7.11. In this problem, we envision the sample $Y_{1}, Y_{2}, \ldots, Y_{9}$, where

$$
Y_{i}=\text { basal area of } i \text { th tree (measured in sq inches), } i=1,2, \ldots, 9 .
$$

We assume the population distribution is $\mathcal{N}(\mu, 16)$, and μ is the population mean basal area. We regard $Y_{1}, Y_{2}, \ldots, Y_{9}$ as an iid sample from the $\mathcal{N}(\mu, 16)$ population distribution. We want to find

$$
P(-2<\bar{Y}-\mu<2) .
$$

Note that

$$
\bar{Y}=\frac{1}{9} \sum_{i=1}^{9} Y_{i}
$$

is the sample mean basal area and μ is the population mean. The difference between them is $\bar{Y}-\mu$. We know the sampling distribution

$$
Z=\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}}=\frac{\bar{Y}-\mu}{4 / \sqrt{9}} \sim \mathcal{N}(0,1) .
$$

Therefore,

$$
P(-2<\bar{Y}-\mu<2)=P\left(-\frac{2}{4 / \sqrt{9}}<\frac{\bar{Y}-\mu}{4 / \sqrt{9}}<\frac{2}{4 / \sqrt{9}}\right)=P(-1.5<Z<1.5),
$$

where $Z \sim \mathcal{N}(0,1)$. This probability is easy to calculate in R :

```
> pnorm(1.5,0,1)-pnorm(-1.5,0,1) #P(-1.5 < Z < 1.5)
[1] 0.8663856
```

See the $\mathcal{N}(0,1)$ pdf shown below:

7.13. In this problem, we envision the sample $Y_{1}, Y_{2}, \ldots, Y_{10}$, where $Y_{i}=\ln (\mathrm{LC} 50)$ concentration for i th study (measured in $\left.\mathrm{mg} / \mathrm{l}\right), \quad i=1,2, \ldots, 10$.

We assume the population distribution is $\mathcal{N}(\mu, 0.4)$, and μ is the population mean $\ln (\mathrm{LC} 50)$ concentration. We regard $Y_{1}, Y_{2}, \ldots, Y_{10}$ as an iid sample from the $\mathcal{N}(\mu, 0.4)$ population distribution. We want to find

$$
P(-0.5<\bar{Y}-\mu<0.5) .
$$

Note that

$$
\bar{Y}=\frac{1}{10} \sum_{i=1}^{10} Y_{i}
$$

is the sample mean $\ln (\mathrm{LC} 50)$ concentration and μ is the population mean. The difference between them is $\bar{Y}-\mu$. We know the sampling distribution

$$
Z=\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}}=\frac{\bar{Y}-\mu}{\sqrt{0.4} / \sqrt{10}} \sim \mathcal{N}(0,1) .
$$

Therefore,
$P(-0.5<\bar{Y}-\mu<0.5)=P\left(-\frac{0.5}{\sqrt{0.4} / \sqrt{10}}<\frac{\bar{Y}-\mu}{\sqrt{0.4} / \sqrt{10}}<\frac{0.5}{\sqrt{0.4} / \sqrt{10}}\right)=P(-2.5<Z<2.5)$,
where $Z \sim \mathcal{N}(0,1)$. This probability is easy to calculate in R :
> pnorm(2.5,0,1)-pnorm (-2.5,0,1) \#P(-2.5 < Z < 2.5)
[1] 0.9875807
See the $\mathcal{N}(0,1)$ pdf shown below:

7.19. In this problem, we envision the sample $Y_{1}, Y_{2}, \ldots, Y_{10}$, where

$$
Y_{i}=i \text { th gauge reading (measured in amps) }, \quad i=1,2, \ldots, 10 .
$$

We assume the population distribution is $\mathcal{N}\left(\mu, \sigma^{2}\right)$, where μ is the population mean reading and σ^{2} is the population variance. We regard $Y_{1}, Y_{2}, \ldots, Y_{10}$ as an iid sample from the $\mathcal{N}\left(\mu, \sigma^{2}\right)$ population distribution.

The manufacturer markets the ammeters to have a population standard deviation no larger than $\sigma=0.2 \mathrm{amps}$-this means the population variance is no more than $\sigma^{2}=0.04(\mathrm{amps})^{2}$. If the sample variance of $n=10$ readings is $s^{2}=0.065$, we are being asked to determine if this is "unusual" given the manufacturer's claim that σ^{2} is not larger than 0.04 . To gain insight on this, we can calculate

$$
P\left(S^{2}>0.065\right)
$$

under the assumption that $\sigma^{2}=0.04$. If this probability is "small," then this might lead us to suspect the manufacturer's claim. We know the sampling distribution

$$
W=\frac{(n-1) S^{2}}{\sigma^{2}}=\frac{9 S^{2}}{0.04} \sim \chi^{2}(9) .
$$

Therefore,

$$
P\left(S^{2}>0.065\right)=P\left(\frac{9 S^{2}}{0.04}>\frac{9(0.065)}{0.04}\right)=P(W>14.625)
$$

where $W \sim \chi^{2}(9)$. This probability is easy to calculate in R :

```
> 1-pchisq(14.625,9) # P(W>14.625)
[1] 0.1017651
```

See the $\chi^{2}(9)$ pdf shown below:

The probability $P\left(S^{2}>0.065\right) \approx 0.1018$ is "small," but it might not be regarded as so small that it would cause us to seriously doubt the manufacturer's claim. If this probability was something like 0.0001 , then that would be different. In this problem (for those of you that have had some applied statistics), you are essentially calculating a "p-value" for the test of

$$
\begin{aligned}
H_{0}: & \sigma^{2}=0.04 \\
& \text { versus } \\
H_{1}: & \sigma^{2}>0.04
\end{aligned}
$$

by using the "test statistic"

$$
W=\frac{9 S^{2}}{0.04} \stackrel{H_{0}}{\sim} \chi^{2}(9) .
$$

7.29. We are given that $Y \sim F\left(\nu_{1}, \nu_{2}\right)$. Recall the pdf of Y is

$$
f_{Y}(y)=\left\{\begin{array}{cc}
\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)}\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}}{2}} \frac{y^{\frac{\nu_{1}}{2}-1}}{\left[1+\left(\frac{\nu_{1}}{\nu_{2}}\right) y\right]^{\frac{\nu_{1}+\nu_{2}}{2}}}, & y>0 \\
0, & \text { otherwise. }
\end{array}\right.
$$

We want to find the pdf of

$$
U=h(Y)=\frac{1}{Y}
$$

We will use the transformation method. Note that

$$
y>0 \quad \Longrightarrow \quad u=\frac{1}{y}>0 .
$$

Therefore, the support of U is $R_{U}=\{u: u>0\}$. Note $u=h(y)=1 / y$ is a monotone decreasing function over $(0, \infty)$. Therefore, $h(y)=1 / y$ is one-to-one and we can use the transformation method. The inverse transformation is found as follows:

$$
u=h(y)=\frac{1}{y} \quad \Longrightarrow \quad y=h^{-1}(u)=\frac{1}{u} .
$$

The derivative of the inverse transformation is

$$
\frac{d}{d u} h^{-1}(u)=\frac{d}{d u}\left(\frac{1}{u}\right)=-\frac{1}{u^{2}}
$$

Therefore, for $u>0$, the pdf of U is

$$
\begin{aligned}
& f_{U}(u)=f_{Y}\left(h^{-1}(u)\right)\left|\frac{d}{d u} h^{-1}(u)\right| \\
& =\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)}\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}}{2}} \frac{\left(\frac{1}{u}\right)^{\frac{\nu_{1}}{2}-1}}{\left[1+\left(\frac{\nu_{1}}{\nu_{2}}\right)\left(\frac{1}{u}\right)\right]^{\frac{\nu_{1}+\nu_{2}}{2}}}\left|-\frac{1}{u^{2}}\right| \\
& =\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)}\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}}{2}} \frac{1}{u^{\nu_{\nu_{1}}^{2}+1}} \frac{1}{\left(\frac{u+\frac{\nu_{1}}{\nu_{2}}}{u}\right)^{\frac{\nu_{1}+\nu_{2}}{2}}} \\
& =\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)}\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}}{2}} \frac{u^{\frac{\nu_{1}+\nu_{2}}{2}}}{u^{\frac{\nu_{1}}{2}+1}} \frac{1}{\left(u+\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}+\nu_{2}}{2}}} \\
& =\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{2}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} u^{\frac{\nu_{2}}{2}-1} \frac{\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}}{2}}}{\left(u+\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}}{2}}} \frac{1}{\left(u+\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{2}}{2}}} \\
& =\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} u^{\frac{\nu_{2}}{2}-1} \frac{1}{\left[1+\left(\frac{\nu_{2}}{\nu_{1}}\right) u\right]^{\frac{\nu_{1}}{2}}} \frac{1}{\left(\frac{\nu_{2} u+\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{2}}{2}}} \\
& =\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} u^{\frac{\nu_{2}}{2}-1} \frac{1}{\left[1+\left(\frac{\nu_{2}}{\nu_{1}}\right) u\right]^{\frac{\nu_{1}}{2}}}\left(\frac{\nu_{2}}{\nu_{2} u+\nu_{1}}\right)^{\frac{\nu_{2}}{2}} \\
& =\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} \nu_{2}^{\frac{\nu_{2}}{2}} u^{\frac{\nu_{2}}{2}-1} \frac{1}{\left[1+\left(\frac{\nu_{2}}{\nu_{1}}\right) u\right]^{\frac{\nu_{1}}{2}}} \frac{1}{\left(\frac{\nu_{2} u+\nu_{1}}{\nu_{1}}\right)^{\frac{\nu_{2}}{2}} \nu_{1}^{\frac{\nu_{2}}{2}}} \\
& =\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)}\left(\frac{\nu_{2}}{\nu_{1}}\right)^{\frac{\nu_{2}}{2}} u^{\frac{\nu_{2}}{2}-1} \frac{1}{\left[1+\left(\frac{\nu_{2}}{\nu_{1}}\right) u\right]^{\frac{\nu_{1}}{2}}} \frac{1}{\left[1+\left(\frac{\nu_{2}}{\nu_{1}}\right) u\right]^{\frac{\nu_{2}}{2}}}=\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)}\left(\frac{\nu_{2}}{\nu_{1}}\right)^{\frac{\nu_{2}}{2}} \frac{u^{\frac{\nu}{2}_{2}^{2}}-1}{\left[1+\left(\frac{\nu_{2}}{\nu_{1}}\right) u\right]^{\frac{\nu_{1}+\nu_{2}}{2}}} .
\end{aligned}
$$

We recognize this as the $F\left(\nu_{2}, \nu_{1}\right)$ pdf; therefore, the result. In this problem, we have shown

$$
Y \sim F\left(\nu_{1}, \nu_{2}\right) \quad \Longrightarrow \quad U=\frac{1}{Y} \sim F\left(\nu_{2}, \nu_{1}\right) .
$$

7.33. In this problem, we are being asked to "verify" that

$$
T \sim t(\nu) \Longrightarrow U=T^{2} \sim F(1, \nu)
$$

To do this problem rigorously, we would do a transformation like we did in Problem 7.29. However, we would encounter a problem. Note that

$$
-\infty<t<\infty \quad \Longrightarrow \quad u=t^{2} \geq 0
$$

However, the function $u=t^{2}$ is not 1:1 over $(-\infty, \infty)$. Therefore, we could not use our transformation result as stated; instead, we would have to first generalize our transformation technique to handle non-1:1 functions. If anyone wants to know how to do this (i.e., extend our transformation method to handle non-monotone transformations), then stop by my office and I will tell you.

Appealing to the definitions of t and F distributions makes this problem "heuristic" in nature. Suppose $Z \sim \mathcal{N}(0,1), W_{2} \sim \chi^{2}(\nu)$, and $Z \Perp W_{2}$. We know

$$
T=\frac{Z}{\sqrt{W_{2} / \nu}} \sim t(\nu) .
$$

Therefore,

$$
T^{2}=\left(\frac{Z}{\sqrt{W_{2} / \nu}}\right)^{2}=\frac{Z^{2}}{W_{2} / \nu}
$$

We know $W_{1}=Z^{2} \sim \chi^{2}(1)$, so write

$$
T^{2}=\frac{W_{1}}{W_{2} / \nu}=\frac{W_{1} / 1}{W_{2} / \nu} \sim F(1, \nu) .
$$

Note that $W_{1} \Perp W_{2}$ because $Z \Perp W_{2}$ is true by assumption; i.e., W_{1} is a function of Z, so it too is independent of W_{2}.
7.37. We are given $Y_{1}, Y_{2}, \ldots, Y_{5}$ are iid $\mathcal{N}(0,1)$.
(a) Consider

$$
W=\sum_{i=1}^{5} Y_{i}^{2} .
$$

We know each $Y_{i}^{2} \sim \chi^{2}(1)$, so

$$
m_{Y_{i}^{2}}(t)=\left(\frac{1}{1-2 t}\right)^{\frac{1}{2}}
$$

for $i=1,2, \ldots, 5$. Now, W is the sum of 5 iid $\chi^{2}(1)$ random variables. The mgf of this sum is

$$
m_{W}(t)=\left[\left(\frac{1}{1-2 t}\right)^{\frac{1}{2}}\right]^{5}=\left(\frac{1}{1-2 t}\right)^{\frac{5}{2}}
$$

which we recognize as the mgf of a $\chi^{2}(5)$ random variable. Because mgfs are unique, $W \sim \chi^{2}(5)$.
(b) Recall that $\sigma^{2}=1$. Therefore,

$$
U=\sum_{i=1}^{5}\left(Y_{i}-\bar{Y}\right)^{2}=(5-1) S^{2}=\frac{(5-1) S^{2}}{1} \sim \chi^{2}(4) .
$$

(c) We are given that $Y_{6} \sim \mathcal{N}(0,1)$, which is independent of $Y_{1}, Y_{2}, \ldots, Y_{5}$. We know

$$
U=\sum_{i=1}^{5}\left(Y_{i}-\bar{Y}\right)^{2} \sim \chi^{2}(4)
$$

from part (b). Also, $Y_{6}^{2} \sim \chi^{2}(1)$. Because $\sum_{i=1}^{5}\left(Y_{i}-\bar{Y}\right)^{2}$ is independent of Y_{6}^{2} (functions of independent random variables are also independent), the mgf of

$$
V=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}+Y_{6}^{2}
$$

is

$$
m_{V}(t)=\left(\frac{1}{1-2 t}\right)^{\frac{4}{2}}\left(\frac{1}{1-2 t}\right)^{\frac{1}{2}}=\left(\frac{1}{1-2 t}\right)^{\frac{5}{2}}
$$

We recognize this as the mgf of a $\chi^{2}(5)$ random variable. Because mgfs are unique, $V \sim \chi^{2}(5)$.
7.38. This is a continuation of Problem 7.37.
(a) We know $Y_{6} \sim \mathcal{N}(0,1)$ and $W \sim \chi^{2}(5)$. We also know $Y_{6} \Perp W$ because W depends only on $Y_{1}, Y_{2}, \ldots, Y_{5}$. Therefore,

$$
\frac{\sqrt{5} Y_{6}}{\sqrt{W}}=\frac{Y_{6}}{\sqrt{W / 5}} \sim \frac{" \mathcal{N}(0,1) "}{\sqrt{\frac{" \chi^{2}(5) "}{5}}} \sim t(5)
$$

(b) This is similar to part (a). We know $Y_{6} \sim \mathcal{N}(0,1)$ and $U \sim \chi^{2}(4)$. We also know $Y_{6} \Perp U$ because U depends only on $Y_{1}, Y_{2}, \ldots, Y_{5}$. Therefore,

$$
\frac{2 Y_{6}}{\sqrt{U}}=\frac{Y_{6}}{\sqrt{U / 4}} \sim \frac{" \mathcal{N}(0,1) "}{\sqrt{\frac{" \chi^{2}(4) "}{4}}} \sim t(4)
$$

(c) In the numerator, we have

$$
\bar{Y} \sim \mathcal{N}\left(0, \frac{1}{5}\right)
$$

Consider the random variable $\sqrt{5 Y}$. Note that

$$
\begin{aligned}
& E(\sqrt{5} \bar{Y})=\sqrt{5} E(\bar{Y})=\sqrt{5}(0)=0 \\
& V(\sqrt{5} \bar{Y})=5 V(\bar{Y})=\frac{5}{5}=1
\end{aligned}
$$

Also, $\sqrt{5 \bar{Y}}$ is a linear function of \bar{Y}, which is normal. Therefore,

$$
\sqrt{5} \bar{Y} \sim \mathcal{N}(0,1) \quad \Longrightarrow \quad 5 \bar{Y}^{2}=(\sqrt{5} \bar{Y})^{2} \sim \chi^{2}(1)
$$

We already know $Y_{6}^{2} \sim \chi^{2}(1)$. Because $5 \bar{Y}^{2}$ is independent of Y_{6}^{2} (functions of independent random variables are also independent),

$$
5 \bar{Y}^{2}+Y_{6}^{2} \sim \chi^{2}(2)
$$

We know $U \sim \chi^{2}(4)$, so let's write

$$
\frac{2\left(5 \bar{Y}^{2}+Y_{6}^{2}\right)}{U}=\frac{\left(5 \bar{Y}^{2}+Y_{6}^{2}\right) / 2}{U / 4} \sim \frac{" \chi^{2}(2) " / 2}{" \chi^{2}(4) " / 4} \sim F(2,4)
$$

We must argue the numerator and denominator are independent. Note that $5 \bar{Y}^{2} \Perp U$ because $U=4 S^{2}$ and $\bar{Y} \Perp S^{2}$. Also, $Y_{6}^{2} \Perp U$ because U depends only on $Y_{1}, Y_{2}, \ldots, Y_{5}$. Therefore, $\left(5 \bar{Y}^{2}+Y_{6}^{2}\right) \Perp U$ and we are done.
7.39. This problem examines different sampling distributions that arise in the analysis of variance (ANOVA) of one-way layouts. We have independent random samples

$$
\begin{aligned}
X_{11}, X_{12}, \ldots, X_{1 n_{1}} & \sim \operatorname{iid} \mathcal{N}\left(\mu_{1}, \sigma^{2}\right) \longleftarrow \text { sample from "treatment group 1" } \\
X_{21}, X_{22}, \ldots, X_{2 n_{2}} & \sim \operatorname{iid} \mathcal{N}\left(\mu_{2}, \sigma^{2}\right) \longleftarrow \text { sample from "treatment group 2" } \\
& \vdots \\
X_{k 1}, X_{k 2}, \ldots, X_{k n_{k}} & \sim \operatorname{iid} \mathcal{N}\left(\mu_{k}, \sigma^{2}\right) \longleftarrow \text { sample from "treatment group } k . "
\end{aligned}
$$

Note that the population variance σ^{2} is same in each of the k treatment group populations (a critical assumption in ANOVA).
(a) We know the sample mean \bar{X}_{i} has the following sampling distribution:

$$
\bar{X}_{i} \sim \mathcal{N}\left(\mu_{i}, \frac{\sigma^{2}}{n_{i}}\right), \quad i=1,2, \ldots, k .
$$

Therefore, because

$$
\widehat{\theta}=c_{1} \bar{X}_{1}+c_{2} \bar{X}_{2}+\cdots+c_{k} \bar{X}_{k}
$$

is a linear combination of normal random variables, it is also normally distributed with mean

$$
E(\widehat{\theta})=E\left(c_{1} \bar{X}_{1}+c_{2} \bar{X}_{2}+\cdots+c_{k} \bar{X}_{k}\right)=c_{1} \mu_{1}+c_{2} \mu_{2}+\cdots+c_{k} \mu_{k}=\theta
$$

and variance

$$
V(\widehat{\theta})=V\left(c_{1} \bar{X}_{1}+c_{2} \bar{X}_{2}+\cdots+c_{k} \bar{X}_{k}\right)=c_{1}^{2}\left(\frac{\sigma^{2}}{n_{1}}\right)+c_{2}^{2}\left(\frac{\sigma^{2}}{n_{2}}\right)+\cdots+c_{k}^{2}\left(\frac{\sigma^{2}}{n_{k}}\right)=\sigma^{2} \sum_{i=1}^{k} \frac{c_{i}^{2}}{n_{i}} .
$$

The variance calculation follows because the sample means are independent so all the covariance terms are zero. We have shown

$$
\widehat{\theta} \sim \mathcal{N}\left(\theta, \sigma^{2} \sum_{i=1}^{k} \frac{c_{i}^{2}}{n_{i}}\right)
$$

(b) Let S_{i}^{2} denote the sample variance of the i th sample, for $i=1,2, \ldots, k$. We know

$$
\frac{\left(n_{i}-1\right) S_{i}^{2}}{\sigma^{2}} \sim \chi^{2}\left(n_{i}-1\right), \quad i=1,2, \ldots, k
$$

Because the samples are independent, we have

$$
\frac{\mathrm{SSE}}{\sigma^{2}}=\frac{\sum_{i=1}^{k}\left(n_{i}-1\right) S_{i}^{2}}{\sigma^{2}}=\frac{\left(n_{1}-1\right) S_{1}^{2}}{\sigma^{2}}+\frac{\left(n_{2}-1\right) S_{2}^{2}}{\sigma^{2}}+\cdots+\frac{\left(n_{k}-1\right) S_{k}^{2}}{\sigma^{2}} \sim \chi^{2}\left(\sum_{i=1}^{k} n_{i}-k\right) ;
$$

i.e., the degrees of freedom "add" because of independence. Note: In the analysis of variance, SSE is called the error sum-of squares.
(c) From part (a), we know

$$
\widehat{\theta} \sim \mathcal{N}\left(\theta, \sigma^{2} \sum_{i=1}^{k} \frac{c_{i}^{2}}{n_{i}}\right) \Longrightarrow Z=\frac{\widehat{\theta}-\theta}{\sqrt{\sigma^{2} \sum_{i=1}^{k} \frac{c_{i}^{2}}{n_{i}}}} \sim \mathcal{N}(0,1) .
$$

Therefore,

$$
\frac{\widehat{\theta}-\theta}{\sqrt{\left(\sum_{i=1}^{k} \frac{c_{i}^{2}}{n_{i}}\right) \operatorname{MSE}}}=\frac{\frac{\hat{\theta}-\theta}{\sqrt{\sigma^{2} \sum_{i=1}^{k} \frac{c_{i}^{2}}{n_{i}}}}}{\sqrt{\frac{\operatorname{SSE}}{\sigma^{2}} /\left(\sum_{i=1}^{k} n_{i}-k\right)}} \sim \frac{" \mathcal{N}(0,1) "}{\sqrt{\frac{" \chi^{2}\left(\sum_{i=1}^{k} n_{i}-k\right) "}{\sum_{i=1}^{k} n_{i}-k}}} \sim t\left(\sum_{i=1}^{k} n_{i}-k\right) .
$$

Note: In the analysis of variance, MSE is called the mean-squared error. The result in part (c) is used to write confidence intervals and perform hypothesis tests for linear combinations of population means in one-way layouts. If $\sum_{i=1}^{k} c_{i}=1$, the linear combination $\theta=c_{1} \mu_{1}+c_{2} \mu_{2}+\cdots+c_{k} \mu_{k}$ is called a contrast.
7.88. In this problem, we envision the sample $Y_{1}, Y_{2}, \ldots, Y_{8}$, where

$$
Y_{i}=\text { efficiency for } i \text { th bulb (measured in lumens/watt), } \quad i=1,2, \ldots, 8
$$

We assume the population distribution is $\mathcal{N}\left(9.5,0.5^{2}\right)$; i.e., $\mu=9.5$ is the population mean efficiency and $\sigma^{2}=0.5^{2}$ is the population variance. We regard $Y_{1}, Y_{2}, \ldots, Y_{8}$ as an iid sample from the $\mathcal{N}\left(9.5,0.5^{2}\right)$ population distribution. We want to find

$$
P(\bar{Y}>10) .
$$

Note that

$$
\bar{Y}=\frac{1}{8} \sum_{i=1}^{8} Y_{i}
$$

is the sample mean efficiency. We know the sampling distribution of \bar{Y} is

$$
\bar{Y} \sim \mathcal{N}\left(9.5, \frac{0.5^{2}}{8}\right)
$$

Therefore,

$$
P(\bar{Y}>10)=P\left(Z>\frac{10-9.5}{\sqrt{0.5^{2} / 8}}\right)=P(Z>2.83)
$$

where $Z \sim \mathcal{N}(0,1)$. This probability is easy to calculate in R :
> 1-pnorm(2.83,0,1) \#P(Z>2.83)
[1] 0.0023274
See the $\mathcal{N}(0,1)$ pdf shown below:

Therefore, it is highly unlikely this specification for the room will be met, assuming the population distribution for bulb efficiency is $\mathcal{N}\left(9.5,0.5^{2}\right)$.
7.95. This problem deals with a statistic called the coefficient of variation; i.e.,

$$
T(\mathbf{Y})=\frac{S}{\bar{Y}}
$$

which is a measure of variability relative to the mean. This measure is useful if you want to compare the variation of two groups which may have drastically different means.

In this problem, $Y_{1}, Y_{2}, \ldots, Y_{10}$ are iid from a $\mathcal{N}\left(0, \sigma^{2}\right)$ population distribution; i.e., the population mean is $\mu=0$ and the population variance is σ^{2}.
(a) We know

$$
\bar{Y} \sim \mathcal{N}\left(0, \frac{\sigma^{2}}{10}\right) \Longrightarrow Z=\frac{\bar{Y}}{\sigma / \sqrt{10}} \sim \mathcal{N}(0,1) \Longrightarrow Z^{2}=\left(\frac{\bar{Y}}{\sigma / \sqrt{10}}\right)^{2}=\frac{10 \bar{Y}}{\sigma^{2}} \sim \chi^{2}(1)
$$

We also know

$$
\frac{(n-1) S^{2}}{\sigma^{2}}=\frac{9 S^{2}}{\sigma^{2}} \sim \chi^{2}(9)
$$

Therefore, because

$$
\frac{10 \bar{Y}}{\sigma^{2}} \Perp \frac{9 S^{2}}{\sigma^{2}}
$$

we have

$$
F=\frac{10 \bar{Y}^{2}}{S^{2}}=\frac{\frac{10 \bar{Y}}{\sigma^{2}} / 1}{\frac{9 S^{2}}{\sigma^{2}} / 9} \sim \frac{" \chi^{2}(1) " / 1}{" \chi^{2}(9) " / 9} \sim F(1,9)
$$

(b) From Problem 7.29, we know

$$
\frac{1}{F}=\frac{S^{2}}{10 \bar{Y}^{2}} \sim F(9,1)
$$

(c) Suppose $c>0$. We have

$$
0.95=P\left(-c<\frac{S}{\bar{Y}}<c\right)=P\left(\frac{S^{2}}{\overline{\bar{Y}}^{2}}<c^{2}\right)=P\left(\frac{S^{2}}{10 \bar{Y}^{2}}<\frac{c^{2}}{10}\right)
$$

For this equation to hold, it must be true that

$$
\frac{c^{2}}{10}=F_{0.05,9,1} ;
$$

i.e., $c^{2} / 10$ is the 95 th percentile of the $F(9,1)$ distribution. From R, we calculate this percentile to be

```
> qf(0.95,9,1)
```

[1] 240.5433

Therefore,

$$
\frac{c^{2}}{10} \stackrel{\text { set }}{=} 240.5433 \Longrightarrow c^{2}=2405.433 \quad \Longrightarrow \quad c=\sqrt{2405.433} \approx 49.045
$$

