
STAT 512 HW4 SOLUTIONS

7.11. In this problem, we envision the sample Y1, Y2, ..., Y9, where

Yi = basal area of ith tree (measured in sq inches), i = 1, 2, ..., 9.

We assume the population distribution is N (µ, 16), and µ is the population mean basal area.
We regard Y1, Y2, ..., Y9 as an iid sample from the N (µ, 16) population distribution. We want
to find

P (−2 < Y − µ < 2).

Note that

Y =
1

9

9∑
i=1

Yi

is the sample mean basal area and µ is the population mean. The difference between them is
Y − µ. We know the sampling distribution

Z =
Y − µ
σ/
√
n

=
Y − µ
4/
√

9
∼ N (0, 1).

Therefore,

P (−2 < Y − µ < 2) = P

(
− 2

4/
√

9
<
Y − µ
4/
√

9
<

2

4/
√

9

)
= P (−1.5 < Z < 1.5),

where Z ∼ N (0, 1). This probability is easy to calculate in R:

> pnorm(1.5,0,1)-pnorm(-1.5,0,1) #P(-1.5 < Z < 1.5)

[1] 0.8663856

See the N (0, 1) pdf shown below:
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7.13. In this problem, we envision the sample Y1, Y2, ..., Y10, where

Yi = ln(LC50) concentration for ith study (measured in mg/l), i = 1, 2, ..., 10.
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We assume the population distribution is N (µ, 0.4), and µ is the population mean ln(LC50)
concentration. We regard Y1, Y2, ..., Y10 as an iid sample from the N (µ, 0.4) population distri-
bution. We want to find

P (−0.5 < Y − µ < 0.5).

Note that

Y =
1

10

10∑
i=1

Yi

is the sample mean ln(LC50) concentration and µ is the population mean. The difference
between them is Y − µ. We know the sampling distribution

Z =
Y − µ
σ/
√
n

=
Y − µ√
0.4/
√

10
∼ N (0, 1).

Therefore,

P (−0.5 < Y − µ < 0.5) = P

(
− 0.5√

0.4/
√

10
<

Y − µ√
0.4/
√

10
<

0.5√
0.4/
√

10

)
= P (−2.5 < Z < 2.5),

where Z ∼ N (0, 1). This probability is easy to calculate in R:

> pnorm(2.5,0,1)-pnorm(-2.5,0,1) #P(-2.5 < Z < 2.5)

[1] 0.9875807

See the N (0, 1) pdf shown below:
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7.19. In this problem, we envision the sample Y1, Y2, ..., Y10, where

Yi = ith gauge reading (measured in amps), i = 1, 2, ..., 10.

We assume the population distribution is N (µ, σ2), where µ is the population mean reading
and σ2 is the population variance. We regard Y1, Y2, ..., Y10 as an iid sample from the N (µ, σ2)
population distribution.
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The manufacturer markets the ammeters to have a population standard deviation no larger
than σ = 0.2 amps−this means the population variance is no more than σ2 = 0.04 (amps)2. If
the sample variance of n = 10 readings is s2 = 0.065, we are being asked to determine if this
is “unusual” given the manufacturer’s claim that σ2 is not larger than 0.04. To gain insight on
this, we can calculate

P (S2 > 0.065)

under the assumption that σ2 = 0.04. If this probability is “small,” then this might lead us to
suspect the manufacturer’s claim. We know the sampling distribution

W =
(n− 1)S2

σ2
=

9S2

0.04
∼ χ2(9).

Therefore,

P (S2 > 0.065) = P

(
9S2

0.04
>

9(0.065)

0.04

)
= P (W > 14.625)

where W ∼ χ2(9). This probability is easy to calculate in R:

> 1-pchisq(14.625,9) # P(W>14.625)

[1] 0.1017651

See the χ2(9) pdf shown below:
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The probability P (S2 > 0.065) ≈ 0.1018 is “small,” but it might not be regarded as so small
that it would cause us to seriously doubt the manufacturer’s claim. If this probability was
something like 0.0001, then that would be different. In this problem (for those of you that have
had some applied statistics), you are essentially calculating a “p-value” for the test of

H0 : σ2 = 0.04
versus

H1 : σ2 > 0.04

by using the “test statistic”

W =
9S2

0.04

H0∼ χ2(9).
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7.29. We are given that Y ∼ F (ν1, ν2). Recall the pdf of Y is

fY (y) =


Γ(ν1+ν22 )

Γ(ν12 )Γ(ν22 )

(
ν1
ν2

) ν1
2 y

ν1
2
−1

[1 + (ν1ν2 )y]
ν1+ν2

2

, y > 0

0, otherwise.

We want to find the pdf of

U = h(Y ) =
1

Y
.

We will use the transformation method. Note that

y > 0 =⇒ u =
1

y
> 0.

Therefore, the support of U is RU = {u : u > 0}. Note u = h(y) = 1/y is a monotone decreasing
function over (0,∞). Therefore, h(y) = 1/y is one-to-one and we can use the transformation
method. The inverse transformation is found as follows:

u = h(y) =
1

y
=⇒ y = h−1(u) =

1

u
.

The derivative of the inverse transformation is

d

du
h−1(u) =

d

du

(
1

u

)
= − 1

u2
.

Therefore, for u > 0, the pdf of U is

fU (u) = fY (h−1(u))

∣∣∣∣ dduh−1(u)

∣∣∣∣
=

Γ(ν1+ν22 )

Γ(ν12 )Γ(ν22 )

(
ν1
ν2

) ν1
2 ( 1

u )
ν1
2 −1

[1 + ( ν1ν2 )( 1
u )]

ν1+ν2
2

∣∣∣∣− 1

u2

∣∣∣∣
=

Γ(ν1+ν22 )

Γ(ν12 )Γ(ν22 )

(
ν1
ν2

) ν1
2 1

u
ν1
2 +1

1(
u+

ν1
ν2

u

) ν1+ν2
2

=
Γ(ν1+ν22 )

Γ(ν12 )Γ(ν22 )

(
ν1
ν2

) ν1
2 u

ν1+ν2
2

u
ν1
2 +1

1(
u+ ν1

ν2

) ν1+ν2
2

=
Γ(ν1+ν22 )

Γ(ν12 )Γ(ν22 )
u

ν2
2 −1

(
ν1
ν2

) ν1
2

(
u+ ν1

ν2

) ν1
2

1(
u+ ν1

ν2

) ν2
2

=
Γ(ν1+ν22 )

Γ(ν12 )Γ(ν22 )
u

ν2
2 −1 1[

1 + ( ν2ν1 )u
] ν1

2

1(
ν2u+ν1
ν2

) ν2
2

=
Γ(ν1+ν22 )

Γ(ν12 )Γ(ν22 )
u

ν2
2 −1 1[

1 + ( ν2ν1 )u
] ν1

2

(
ν2

ν2u+ ν1

) ν2
2

=
Γ(ν1+ν22 )

Γ(ν12 )Γ(ν22 )
ν

ν2
2

2 u
ν2
2 −1 1[

1 + ( ν2ν1 )u
] ν1

2

1(
ν2u+ν1
ν1

) ν2
2

ν
ν2
2

1

=
Γ(ν1+ν22 )

Γ(ν12 )Γ(ν22 )

(
ν2
ν1

) ν2
2

u
ν2
2 −1 1[

1 + ( ν2ν1 )u
] ν1

2

1[
1 + ( ν2ν1 )u

] ν2
2

=
Γ(ν1+ν22 )

Γ(ν12 )Γ(ν22 )

(
ν2
ν1

) ν2
2 u

ν2
2 −1[

1 + ( ν2ν1 )u
] ν1+ν2

2

.

PAGE 4



STAT 512 HW4 SOLUTIONS

We recognize this as the F (ν2, ν1) pdf; therefore, the result. In this problem, we have shown

Y ∼ F (ν1, ν2) =⇒ U =
1

Y
∼ F (ν2, ν1).

7.33. In this problem, we are being asked to “verify” that

T ∼ t(ν) =⇒ U = T 2 ∼ F (1, ν).

To do this problem rigorously, we would do a transformation like we did in Problem 7.29.
However, we would encounter a problem. Note that

−∞ < t <∞ =⇒ u = t2 ≥ 0.

However, the function u = t2 is not 1:1 over (−∞,∞). Therefore, we could not use our
transformation result as stated; instead, we would have to first generalize our transformation
technique to handle non-1:1 functions. If anyone wants to know how to do this (i.e., extend our
transformation method to handle non-monotone transformations), then stop by my office and
I will tell you.

Appealing to the definitions of t and F distributions makes this problem “heuristic” in nature.
Suppose Z ∼ N (0, 1), W2 ∼ χ2(ν), and Z ⊥⊥W2. We know

T =
Z√
W2/ν

∼ t(ν).

Therefore,

T 2 =

(
Z√
W2/ν

)2

=
Z2

W2/ν
.

We know W1 = Z2 ∼ χ2(1), so write

T 2 =
W1

W2/ν
=
W1/1

W2/ν
∼ F (1, ν).

Note that W1 ⊥⊥ W2 because Z ⊥⊥ W2 is true by assumption; i.e., W1 is a function of Z, so it
too is independent of W2.

7.37. We are given Y1, Y2, ..., Y5 are iid N (0, 1).
(a) Consider

W =

5∑
i=1

Y 2
i .

We know each Y 2
i ∼ χ2(1), so

mY 2
i

(t) =

(
1

1− 2t

) 1
2

,

for i = 1, 2, ..., 5. Now, W is the sum of 5 iid χ2(1) random variables. The mgf of this sum is

mW (t) =

[(
1

1− 2t

) 1
2

]5
=

(
1

1− 2t

) 5
2

,

which we recognize as the mgf of a χ2(5) random variable. Because mgfs are unique, W ∼ χ2(5).
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(b) Recall that σ2 = 1. Therefore,

U =

5∑
i=1

(Yi − Y )2 = (5− 1)S2 =
(5− 1)S2

1
∼ χ2(4).

(c) We are given that Y6 ∼ N (0, 1), which is independent of Y1, Y2, ..., Y5. We know

U =
5∑
i=1

(Yi − Y )2 ∼ χ2(4)

from part (b). Also, Y 2
6 ∼ χ2(1). Because

∑5
i=1(Yi − Y )2 is independent of Y 2

6 (functions of
independent random variables are also independent), the mgf of

V =
n∑
i=1

(Yi − Y )2 + Y 2
6

is

mV (t) =

(
1

1− 2t

) 4
2
(

1

1− 2t

) 1
2

=

(
1

1− 2t

) 5
2

.

We recognize this as the mgf of a χ2(5) random variable. Because mgfs are unique, V ∼ χ2(5).

7.38. This is a continuation of Problem 7.37.
(a) We know Y6 ∼ N (0, 1) and W ∼ χ2(5). We also know Y6 ⊥⊥ W because W depends only
on Y1, Y2, ..., Y5. Therefore,

√
5Y6√
W

=
Y6√
W/5

∼ “N (0, 1)”√
“χ2(5)”

5

∼ t(5).

(b) This is similar to part (a). We know Y6 ∼ N (0, 1) and U ∼ χ2(4). We also know Y6 ⊥⊥ U
because U depends only on Y1, Y2, ..., Y5. Therefore,

2Y6√
U

=
Y6√
U/4

∼ “N (0, 1)”√
“χ2(4)”

4

∼ t(4).

(c) In the numerator, we have

Y ∼ N
(

0,
1

5

)
.

Consider the random variable
√

5Y . Note that

E(
√

5Y ) =
√

5E(Y ) =
√

5(0) = 0

V (
√

5Y ) = 5V (Y ) =
5

5
= 1.

Also,
√

5Y is a linear function of Y , which is normal. Therefore,

√
5Y ∼ N (0, 1) =⇒ 5Y

2
= (
√

5Y )2 ∼ χ2(1).

PAGE 6



STAT 512 HW4 SOLUTIONS

We already know Y 2
6 ∼ χ2(1). Because 5Y

2
is independent of Y 2

6 (functions of independent
random variables are also independent),

5Y
2

+ Y 2
6 ∼ χ2(2).

We know U ∼ χ2(4), so let’s write

2(5Y
2

+ Y 2
6 )

U
=

(5Y
2

+ Y 2
6 )/2

U/4
∼ “χ2(2)”/2

“χ2(4)”/4
∼ F (2, 4).

We must argue the numerator and denominator are independent. Note that 5Y
2 ⊥⊥ U because

U = 4S2 and Y ⊥⊥ S2. Also, Y 2
6 ⊥⊥ U because U depends only on Y1, Y2, ..., Y5. Therefore,

(5Y
2

+ Y 2
6 ) ⊥⊥ U and we are done.

7.39. This problem examines different sampling distributions that arise in the analysis of
variance (ANOVA) of one-way layouts. We have independent random samples

X11, X12, ..., X1n1 ∼ iid N (µ1, σ
2) ←− sample from “treatment group 1”

X21, X22, ..., X2n2 ∼ iid N (µ2, σ
2) ←− sample from “treatment group 2”

...

Xk1, Xk2, ..., Xknk ∼ iid N (µk, σ
2) ←− sample from “treatment group k.”

Note that the population variance σ2 is same in each of the k treatment group populations (a
critical assumption in ANOVA).

(a) We know the sample mean Xi has the following sampling distribution:

Xi ∼ N
(
µi,

σ2

ni

)
, i = 1, 2, ..., k.

Therefore, because
θ̂ = c1X1 + c2X2 + · · ·+ ckXk

is a linear combination of normal random variables, it is also normally distributed with mean

E(θ̂) = E(c1X1 + c2X2 + · · ·+ ckXk) = c1µ1 + c2µ2 + · · ·+ ckµk = θ

and variance

V (θ̂) = V (c1X1 + c2X2 + · · ·+ ckXk) = c21

(
σ2

n1

)
+ c22

(
σ2

n2

)
+ · · ·+ c2k

(
σ2

nk

)
= σ2

k∑
i=1

c2i
ni
.

The variance calculation follows because the sample means are independent so all the covariance
terms are zero. We have shown

θ̂ ∼ N

(
θ, σ2

k∑
i=1

c2i
ni

)
.
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(b) Let S2
i denote the sample variance of the ith sample, for i = 1, 2, ..., k. We know

(ni − 1)S2
i

σ2
∼ χ2(ni − 1), i = 1, 2, ..., k.

Because the samples are independent, we have

SSE

σ2
=

∑k
i=1(ni − 1)S2

i

σ2
=

(n1 − 1)S2
1

σ2
+

(n2 − 1)S2
2

σ2
+ · · ·+

(nk − 1)S2
k

σ2
∼ χ2

(
k∑
i=1

ni − k

)
;

i.e., the degrees of freedom “add” because of independence. Note: In the analysis of variance,
SSE is called the error sum-of squares.

(c) From part (a), we know

θ̂ ∼ N

(
θ, σ2

k∑
i=1

c2i
ni

)
=⇒ Z =

θ̂ − θ√√√√σ2
k∑
i=1

c2i
ni

∼ N (0, 1).

Therefore,

θ̂ − θ√√√√( k∑
i=1

c2i
ni

)
MSE

=

θ̂ − θ√√√√σ2
k∑
i=1

c2i
ni√√√√SSE

σ2

/(
k∑
i=1

ni − k

) ∼ “N (0, 1)”√
“χ2(

∑k
i=1 ni − k)”∑k

i=1 ni − k

∼ t

(
k∑
i=1

ni − k

)
.

Note: In the analysis of variance, MSE is called the mean-squared error. The result in
part (c) is used to write confidence intervals and perform hypothesis tests for linear com-
binations of population means in one-way layouts. If

∑k
i=1 ci = 1, the linear combination

θ = c1µ1 + c2µ2 + · · ·+ ckµk is called a contrast.

7.88. In this problem, we envision the sample Y1, Y2, ..., Y8, where

Yi = efficiency for ith bulb (measured in lumens/watt), i = 1, 2, ..., 8.

We assume the population distribution is N (9.5, 0.52); i.e., µ = 9.5 is the population mean
efficiency and σ2 = 0.52 is the population variance. We regard Y1, Y2, ..., Y8 as an iid sample
from the N (9.5, 0.52) population distribution. We want to find

P (Y > 10).

Note that

Y =
1

8

8∑
i=1

Yi
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is the sample mean efficiency. We know the sampling distribution of Y is

Y ∼ N
(

9.5,
0.52

8

)
.

Therefore,

P (Y > 10) = P

(
Z >

10− 9.5√
0.52/8

)
= P (Z > 2.83),

where Z ∼ N (0, 1). This probability is easy to calculate in R:

> 1-pnorm(2.83,0,1) #P(Z>2.83)

[1] 0.0023274

See the N (0, 1) pdf shown below:
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) 

pd
f

0.0023

Therefore, it is highly unlikely this specification for the room will be met, assuming the popu-
lation distribution for bulb efficiency is N (9.5, 0.52).

7.95. This problem deals with a statistic called the coefficient of variation; i.e.,

T (Y) =
S

Y
,

which is a measure of variability relative to the mean. This measure is useful if you want to
compare the variation of two groups which may have drastically different means.

In this problem, Y1, Y2, ..., Y10 are iid from a N (0, σ2) population distribution; i.e., the popula-
tion mean is µ = 0 and the population variance is σ2.

(a) We know

Y ∼ N
(

0,
σ2

10

)
=⇒ Z =

Y

σ/
√

10
∼ N (0, 1) =⇒ Z2 =

(
Y

σ/
√

10

)2

=
10Y

σ2
∼ χ2(1).
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We also know
(n− 1)S2

σ2
=

9S2

σ2
∼ χ2(9).

Therefore, because
10Y

σ2
⊥⊥ 9S2

σ2
,

we have

F =
10Y

2

S2
=

10Y

σ2

/
1

9S2

σ2

/
9

∼ “χ2(1)”/1

“χ2(9)”/9
∼ F (1, 9).

(b) From Problem 7.29, we know

1

F
=

S2

10Y
2 ∼ F (9, 1).

(c) Suppose c > 0. We have

0.95 = P

(
−c < S

Y
< c

)
= P

(
S2

Y
2 < c2

)
= P

(
S2

10Y
2 <

c2

10

)
.

For this equation to hold, it must be true that

c2

10
= F0.05,9,1;

i.e., c2/10 is the 95th percentile of the F (9, 1) distribution. From R, we calculate this percentile
to be

> qf(0.95,9,1)

[1] 240.5433

Therefore,

c2

10

set
= 240.5433 =⇒ c2 = 2405.433 =⇒ c =

√
2405.433 ≈ 49.045.
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