7.43. In this problem, we envision the sample $Y_{1}, Y_{2}, \ldots, Y_{100}$, where

$$
Y_{i}=\text { height of } i \text { th man (measured in inches), } \quad i=1,2, \ldots, 100 .
$$

The population distribution is unknown (at least, it is not provided in the problem), but the population standard deviation is assumed to be $\sigma=2.5$ inches. We regard $Y_{1}, Y_{2}, \ldots, Y_{100}$ as an iid sample from this unknown population distribution. We want to find

$$
P(-0.5<\bar{Y}-\mu<0.5) .
$$

Note that

$$
\bar{Y}=\frac{1}{100} \sum_{i=1}^{100} Y_{i}
$$

is the sample mean height of the 100 men and μ is the population mean height. The difference between them is $\bar{Y}-\mu$. Even though the population distribution is unknown, the Central Limit Theorem says the (approximate) sampling distribution of \bar{Y} is

$$
\bar{Y} \sim \mathcal{A N}\left(\mu, \frac{\sigma^{2}}{n}\right) \quad \Longrightarrow \quad \bar{Y} \sim \mathcal{A N}\left(\mu, \frac{2 \cdot 5^{2}}{100}\right)
$$

Therefore,

$$
P(-0.5<\bar{Y}-\mu<0.5)=P\left(-\frac{0.5}{2.5 / \sqrt{100}}<\frac{\bar{Y}-\mu}{2.5 / \sqrt{100}}<\frac{0.5}{2.5 / \sqrt{100}}\right) \approx P(-2<Z<2)
$$

where $Z \sim \mathcal{N}(0,1)$. This (approximate) probability is easy to calculate in R :

```
> pnorm(2,0,1)-pnorm(-2,0,1) #P(-2 < Z < 2)
```

[1] 0.9544997
See the $\mathcal{N}(0,1)$ pdf shown below:

7.52. In this problem, we envision the sample $Y_{1}, Y_{2}, \ldots, Y_{25}$, where

$$
Y_{i}=\text { resistance of } i \text { th resistor (measured in ohms), } i=1,2, \ldots, 25 .
$$

The population distribution is unknown (at least, it is not provided in the problem), but the population mean is assumed to be $\mu=200$ ohms and the population standard deviation is assumed to be $\sigma=10$ ohms. We regard $Y_{1}, Y_{2}, \ldots, Y_{25}$ as an iid sample from this unknown population distribution.
(a) In this part, we want to find

$$
P(199<\bar{Y}<202),
$$

where

$$
\bar{Y}=\frac{1}{25} \sum_{i=1}^{25} Y_{i}
$$

is the sample mean. Even though the population distribution is unknown, the Central Limit Theorem says the (approximate) sampling distribution of \bar{Y} is

$$
\bar{Y} \sim \mathcal{A N}\left(\mu, \frac{\sigma^{2}}{n}\right) \quad \Longrightarrow \quad \bar{Y} \sim \mathcal{A N}\left(\mu, \frac{10^{2}}{25}\right)
$$

Therefore,

$$
P(199<\bar{Y}<202)=P\left(\frac{199-200}{10 / \sqrt{25}}<\frac{\bar{Y}-200}{10 / \sqrt{25}}<\frac{202-200}{10 / \sqrt{25}}\right) \approx P(-0.5<Z<1),
$$

where $Z \sim \mathcal{N}(0,1)$. This (approximate) probability is easy to calculate in R :
$>\operatorname{pnorm}(1,0,1)-\operatorname{pnorm}(-0.5,0,1) \quad \# P(-0.5<Z<1)$
[1] 0.5328072
See the $\mathcal{N}(0,1)$ pdf shown below:

(b) In this part, we want to find

$$
P(T<5100),
$$

where

$$
T=\sum_{i=1}^{25} Y_{i}
$$

is the sample sum of the 25 resistors. Even though the population distribution is unknown, the Central Limit Theorem says the (approximate) sampling distribution of T is

$$
T \sim \mathcal{A N}\left(n \mu, n \sigma^{2}\right) \quad \Longrightarrow \quad T \sim \mathcal{A N}\left(25(200), 25(10)^{2}\right)
$$

Therefore,

$$
P(T<2100)=P\left(\frac{T-25(200)}{\sqrt{25(10)^{2}}}<\frac{5100-25(200)}{\sqrt{25(10)^{2}}}\right) \approx P(Z<2)
$$

where $Z \sim \mathcal{N}(0,1)$. This (approximate) probability is easy to calculate in R :

```
> pnorm(2,0,1) #P(Z < 2)
[1] 0.9772499
```

See the $\mathcal{N}(0,1)$ pdf shown below:

7.53. In this problem, for part (b), we envision the sample $Y_{1}, Y_{2}, \ldots, Y_{100}$, where

$$
Y_{i}=\text { concentration of } i \text { th air sample (measured in ppm) }, \quad i=1,2, \ldots, 100
$$

The population distribution is unknown (at least, it is not provided in the problem), but the population mean is assumed to be $\mu=12 \mathrm{ppm}$ and the population standard deviation is assumed to be $\sigma=9 \mathrm{ppm}$. In part (b), we regard $Y_{1}, Y_{2}, \ldots, Y_{100}$ as an iid sample from this unknown population distribution.
(a) If the population mean is $\mu=12$ and the population standard deviation is $\sigma=9$, then the population distribution cannot be normal. Concentrations must be positive, and a concentration of 0 is only 1.5 standard deviations below the mean. The $\mathcal{N}\left(12,9^{2}\right)$ distribution would allow for a substantial portion of the measurements (about 7%) to be negative, which does not make sense.
(b) In this part, we want to find

$$
P(\bar{Y}>14)
$$

where

$$
\bar{Y}=\frac{1}{100} \sum_{i=1}^{100} Y_{i}
$$

is the sample mean of the 100 air sample concentrations. Even though the population distribution is unknown, the Central Limit Theorem says the (approximate) sampling distribution of \bar{Y} is

$$
\bar{Y} \sim \mathcal{A N}\left(\mu, \frac{\sigma^{2}}{n}\right) \quad \Longrightarrow \quad \bar{Y} \sim \mathcal{A N}\left(12, \frac{9^{2}}{100}\right)
$$

Therefore,

$$
P(\bar{Y}>14)=P\left(\frac{\bar{Y}-12}{9 / \sqrt{100}}>\frac{14-12}{9 / \sqrt{100}}\right) \approx P(Z>2.22)
$$

where $Z \sim \mathcal{N}(0,1)$. This (approximate) probability is easy to calculate in R :
> 1-pnorm(2.22,0,1) \#P(Z > 2.22)
[1] 0.01320938
See the $\mathcal{N}(0,1)$ pdf shown below:

7.58. We have independent random samples:

- $X_{1}, X_{2}, \ldots, X_{n}$ is an iid sample from a population with mean μ_{1} and variance σ_{1}^{2}
- $Y_{1}, Y_{2}, \ldots, Y_{n}$ is an iid sample from a population with mean μ_{2} and variance σ_{2}^{2}.

Consider the new random variables

$$
W_{i}=X_{i}-Y_{i}, \quad i=1,2, \ldots, n,
$$

that is, W_{i} is the difference of X_{i} and Y_{i}, for $i=1,2, \ldots, n$. Note that

$$
E\left(W_{i}\right)=E\left(X_{i}-Y_{i}\right)=E\left(X_{i}\right)-E\left(Y_{i}\right)=\mu_{1}-\mu_{2}
$$

and

$$
V\left(W_{i}\right)=V\left(X_{i}-Y_{i}\right)=V\left(X_{i}\right)+V\left(Y_{i}\right)-2 \underbrace{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}_{=0}=\sigma_{1}^{2}+\sigma_{2}^{2}
$$

Note that $\operatorname{Cov}\left(X_{i}, Y_{i}\right)=0$ because the samples are assumed to be independent. Therefore, $W_{1}, W_{2}, \ldots, W_{n}$ are iid random variables with mean $\mu=\mu_{1}-\mu_{2}$ and variance $\sigma^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}$. Provided $\sigma^{2}<\infty$, applying the CLT directly yields

$$
U_{n}=\frac{\bar{W}-\mu}{\sigma / \sqrt{n}} \xrightarrow{d} \mathcal{N}(0,1),
$$

as $n \rightarrow \infty$. However, note that U_{n} algebraically equals

$$
\begin{aligned}
\frac{\bar{W}-\mu}{\sigma / \sqrt{n}}=\frac{\frac{1}{n} \sum_{i=1}^{n} W_{i}-\mu}{\sigma / \sqrt{n}} & =\frac{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-Y_{i}\right)-\mu}{\sigma / \sqrt{n}} \\
& =\frac{\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right)-\mu}{\sigma / \sqrt{n}} \\
& =\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}} / \sqrt{n}}=\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) / n}} .
\end{aligned}
$$

Therefore,

$$
U_{n}=\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) / n}} \xrightarrow{d} \mathcal{N}(0,1),
$$

as $n \rightarrow \infty$, as claimed.
7.75. In this problem, we envision the sample $Y_{1}, Y_{2}, \ldots, Y_{64}$, where

$$
Y_{i}= \begin{cases}1, & i \text { th voter favors bond issue } \\ 0, & \text { otherwise }\end{cases}
$$

We regard $Y_{1}, Y_{2}, \ldots, Y_{64}$ as an iid sample from a $\operatorname{Bernoulli}(p)$ population distribution, where the pollster believes $p=0.20$. In this problem, we are supposed to assume $p=0.20$, consistent with the pollster's belief. Define the sample proportion

$$
\widehat{p}=\frac{1}{64} \sum_{i=1}^{64} Y_{i}
$$

that is, the proportion of voters in the sample who favor the bond issue. We are being asked to calculate

$$
P(-0.06<\widehat{p}-0.20<0.06) .
$$

From the CLT (applied to sample proportions), we have

$$
\widehat{p} \sim \mathcal{A N}\left(p, \frac{p(1-p)}{n}\right) \Longrightarrow \widehat{p} \sim \mathcal{A} \mathcal{N}\left(0.20, \frac{0.20(1-0.20)}{64}\right) .
$$

Therefore,

$$
\begin{aligned}
P(-0.06<\widehat{p}-0.20<0.06) & =P\left(\frac{-0.06}{\sqrt{\frac{0.20(1-0.20)}{64}}}<\frac{\widehat{p}-0.20}{\sqrt{\frac{0.20(1-0.20)}{64}}}<\frac{0.06}{\sqrt{\frac{0.20(1-0.20)}{64}}}\right) \\
& \approx P(-1.2<Z<1.2),
\end{aligned}
$$

where $Z \sim \mathcal{N}(0,1)$. This (approximate) probability is easy to calculate in R :

```
> pnorm(1.2,0,1)-pnorm(-1.2,0,1) #P(-1.2< Z < 1.2)
[1] 0.7698607
```

See the $\mathcal{N}(0,1)$ pdf shown below:

7.80. In this problem, we envision the sample $Y_{1}, Y_{2}, \ldots, Y_{100}$, where

$$
Y_{i}= \begin{cases}1, & i \text { th resident younger than median }(31 \text { years }) \\ 0, & \text { otherwise } .\end{cases}
$$

We regard $Y_{1}, Y_{2}, \ldots, Y_{100}$ as an iid sample from a $\operatorname{Bernoulli}(p=0.5)$ population distribution; i.e., if the median of the population is $\phi_{0.5}=31$, then, by definition, half of the population is younger than 31 years and half of the population is older than 31 years. Define the sample sum

$$
T=\sum_{i=1}^{100} Y_{i}
$$

that is, the number of residents in the sample who are younger than 31 years. We are being asked to calculate

$$
P(T \geq 60)
$$

We can calculate this probability exactly and also approximately by using the CLT (the question only asks for the approximate answer).

Exact calculation: We know $T \sim b(n=100, p=0.5)$. Therefore, we can calculate $P(T \geq 60)$ exactly as follows:

$$
P(T \geq 60)=\sum_{t=60}^{100}\binom{100}{t}(0.5)^{t}(0.5)^{100-t} \approx 0.0284
$$

This calculation is carried out in R as follows:

```
> 1-pbinom \((59,100,0.5) \quad \# P(T>=60)\)
```

[1] 0.02844397

CLT approximation: From the CLT, we know

$$
T=\sum_{i=1}^{n} Y_{i} \sim \mathcal{A N}(n p, n p(1-p)) \quad \Longrightarrow \quad T=\sum_{i=1}^{100} Y_{i} \sim \mathcal{A} \mathcal{N}(50,25)
$$

because

$$
\begin{aligned}
n p & =100(0.5)=50 \\
n p(1-p) & =100(0.5)(1-0.5)=25
\end{aligned}
$$

Therefore, we can calculate $P(T \geq 60)$ approximately as follows:

$$
P(T \geq 60)=P\left(\frac{T-50}{\sqrt{25}} \geq \frac{60-50}{\sqrt{25}}\right) \approx P(Z \geq 2)
$$

where $Z \sim \mathcal{N}(0,1)$. This (approximate) probability is easy to calculate in R :
> 1-pnorm $(2,0,1) \quad \# \mathrm{P}(\mathrm{T}>=60)$ approximated by using $\mathrm{P}(\mathrm{Z}>=2)$
[1] 0.02275013
7.87. In this problem, we envision the sample $Y_{1}, Y_{2}, \ldots, Y_{100}$, where

$$
Y_{i}= \begin{cases}1, & i \text { th customer waits longer than } 10 \text { minutes } \\ 0, & \text { otherwise }\end{cases}
$$

We regard $Y_{1}, Y_{2}, \ldots, Y_{100}$ as an iid sample from a $\operatorname{Bernoulli}(p)$ population distribution. What is p ? We are given the waiting time (say W) for each customer follows an exponential distribution with mean $\beta=10$ minutes. Therefore,

$$
p=P(W>10)=1-P(W \leq 10)=1-\underbrace{\left(1-e^{-10 / 10}\right)}_{\exp (10) \mathrm{cdf}}=e^{-1} \approx 0.3679
$$

Define the sample sum

$$
T=\sum_{i=1}^{100} Y_{i}
$$

that is, the number of customers in the sample that wait longer than 10 minutes. We are being asked to calculate

$$
P(T \geq 50)
$$

We can calculate this probability exactly and also approximately by using the CLT (the question does not specify which one it wants).

Exact calculation: We know $T \sim b(n=100, p=0.3679)$. Therefore, we can calculate $P(T \geq 50)$ exactly as follows:

$$
P(T \geq 50)=\sum_{t=50}^{100}\binom{100}{t}(0.3679)^{t}(1-0.3679)^{100-t} \approx 0.0047
$$

This calculation is carried out in R as follows:

```
> 1-pbinom(49,100,0.3679) #P(T >= 50)
[1] 0.004713515
```

CLT approximation: From the CLT, we know

$$
T=\sum_{i=1}^{n} Y_{i} \sim \mathcal{A N}(n p, n p(1-p)) \quad \Longrightarrow \quad T=\sum_{i=1}^{100} Y_{i} \sim \mathcal{A N}(36.8,23.25)
$$

because

$$
\begin{aligned}
n p & =100(0.3679)=36.8 \\
n p(1-p) & =100(0.3679)(1-0.3679) \approx 23.25
\end{aligned}
$$

Therefore, we can calculate $P(T \geq 50)$ approximately as follows:

$$
P(T \geq 50) \approx P\left(\frac{T-36.8}{\sqrt{23.25}} \geq \frac{60-36.8}{\sqrt{23.25}}\right) \approx P(Z \geq 2.74)
$$

where $Z \sim \mathcal{N}(0,1)$. This (approximate) probability is easy to calculate in R :

```
> 1-pnorm(2.74,0,1) #P(T >= 50) approximated by using P(Z >= 2.74)
[1] 0.003071959
```

7.94. In this problem, we envision the sample $Y_{1}, Y_{2}, \ldots, Y_{5}$, where

$$
Y_{i}=\text { repair cost for } i \text { th machine, } i=1,2, \ldots, 5
$$

The population distribution is exponential with mean 20 ; i.e., $Y \sim$ exponential(20). We regard $Y_{1}, Y_{2}, \ldots, Y_{5}$ as an iid sample from an exponential(20) population distribution.

We want to find the constant c that satisfies

$$
P\left(\sum_{i=1}^{5} Y_{i}>c\right)=0.05
$$

What is the sampling distribution of the sample sum $T=\sum_{i=1}^{5} Y_{i}$? Recall the population mgf of $Y \sim \operatorname{exponential}(20)$ is

$$
m_{Y}(t)=\frac{1}{1-20 t}
$$

for $t<1 / 20$. Therefore, the mgf of the sum is

$$
m_{T}(t)=\left[m_{Y}(t)\right]^{5}=\left(\frac{1}{1-20 t}\right)^{5}
$$

for $t<1 / 20$. We recognize this as the mgf of a gamma random variable with shape $\alpha=5$ and scale $\beta=20$. Because mgfs are unique, we know $T=\sum_{i=1}^{5} Y_{i} \sim \operatorname{gamma}(5,20)$. Therefore, we want to find

$$
c=95 \text { th percentile }(0.95 \text { quantile) of a gamma }(5,20) \text { distribution. }
$$

We can find this easily in R :
> qgamma($0.95,5,1 / 20$)
[1] 183.0704
7.96. In this problem, we envision the sample $Y_{1}, Y_{2}, \ldots, Y_{40}$, where

$$
Y_{i}=\text { proportion of impurity for } i \text { th iron ore sample, } i=1,2, \ldots, 40
$$

The population distribution is described by the pdf

$$
f_{Y}(y)=\left\{\begin{array}{cl}
3 y^{2}, & 0 \leq y \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Note that this is the pdf of $Y \sim \operatorname{beta}(3,1)$. We regard $Y_{1}, Y_{2}, \ldots, Y_{40}$ as an iid sample from a beta $(3,1)$ distribution. We want to find

$$
P(\bar{Y}>0.7),
$$

where

$$
\bar{Y}=\frac{1}{40} \sum_{i=1}^{40} Y_{i}
$$

is the sample mean of the 40 impurity measurements. We will approximate this probability by using the CLT. We need to know the population mean μ and the population variance σ^{2}. Using what we know about the beta distribution (CH 4), we have

$$
\begin{aligned}
\mu & =\frac{3}{3+1}=0.75 \\
\sigma^{2} & =\frac{3(1)}{(3+1)^{2}(3+1+1)}=\frac{3}{80}=0.0375 .
\end{aligned}
$$

The Central Limit Theorem says the (approximate) sampling distribution of \bar{Y} is

$$
\bar{Y} \sim \mathcal{A N}\left(\mu, \frac{\sigma^{2}}{n}\right) \quad \Longrightarrow \quad \bar{Y} \sim \mathcal{A N}\left(0.75, \frac{0.0375}{40}\right) .
$$

Therefore,

$$
P(\bar{Y}>0.7)=P\left(\frac{\bar{Y}-0.75}{\sqrt{0.0375 / 40}}>\frac{0.7-0.75}{\sqrt{0.0375 / 40}}\right) \approx P(Z>-1.63),
$$

where $Z \sim \mathcal{N}(0,1)$. This (approximate) probability is easy to calculate in R :
> 1-pnorm(-1.63,0,1) \#P(Z>-1.63)
[1] 0.9484493
See the $\mathcal{N}(0,1)$ pdf shown at the top of the next page.
7.97. In this problem, we assume $X_{1}, X_{2}, \ldots, X_{n}$ are iid $\chi^{2}(1)$; i.e., the population distribution is $\chi^{2}(1)$. Recall the sampling distribution of the sample sum $Y=\sum_{i=1}^{n} X_{i} \sim \chi^{2}(n)$. To remember why this is true, recall that

$$
m_{Y}(t)=\left[m_{X}(t)\right]^{n}=\left[\left(\frac{1}{1-2 t}\right)^{\frac{1}{2}}\right]^{n}=\left(\frac{1}{1-2 t}\right)^{\frac{n}{2}} .
$$

We recognize this as the mgf of a χ^{2} random variable with n degrees of freedom. Because mgfs are unique, it must be true that $Y \sim \chi^{2}(n)$.

(a) When we discussed the CLT, we learned that sample sums are approximately normally distributed when the sample size n is large; i.e.,

$$
Y=\sum_{i=1}^{n} X_{i} \sim \mathcal{A N}\left(n \mu, n \sigma^{2}\right)
$$

Because the population distribution is $\chi^{2}(1)$, we know that

$$
\begin{aligned}
\mu & =1 \\
\sigma^{2} & =2
\end{aligned}
$$

Therefore, the CLT says that

$$
Y=\sum_{i=1}^{n} X_{i} \sim \mathcal{A N}(n, 2 n)
$$

for large n. Standardizing, we have

$$
Z_{n}=\frac{Y-n}{\sqrt{2 n}} \sim \mathcal{A N}(0,1) \Longleftrightarrow \frac{Y-n}{\sqrt{2 n}} \xrightarrow{d} \mathcal{N}(0,1)
$$

as $n \rightarrow \infty$.
(b) In this part, we envision the sample $Y_{1}, Y_{2}, \ldots, Y_{50}$, where

$$
Y_{i}=\text { length of } i \text { th rod (measured in inches) }, \quad i=1,2, \ldots, 50
$$

The population distribution is $Y \sim \mathcal{N}(6,0.2)$; i.e., the population mean length is $\mu=6$ inches and the population variance is $\sigma^{2}=0.2$ (inches) ${ }^{2}$. In this part, we regard $Y_{1}, Y_{2}, \ldots, Y_{50}$ as an iid sample from this population distribution.

The cost of handling/repairing the i th rod is given by

$$
C_{i}=4\left(Y_{i}-6\right)^{2}, \quad i=1,2, \ldots, 50
$$

For the 50 rods, the associated costs $C_{1}, C_{2}, \ldots, C_{50}$ are iid with mean

$$
\mu_{C}=E(C)=E\left[4(Y-6)^{2}\right]
$$

and variance

$$
\sigma_{C}^{2}=V(C)=V\left[4(Y-6)^{2}\right]
$$

We need to calculate μ_{C} and σ_{C}^{2}. Calculating $\mu_{C}=E(C)$ is easy; note that

$$
\mu_{C}=E(C)=E\left[4(Y-6)^{2}\right]=4 E\left[(Y-6)^{2}\right]=4 V(Y)=4(0.2)=0.8
$$

Calculating $\sigma_{C}^{2}=V(C)$ is harder. To make it easier, note that

$$
Y \sim \mathcal{N}(6,0.2) \Longrightarrow \frac{Y-6}{\sqrt{0.2}} \sim \mathcal{N}(0,1) \Longrightarrow\left(\frac{Y-6}{\sqrt{0.2}}\right)^{2}=\frac{(Y-6)^{2}}{0.2} \sim \chi^{2}(1)
$$

Therefore,

$$
V\left(\frac{(Y-6)^{2}}{0.2}\right)=2 \quad \Longrightarrow \quad \frac{1}{(0.2)^{2}} V\left[(Y-6)^{2}\right]=2 \quad \Longrightarrow \quad V\left[(Y-6)^{2}\right]=2(0.2)^{2}=0.08
$$

Therefore,

$$
\sigma_{C}^{2}=V(C)=V\left[4(Y-6)^{2}\right]=16 V\left[(Y-6)^{2}\right]=16(0.08)=1.28
$$

Summarizing, $C_{1}, C_{2}, \ldots, C_{50}$ are iid with mean $\mu_{C}=0.8$ and variance $\sigma_{C}^{2}=1.28$, and we want to approximate the probability

$$
P\left(\sum_{i=1}^{50} C_{i}>48\right)
$$

The Central Limit Theorem says the (approximate) sampling distribution of $\sum_{i=1}^{50} C_{i}$ is

$$
\sum_{i=1}^{50} C_{i} \sim \mathcal{A N}\left(50 \mu_{C}, 50 \sigma_{C}^{2}\right) \Longrightarrow \sum_{i=1}^{50} C_{i} \sim \mathcal{A N}(40,64)
$$

Therefore,

$$
P\left(\sum_{i=1}^{50} C_{i}>48\right)=P\left(\frac{\sum_{i=1}^{50} C_{i}-40}{\sqrt{64}}>\frac{48-40}{\sqrt{64}}\right) \approx P(Z>1)
$$

where $Z \sim \mathcal{N}(0,1)$. This (approximate) probability is easy to calculate in R :

```
> 1-pnorm(1,0,1) #P(Z > 1)
```

[1] 0.1586553

