
STAT 512 HW5 SOLUTIONS

7.43. In this problem, we envision the sample Y1, Y2, ..., Y100, where

Yi = height of ith man (measured in inches), i = 1, 2, ..., 100.

The population distribution is unknown (at least, it is not provided in the problem), but the
population standard deviation is assumed to be σ = 2.5 inches. We regard Y1, Y2, ..., Y100 as an
iid sample from this unknown population distribution. We want to find

P (−0.5 < Y − µ < 0.5).

Note that

Y =
1

100

100∑
i=1

Yi

is the sample mean height of the 100 men and µ is the population mean height. The difference
between them is Y −µ. Even though the population distribution is unknown, the Central Limit
Theorem says the (approximate) sampling distribution of Y is

Y ∼ AN
(
µ,
σ2

n

)
=⇒ Y ∼ AN

(
µ,

2.52

100

)
.

Therefore,

P (−0.5 < Y − µ < 0.5) = P

(
− 0.5

2.5/
√

100
<

Y − µ
2.5/
√

100
<

0.5

2.5/
√

100

)
≈ P (−2 < Z < 2),

where Z ∼ N (0, 1). This (approximate) probability is easy to calculate in R:

> pnorm(2,0,1)-pnorm(-2,0,1) #P(-2 < Z < 2)

[1] 0.9544997

See the N (0, 1) pdf shown below:
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7.52. In this problem, we envision the sample Y1, Y2, ..., Y25, where

Yi = resistance of ith resistor (measured in ohms), i = 1, 2, ..., 25.
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The population distribution is unknown (at least, it is not provided in the problem), but the
population mean is assumed to be µ = 200 ohms and the population standard deviation is
assumed to be σ = 10 ohms. We regard Y1, Y2, ..., Y25 as an iid sample from this unknown
population distribution.

(a) In this part, we want to find
P (199 < Y < 202),

where

Y =
1

25

25∑
i=1

Yi

is the sample mean. Even though the population distribution is unknown, the Central Limit
Theorem says the (approximate) sampling distribution of Y is

Y ∼ AN
(
µ,
σ2

n

)
=⇒ Y ∼ AN

(
µ,

102

25

)
.

Therefore,

P (199 < Y < 202) = P

(
199− 200

10/
√

25
<
Y − 200

10/
√

25
<

202− 200

10/
√

25

)
≈ P (−0.5 < Z < 1),

where Z ∼ N (0, 1). This (approximate) probability is easy to calculate in R:

> pnorm(1,0,1)-pnorm(-0.5,0,1) #P(-0.5 < Z < 1)

[1] 0.5328072

See the N (0, 1) pdf shown below:
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(b) In this part, we want to find
P (T < 5100),

where

T =
25∑
i=1

Yi
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is the sample sum of the 25 resistors. Even though the population distribution is unknown, the
Central Limit Theorem says the (approximate) sampling distribution of T is

T ∼ AN
(
nµ, nσ2

)
=⇒ T ∼ AN

(
25(200), 25(10)2

)
.

Therefore,

P (T < 2100) = P

(
T − 25(200)√

25(10)2
<

5100− 25(200)√
25(10)2

)
≈ P (Z < 2),

where Z ∼ N (0, 1). This (approximate) probability is easy to calculate in R:

> pnorm(2,0,1) #P(Z < 2)

[1] 0.9772499

See the N (0, 1) pdf shown below:
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7.53. In this problem, for part (b), we envision the sample Y1, Y2, ..., Y100, where

Yi = concentration of ith air sample (measured in ppm), i = 1, 2, ..., 100.

The population distribution is unknown (at least, it is not provided in the problem), but the
population mean is assumed to be µ = 12 ppm and the population standard deviation is
assumed to be σ = 9 ppm. In part (b), we regard Y1, Y2, ..., Y100 as an iid sample from this
unknown population distribution.

(a) If the population mean is µ = 12 and the population standard deviation is σ = 9, then the
population distribution cannot be normal. Concentrations must be positive, and a concentration
of 0 is only 1.5 standard deviations below the mean. The N (12, 92) distribution would allow
for a substantial portion of the measurements (about 7%) to be negative, which does not make
sense.

(b) In this part, we want to find
P (Y > 14),
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where

Y =
1

100

100∑
i=1

Yi

is the sample mean of the 100 air sample concentrations. Even though the population distri-
bution is unknown, the Central Limit Theorem says the (approximate) sampling distribution
of Y is

Y ∼ AN
(
µ,
σ2

n

)
=⇒ Y ∼ AN

(
12,

92

100

)
.

Therefore,

P (Y > 14) = P

(
Y − 12

9/
√

100
>

14− 12

9/
√

100

)
≈ P (Z > 2.22),

where Z ∼ N (0, 1). This (approximate) probability is easy to calculate in R:

> 1-pnorm(2.22,0,1) #P(Z > 2.22)

[1] 0.01320938

See the N (0, 1) pdf shown below:
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7.58. We have independent random samples:

• X1, X2, ..., Xn is an iid sample from a population with mean µ1 and variance σ21

• Y1, Y2, ..., Yn is an iid sample from a population with mean µ2 and variance σ22.

Consider the new random variables

Wi = Xi − Yi, i = 1, 2, ..., n,

that is, Wi is the difference of Xi and Yi, for i = 1, 2, ..., n. Note that

E(Wi) = E(Xi − Yi) = E(Xi)− E(Yi) = µ1 − µ2
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and
V (Wi) = V (Xi − Yi) = V (Xi) + V (Yi)− 2 Cov(Xi, Yi)︸ ︷︷ ︸

= 0

= σ21 + σ22.

Note that Cov(Xi, Yi) = 0 because the samples are assumed to be independent. Therefore,
W1,W2, ...,Wn are iid random variables with mean µ = µ1 − µ2 and variance σ2 = σ21 + σ22.
Provided σ2 <∞, applying the CLT directly yields

Un =
W − µ
σ/
√
n

d−→ N (0, 1),

as n→∞. However, note that Un algebraically equals

W − µ
σ/
√
n

=
1
n

∑n
i=1Wi − µ
σ/
√
n

=
1
n

∑n
i=1(Xi − Yi)− µ

σ/
√
n

=
( 1
n

∑n
i=1Xi − 1

n

∑n
i=1 Yi)− µ

σ/
√
n

=
(X − Y )− (µ1 − µ2)√

σ21 + σ22/
√
n

=
(X − Y )− (µ1 − µ2)√

(σ21 + σ22)/n
.

Therefore,

Un =
(X − Y )− (µ1 − µ2)√

(σ21 + σ22)/n

d−→ N (0, 1),

as n→∞, as claimed.

7.75. In this problem, we envision the sample Y1, Y2, ..., Y64, where

Yi =

{
1, ith voter favors bond issue

0, otherwise.

We regard Y1, Y2, ..., Y64 as an iid sample from a Bernoulli(p) population distribution, where
the pollster believes p = 0.20. In this problem, we are supposed to assume p = 0.20, consistent
with the pollster’s belief. Define the sample proportion

p̂ =
1

64

64∑
i=1

Yi,

that is, the proportion of voters in the sample who favor the bond issue. We are being asked
to calculate

P (−0.06 < p̂− 0.20 < 0.06).

From the CLT (applied to sample proportions), we have

p̂ ∼ AN
(
p,

p(1− p)
n

)
=⇒ p̂ ∼ AN

(
0.20,

0.20(1− 0.20)

64

)
.

Therefore,

P (−0.06 < p̂− 0.20 < 0.06) = P

 −0.06√
0.20(1− 0.20)

64

<
p̂− 0.20√

0.20(1− 0.20)

64

<
0.06√

0.20(1− 0.20)

64


≈ P (−1.2 < Z < 1.2),
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where Z ∼ N (0, 1). This (approximate) probability is easy to calculate in R:

> pnorm(1.2,0,1)-pnorm(-1.2,0,1) #P(-1.2 < Z < 1.2)

[1] 0.7698607

See the N (0, 1) pdf shown below:
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7.80. In this problem, we envision the sample Y1, Y2, ..., Y100, where

Yi =

{
1, ith resident younger than median (31 years)

0, otherwise.

We regard Y1, Y2, ..., Y100 as an iid sample from a Bernoulli(p = 0.5) population distribution;
i.e., if the median of the population is φ0.5 = 31, then, by definition, half of the population is
younger than 31 years and half of the population is older than 31 years. Define the sample sum

T =

100∑
i=1

Yi,

that is, the number of residents in the sample who are younger than 31 years. We are being
asked to calculate

P (T ≥ 60).

We can calculate this probability exactly and also approximately by using the CLT (the question
only asks for the approximate answer).

Exact calculation: We know T ∼ b(n = 100, p = 0.5). Therefore, we can calculate P (T ≥ 60)
exactly as follows:

P (T ≥ 60) =
100∑
t=60

(
100

t

)
(0.5)t(0.5)100−t ≈ 0.0284.

This calculation is carried out in R as follows:
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> 1-pbinom(59,100,0.5) #P(T >= 60)

[1] 0.02844397

CLT approximation: From the CLT, we know

T =
n∑

i=1

Yi ∼ AN (np, np(1− p)) =⇒ T =
100∑
i=1

Yi ∼ AN (50, 25)

because

np = 100(0.5) = 50

np(1− p) = 100(0.5)(1− 0.5) = 25.

Therefore, we can calculate P (T ≥ 60) approximately as follows:

P (T ≥ 60) = P

(
T − 50√

25
≥ 60− 50√

25

)
≈ P (Z ≥ 2),

where Z ∼ N (0, 1). This (approximate) probability is easy to calculate in R:

> 1-pnorm(2,0,1) #P(T >= 60) approximated by using P(Z >= 2)

[1] 0.02275013

7.87. In this problem, we envision the sample Y1, Y2, ..., Y100, where

Yi =

{
1, ith customer waits longer than 10 minutes

0, otherwise.

We regard Y1, Y2, ..., Y100 as an iid sample from a Bernoulli(p) population distribution. What is
p? We are given the waiting time (say W ) for each customer follows an exponential distribution
with mean β = 10 minutes. Therefore,

p = P (W > 10) = 1− P (W ≤ 10) = 1− (1− e−10/10)︸ ︷︷ ︸
exp(10) cdf

= e−1 ≈ 0.3679.

Define the sample sum

T =

100∑
i=1

Yi,

that is, the number of customers in the sample that wait longer than 10 minutes. We are being
asked to calculate

P (T ≥ 50).

We can calculate this probability exactly and also approximately by using the CLT (the question
does not specify which one it wants).

Exact calculation: We know T ∼ b(n = 100, p = 0.3679). Therefore, we can calculate
P (T ≥ 50) exactly as follows:

P (T ≥ 50) =

100∑
t=50

(
100

t

)
(0.3679)t(1− 0.3679)100−t ≈ 0.0047.
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This calculation is carried out in R as follows:

> 1-pbinom(49,100,0.3679) #P(T >= 50)

[1] 0.004713515

CLT approximation: From the CLT, we know

T =

n∑
i=1

Yi ∼ AN (np, np(1− p)) =⇒ T =

100∑
i=1

Yi ∼ AN (36.8, 23.25)

because

np = 100(0.3679) = 36.8

np(1− p) = 100(0.3679)(1− 0.3679) ≈ 23.25.

Therefore, we can calculate P (T ≥ 50) approximately as follows:

P (T ≥ 50) ≈ P
(
T − 36.8√

23.25
≥ 60− 36.8√

23.25

)
≈ P (Z ≥ 2.74),

where Z ∼ N (0, 1). This (approximate) probability is easy to calculate in R:

> 1-pnorm(2.74,0,1) #P(T >= 50) approximated by using P(Z >= 2.74)

[1] 0.003071959

7.94. In this problem, we envision the sample Y1, Y2, ..., Y5, where

Yi = repair cost for ith machine, i = 1, 2, ..., 5.

The population distribution is exponential with mean 20; i.e., Y ∼ exponential(20). We regard
Y1, Y2, ..., Y5 as an iid sample from an exponential(20) population distribution.

We want to find the constant c that satisfies

P

(
5∑

i=1

Yi > c

)
= 0.05.

What is the sampling distribution of the sample sum T =
∑5

i=1 Yi? Recall the population mgf
of Y ∼ exponential(20) is

mY (t) =
1

1− 20t
,

for t < 1/20. Therefore, the mgf of the sum is

mT (t) = [mY (t)]5 =

(
1

1− 20t

)5

,

for t < 1/20. We recognize this as the mgf of a gamma random variable with shape α = 5 and
scale β = 20. Because mgfs are unique, we know T =

∑5
i=1 Yi ∼ gamma(5, 20). Therefore, we

want to find

c = 95th percentile (0.95 quantile) of a gamma(5,20) distribution.

We can find this easily in R:

> qgamma(0.95,5,1/20)

[1] 183.0704
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7.96. In this problem, we envision the sample Y1, Y2, ..., Y40, where

Yi = proportion of impurity for ith iron ore sample, i = 1, 2, ..., 40.

The population distribution is described by the pdf

fY (y) =

{
3y2, 0 ≤ y ≤ 1

0, otherwise.

Note that this is the pdf of Y ∼ beta(3, 1). We regard Y1, Y2, ..., Y40 as an iid sample from a
beta(3, 1) distribution. We want to find

P (Y > 0.7),

where

Y =
1

40

40∑
i=1

Yi

is the sample mean of the 40 impurity measurements. We will approximate this probability by
using the CLT. We need to know the population mean µ and the population variance σ2. Using
what we know about the beta distribution (CH 4), we have

µ =
3

3 + 1
= 0.75

σ2 =
3(1)

(3 + 1)2(3 + 1 + 1)
=

3

80
= 0.0375.

The Central Limit Theorem says the (approximate) sampling distribution of Y is

Y ∼ AN
(
µ,
σ2

n

)
=⇒ Y ∼ AN

(
0.75,

0.0375

40

)
.

Therefore,

P (Y > 0.7) = P

(
Y − 0.75√
0.0375/40

>
0.7− 0.75√
0.0375/40

)
≈ P (Z > −1.63),

where Z ∼ N (0, 1). This (approximate) probability is easy to calculate in R:

> 1-pnorm(-1.63,0,1) #P(Z>-1.63)

[1] 0.9484493

See the N (0, 1) pdf shown at the top of the next page.

7.97. In this problem, we assume X1, X2, ..., Xn are iid χ2(1); i.e., the population distribution is
χ2(1). Recall the sampling distribution of the sample sum Y =

∑n
i=1Xi ∼ χ2(n). To remember

why this is true, recall that

mY (t) = [mX(t)]n =

[(
1

1− 2t

) 1
2

]n
=

(
1

1− 2t

)n
2

.

We recognize this as the mgf of a χ2 random variable with n degrees of freedom. Because mgfs
are unique, it must be true that Y ∼ χ2(n).
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(a) When we discussed the CLT, we learned that sample sums are approximately normally
distributed when the sample size n is large; i.e.,

Y =

n∑
i=1

Xi ∼ AN (nµ, nσ2).

Because the population distribution is χ2(1), we know that

µ = 1

σ2 = 2.

Therefore, the CLT says that

Y =

n∑
i=1

Xi ∼ AN (n, 2n),

for large n. Standardizing, we have

Zn =
Y − n√

2n
∼ AN (0, 1) ⇐⇒ Y − n√

2n

d−→ N (0, 1),

as n→∞.

(b) In this part, we envision the sample Y1, Y2, ..., Y50, where

Yi = length of ith rod (measured in inches), i = 1, 2, ..., 50.

The population distribution is Y ∼ N (6, 0.2); i.e., the population mean length is µ = 6 inches
and the population variance is σ2 = 0.2 (inches)2. In this part, we regard Y1, Y2, ..., Y50 as an
iid sample from this population distribution.

The cost of handling/repairing the ith rod is given by

Ci = 4(Yi − 6)2, i = 1, 2, ..., 50.
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For the 50 rods, the associated costs C1, C2, ..., C50 are iid with mean

µC = E(C) = E[4(Y − 6)2]

and variance
σ2C = V (C) = V [4(Y − 6)2].

We need to calculate µC and σ2C . Calculating µC = E(C) is easy; note that

µC = E(C) = E[4(Y − 6)2] = 4E[(Y − 6)2] = 4V (Y ) = 4(0.2) = 0.8.

Calculating σ2C = V (C) is harder. To make it easier, note that

Y ∼ N (6, 0.2) =⇒ Y − 6√
0.2
∼ N (0, 1) =⇒

(
Y − 6√

0.2

)2

=
(Y − 6)2

0.2
∼ χ2(1).

Therefore,

V

(
(Y − 6)2

0.2

)
= 2 =⇒ 1

(0.2)2
V [(Y − 6)2] = 2 =⇒ V [(Y − 6)2] = 2(0.2)2 = 0.08.

Therefore,
σ2C = V (C) = V [4(Y − 6)2] = 16V [(Y − 6)2] = 16(0.08) = 1.28.

Summarizing, C1, C2, ..., C50 are iid with mean µC = 0.8 and variance σ2C = 1.28, and we want
to approximate the probability

P

(
50∑
i=1

Ci > 48

)
.

The Central Limit Theorem says the (approximate) sampling distribution of
∑50

i=1Ci is

50∑
i=1

Ci ∼ AN
(
50µC , 50σ2C

)
=⇒

50∑
i=1

Ci ∼ AN (40, 64) .

Therefore,

P

(
50∑
i=1

Ci > 48

)
= P

(∑50
i=1Ci − 40√

64
>

48− 40√
64

)
≈ P (Z > 1),

where Z ∼ N (0, 1). This (approximate) probability is easy to calculate in R:

> 1-pnorm(1,0,1) #P(Z > 1)

[1] 0.1586553
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