 \\
0, & \text { otherwise }
\end{array}\right.
$$

Note that

$$
-1<y<3 \quad \Longrightarrow \quad 0<u<9
$$

Therefore, the support of U is $R_{U}=\{u: 0<u<9\}$. To find the pdf of U, we have to consider the following two cases:

Case 1: $-1<y \leq 1 \Longleftrightarrow 0<u \leq 1$. We have

$$
\begin{aligned}
f_{Y}(\sqrt{u}) & =\frac{1}{4} \\
f_{Y}(-\sqrt{u}) & =\frac{1}{4}
\end{aligned}
$$

Therefore,

$$
f_{U}(u)=\frac{1}{2 \sqrt{u}}\left[f_{Y}(\sqrt{u})+f_{Y}(-\sqrt{u})\right]=\frac{1}{4 \sqrt{u}} .
$$

Case 2: $1<y<3 \Longleftrightarrow 1<u<9$. We have

$$
\begin{aligned}
f_{Y}(\sqrt{u}) & =\frac{1}{4} \\
f_{Y}(-\sqrt{u}) & =0
\end{aligned}
$$

Therefore,

$$
f_{U}(u)=\frac{1}{2 \sqrt{u}}\left[f_{Y}(\sqrt{u})+f_{Y}(-\sqrt{u})\right]=\frac{1}{8 \sqrt{u}} .
$$

Combining both cases, the pdf of $U=Y^{2}$ is

$$
f_{U}(u)=\left\{\begin{array}{cl}
\frac{1}{4 \sqrt{u}}, & 0<u \leq 1 \\
\frac{1}{8 \sqrt{u}}, & 1<u<9 \\
0, & \text { otherwise }
\end{array}\right.
$$

