STAT 512 HWS5 SOLUTIONS

7.43. In this problem, we envision the sample Y7, Y, ..., Y199, where
Y; = height of ith man (measured in inches), i=1,2,...,100.

The population distribution is unknown (at least, it is not provided in the problem), but the
population standard deviation is assumed to be o = 2.5 inches. We regard Y7, Y5, ..., Y100 as an
iid sample from this unknown population distribution. We want to find

P(-0.5<Y — < 0.5).

Note that
B 1 100
Y =— Y;
100 z_; ‘

is the sample mean height of the 100 men and p is the population mean height. The difference
between them is Y — p. Even though the population distribution is unknown, the Central Limit
Theorem says the (approximate) sampling distribution of Y is

_ 2 — 2.52
Ve AN (1, 5) = T~ AN (5,22,
n 100

Therefore,

05 Y —u _ 05
2.5/4/100 ~ 2.5/4/100 ~ 2.5/+/100

where Z ~ N(0,1). This (approximate) probability is easy to calculate in R:

P(—O.5<Y—u<0.5):P< )zP(—2<Z<2),

> pnorm(2,0,1)-pnorm(-2,0,1) #P(-2 < Z < 2)
[1] 0.9544997

See the N (0, 1) pdf shown below:

<
<]

0.3

N(0,1) pdf
0.2
1

0.9545

0.1

0.0

7.52. In this problem, we envision the sample Y7, Ys, ..., Yo5, where

Y; = resistance of ith resistor (measured in ohms), i=1,2,...,25.
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The population distribution is unknown (at least, it is not provided in the problem), but the
population mean is assumed to be p = 200 ohms and the population standard deviation is
assumed to be o = 10 ohms. We regard Y7, Y5, ..., Y5 as an iid sample from this unknown
population distribution.

(a) In this part, we want to find
P(199 < Y < 202),

where

is the sample mean. Even though the population distribution is unknown, the Central Limit
Theorem says the (approximate) sampling distribution of Y is

2 2
Y~AN<M,(;) . Y~AN<M,12%>.

Therefore,

199 -200 _ ¥ —200 _ 202 — 200
10/v/25  10/v/25 ~ 10/v/25

where Z ~ N(0,1). This (approximate) probability is easy to calculate in R:

P(199 <Y <202) =P < > ~ P(—05< Z<1),

> pnorm(1,0,1)-pnorm(-0.5,0,1) #P(-0.5 < Z < 1)
[1] 0.5328072

See the N'(0,1) pdf shown below:
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(b) In this part, we want to find
P(T < 5100),

where

25
T=>Y
i=1
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is the sample sum of the 25 resistors. Even though the population distribution is unknown, the
Central Limit Theorem says the (approximate) sampling distribution of 7" is

T ~ AN (np,no?) = T ~ AN (25(200),25(10)%) .
Therefore,

T —25(200) _ 5100 — 25(200)
/25(10)2 \/25(10)2

where Z ~ N(0,1). This (approximate) probability is easy to calculate in R:

P(T<2100):P< > ~ P(Z < 2),

> pnorm(2,0,1) #P(Z < 2)
[1] 0.9772499

See the N (0, 1) pdf shown below:
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7.53. In this problem, for part (b), we envision the sample Y1, Ya, ..., Yig9, where
Y; = concentration of ith air sample (measured in ppm), = 1,2,...,100.

The population distribution is unknown (at least, it is not provided in the problem), but the
population mean is assumed to be u = 12 ppm and the population standard deviation is
assumed to be 0 = 9 ppm. In part (b), we regard Y7, Y5, ..., Y100 as an iid sample from this
unknown population distribution.

(a) If the population mean is g = 12 and the population standard deviation is o = 9, then the
population distribution cannot be normal. Concentrations must be positive, and a concentration
of 0 is only 1.5 standard deviations below the mean. The N(12,9?) distribution would allow
for a substantial portion of the measurements (about 7%) to be negative, which does not make
sense.

(b) In this part, we want to find
P(Y > 14),
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where
B 1 100
Y =— Y,
100 4
=1

o

is the sample mean of the 100 air sample concentrations. Even though the population distri-
bution is unknown, the Central Limit Theorem says the (approximate) sampling distribution
of Y is
Y~AN (p,— ) = Y ~AN[12,— ).
n 100

Therefore, o
Y —12 14 — 12

9/v/100 ~ 9/v/100

where Z ~ N(0,1). This (approximate) probability is easy to calculate in R:

P@»&@:P( >wP@>Zm%

> 1-pnorm(2.22,0,1) #P(Z > 2.22)
[1] 0.01320938

See the N(0,1) pdf shown below:
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7.58. We have independent random samples:

e X1,Xo,..., X, is an iid sample from a population with mean yp; and variance O'%

2

e V1,Y5,....Y, is an iid sample from a population with mean ps and variance o3.

Consider the new random variables
Wi=X,-Y;, i=1,2,...,n,
that is, W; is the difference of X; and Y;, for ¢ = 1,2, ...,n. Note that

E(W;) = E(X; - Y;) = E(X;) — E(Y;) = 1 — p2
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and
VW) =V(X; —Y;) =V(X;) + V(Y;) — 2Cov(X;,Y;) = 0} + o3
=0
Note that Cov(X;,Y;) = 0 because the samples are assumed to be independent. Therefore,
Wi, Wa, ..., W,, are iid random variables with mean u = u; — puo and variance o2 = a% + O’%.
Provided 02 < 0o, applying the CLT directly yields

_ W—n 4

U, = — N(0,1),
YN N(0,1)
as n — oo. However, note that U, algebraically equals
W—p_giiaWi—p _ 33X —Y) —p
o/vn o/vn o/vn
(% Z?:l Xi — % Z?:l Yi) — p
o/\/n

(X=Y)—(m—pa) _ (X=Y)—(m—p2)
Voi+oi/vn (0F +03)/n

(X —Y) — (11 — p2)
(01 +03)/n

Therefore,

U, = 45 N(0,1),

as n — 0o, as claimed.

7.75. In this problem, we envision the sample Y7, Ys, ..., Yg4, where

v 1, ith voter favors bond issue
L 0, otherwise.

We regard Y7, Ys, ..., Ygq as an iid sample from a Bernoulli(p) population distribution, where
the pollster believes p = 0.20. In this problem, we are supposed to assume p = 0.20, consistent
with the pollster’s belief. Define the sample proportion

1 64

that is, the proportion of voters in the sample who favor the bond issue. We are being asked
to calculate
P(—0.06 < p—0.20 < 0.06).

From the CLT (applied to sample proportions), we have

ﬁ+v¢mw’<p,zmléfp)> — _ﬁAJJLV'<020,(1200’_(120)>.

64

Therefore,

. —0.06 p—0.20 0.06
P(—0.06 < p— 0.20 < 0.06) = <P <
¢0mx1—02m VMle—ozm VM2M1—02m
64 64 64

Q

P(-12< Z <12),
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where Z ~ N(0,1). This (approximate) probability is easy to calculate in R:

> pnorm(1.2,0,1)-pnorm(-1.2,0,1) #P(-1.2 < Z < 1.2)
[1] 0.7698607

See the N(0,1) pdf shown below:
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7.80. In this problem, we envision the sample Y7, Y, ..., Y199, where

{ 1, ith resident younger than median (31 years)
Z' =

0, otherwise.

We regard Y7,Y53, ..., Y190 as an iid sample from a Bernoulli(p = 0.5) population distribution;
i.e., if the median of the population is ¢g5 = 31, then, by definition, half of the population is
younger than 31 years and half of the population is older than 31 years. Define the sample sum

100

T=>Y,
=1

that is, the number of residents in the sample who are younger than 31 years. We are being
asked to calculate
P(T > 60).

We can calculate this probability exactly and also approximately by using the CLT (the question
only asks for the approximate answer).

Exact calculation: We know T' ~ b(n = 100, p = 0.5). Therefore, we can calculate P(T > 60)
exactly as follows:

100 100
P(T>60)=> ( . )(0.5)’f(0.5)100—1t ~ 0.0284.
t=60

This calculation is carried out in R as follows:
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> 1-pbinom(59,100,0.5) #P(T >= 60)
[1] 0.02844397

CLT approximation: From the CLT, we know

n 100
T=> Yi~AN(np,np(1 —p)) = T=> Y; ~ AN(50,25)

i=1 =1
because
np = 100(0.5) = 50
np(l —p) = 100(0.5)(1 —0.5) = 25.
Therefore, we can calculate P(T' > 60) approximately as follows:
T —50 S 60 — 50
V25 T V25

where Z ~ N(0,1). This (approximate) probability is easy to calculate in R:

P(TZGO)_P< )zP(ZZQ),

> 1-pnorm(2,0,1) #P(T >= 60) approximated by using P(Z >= 2)
[1] 0.02275013

7.87. In this problem, we envision the sample Y7, Yo, ..., Y199, where

{ 1, 4th customer waits longer than 10 minutes
- —

0, otherwise.

We regard Y7, Y53, ..., Yigo as an iid sample from a Bernoulli(p) population distribution. What is
p? We are given the waiting time (say W) for each customer follows an exponential distribution
with mean S = 10 minutes. Therefore,

p=P(W>10)=1—-P(W <10) =1— (1 — e 10/10) = ¢71 ~ 0.3679.
———
exp(10) cdf

Define the sample sum
100

T=) Y,
i=1

that is, the number of customers in the sample that wait longer than 10 minutes. We are being
asked to calculate
P(T > 50).

We can calculate this probability exactly and also approximately by using the CLT (the question
does not specify which one it wants).

Exact calculation: We know 7' ~ b(n = 100,p = 0.3679). Therefore, we can calculate
P(T > 50) exactly as follows:

100 100
P(T > 50) = Z ( . )(0.3679)t(1 —0.3679)19°~% ~ 0.0047.
t=50
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This calculation is carried out in R as follows:

> 1-pbinom(49,100,0.3679) #P(T >= 50)
[1] 0.004713515

CLT approximation: From the CLT, we know

n 100
T=> Yi~AN(np,np(1 —p)) = T=> Y;~ AN(36.8,23.25)
=1 =1
because
np = 100(0.3679) = 36.8
np(l —p) = 100(0.3679)(1 — 0.3679) ~ 23.25.

Therefore, we can calculate P(T > 50) approximately as follows:
T —36.8 S 60 — 36.8
V23.25  /23.25

where Z ~ N(0,1). This (approximate) probability is easy to calculate in R:

P(T >50) ~ P ( > ~ P(Z > 2.74),

> 1-pnorm(2.74,0,1) #P(T >= 50) approximated by using P(Z >= 2.74)
[1] 0.003071959

7.94. In this problem, we envision the sample Y7, Y5, ..., Y5, where
Y; = repair cost for ith machine, i =1,2,...,5.
The population distribution is exponential with mean 20; i.e., Y ~ exponential(20). We regard

Y1,Ys, ..., Y5 as an iid sample from an exponential(20) population distribution.

We want to find the constant ¢ that satisfies

5
P (ZY > c> = 0.05.
i=1

What is the sampling distribution of the sample sum 7" = 2?21 Y;? Recall the population mgf

of Y ~ exponential(20) is
1

T 1-20t
for t < 1/20. Therefore, the mgf of the sum is

mr(®) =m0 = (5 )

my (t)

for t < 1/20. We recognize this as the mgf of a gamma random variable with shape o =5 and
scale f = 20. Because mgfs are unique, we know T = Z?Zl Y; ~ gamma(5,20). Therefore, we
want to find

¢ = 95th percentile (0.95 quantile) of a gamma(5,20) distribution.
We can find this easily in R:

> qgamma(0.95,5,1/20)
[1] 183.0704
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7.96. In this problem, we envision the sample Y7, Ys, ..., Y40, where

Y; = proportion of impurity for ith iron ore sample, ¢ =1,2,...,40.
The population distribution is described by the pdf
3y°, 0<y<1

0, otherwise.

fr(y) :{

Note that this is the pdf of Y ~ beta(3,1). We regard Y7, Y5, ..., Yy as an iid sample from a
beta(3,1) distribution. We want to find

P(Y >0.7),

where
I |
V=g
=1
is the sample mean of the 40 impurity measurements. We will approximate this probability by
using the CLT. We need to know the population mean p and the population variance 0. Using
what we know about the beta distribution (CH 4), we have
3
= ——=0.75
S N
2 3(1) 3

- — 2 —0.0375.
? B+1D2B+1+1) 80

The Central Limit Theorem says the (approximate) sampling distribution of Y is

_ 2 _ 0.0375
Y~AN</,L,(;> — Y~A./V'<0.75,40>.

Therefore,

Y -0.75 L 07075
/0.0375/40 = 1/0.0375/40

P(Y >0.7) :P< > ~ P(Z > —1.63),

where Z ~ N (0,1). This (approximate) probability is easy to calculate in R:

> 1-pnorm(-1.63,0,1) #P(Z>-1.63)
[1] 0.9484493

See the NV (0,1) pdf shown at the top of the next page.

7.97. In this problem, we assume X1, Xo, ..., X, are iid x?(1); i.e., the population distribution is
x*(1). Recall the sampling distribution of the sample sum Y = " | X; ~ x*(n). To remember
why this is true, recall that

myu»—Muuﬂ”—[(1f%)éri—(lf%)g.

We recognize this as the mgf of a x? random variable with n degrees of freedom. Because mgfs
are unique, it must be true that Y ~ x?(n).
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(a) When we discussed the CLT, we learned that sample sums are approximately normally
distributed when the sample size n is large; i.e.,

n
Y = ZXi ~ AN (np, no?).
i=1
Because the population distribution is x2(1), we know that
po=1
o = 2.
Therefore, the CLT says that
n
Y =) X;~ AN (n,2n),
i=1
for large n. Standardizing, we have

as n — oo.

(b) In this part, we envision the sample Y7,Ys, ..., Y50, where
Y; = length of ith rod (measured in inches), i =1,2,...,50.

The population distribution is Y ~ AN(6,0.2); i.e., the population mean length is x = 6 inches
and the population variance is 02 = 0.2 (inches)?. In this part, we regard Y7, Y3, ..., Y50 as an
iid sample from this population distribution.

The cost of handling/repairing the ith rod is given by
C; =4(Y; —6)%, i=1,2,...,50.
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For the 50 rods, the associated costs C1, Cs, ..., U5y are iid with mean
pe = E(C) = E[AY - 6)?]

and variance
02 =V(C)=V[4Y - 6)?].

We need to calculate puc and a%. Calculating puc = E(C) is easy; note that
pc = E(C) = E[4(Y —6)?] =4E[(Y — 6)?] =4V (Y) = 4(0.2) = 0.8.

Calculating o2 = V(C) is harder. To make it easier, note that

Y -6 Y -6\* (Y —6)?
Y ~N(6,0.2) — ﬁNN(O’l) — (m> _wam).

Therefore,

v <(Y0—26>2> _o — (0.12)21/[(1/ 62 =2 = V(Y - 6)% =2(0.2) = 0.08.

Therefore,
02 =V (C)=V[4(Y - 6)?] = 16V[(Y — 6)%] = 16(0.08) = 1.28.

Summarizing, Cy,Co, ..., Cxsg are iid with mean uc = 0.8 and variance U% = 1.28, and we want

to approximate the probability
50
P (Z C; > 48> :
=1

The Central Limit Theorem says the (approximate) sampling distribution of 2?21 C;is

50 50
> Ci~ AN (50uc,5008) = > Ci~ AN (40,64).

i=1 =1

50 50

S0, Ci—40 48 — 40
P C;>48 | =P C > ~P(Z>1),
(e ) =r (BAF - 5 ) rea

where Z ~ N(0,1). This (approximate) probability is easy to calculate in R:

Therefore,

> 1-pnorm(1,0,1) #P(Z > 1)
[1] 0.1586553
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