
STAT 512 HW6 SOLUTIONS

8.1. In this problem, we prove

MSE(θ̂) = E[(θ̂ − θ)2] = V (θ̂) + [B(θ̂)]2,

where
B(θ̂) = E(θ̂)− θ

is the bias of θ̂ as a point estimator of θ. Write the expectation above as

E[(θ̂ − θ)2] = E{[θ̂−E(θ̂) + E(θ̂)︸ ︷︷ ︸
subtract and add

−θ]2}.

Now write
[θ̂ − E(θ̂) + E(θ̂)− θ]2 = (a+ b)2,

where a = θ̂ − E(θ̂) and b = E(θ̂)− θ. Note that

(a+ b)2 = a2 + 2ab+ b2 = [θ̂ − E(θ̂)]2︸ ︷︷ ︸
(∗)

+ 2[θ̂ − E(θ̂)][E(θ̂)− θ]︸ ︷︷ ︸
(∗∗)

+ [E(θ̂)− θ]2︸ ︷︷ ︸
(∗∗∗)

.

Now, take expectations of each piece and add up the results. For (∗), we have

E{[θ̂ − E(θ̂)]2} = V (θ̂).

This follows from the definition of the variance of a random variable (here, θ̂). For (∗∗), note
that E(θ̂) and θ are constants; therefore, we have

E{2[θ̂ − E(θ̂)][E(θ̂)− θ]} = 2{E[θ̂E(θ̂)]− E(θ̂θ)− E[E(θ̂)E(θ̂)] + E[E(θ̂)θ]}
= 2{E(θ̂)E(θ̂)− θE(θ̂)− E(θ̂)E(θ̂) + E(θ̂)θ} = 2(0) = 0.

Therefore, the cross product term 2[θ̂ − E(θ̂)][E(θ̂) − θ] has expectation zero. For (∗ ∗ ∗), we
have

E{[E(θ̂)− θ]2} = [E(θ̂)− θ]2 = [B(θ̂)]2,

because E(θ̂) and θ are both constants; hence [E(θ̂)− θ]2 is constant. This shows algebraically
that

MSE(θ̂) = E[(θ̂ − θ)2] = V (θ̂) + [B(θ̂)]2.

Of course, if θ̂ is an unbiased estimator of θ, then B(θ̂) = E(θ̂)− θ = 0 and MSE(θ̂) = V (θ̂).

8.6. We are given

E(θ̂1) = E(θ̂2) = θ

V (θ̂1) = σ21

V (θ̂2) = σ22.

Note that both θ̂1 and θ̂2 are unbiased estimators of θ. Suppose a ∈ R is a constant. For part
(a), we have

E(θ̂3) = E[aθ̂1 + (1− a)θ̂2] = aE(θ̂1) + (1− a)E(θ̂2) = aθ + (1− a)θ = θ.

Therefore, the linear (convex) combination θ̂3 = aθ̂1 + (1 − a)θ̂2 is also an unbiased estimator
of θ.

PAGE 1



STAT 512 HW6 SOLUTIONS

(b) The variance of θ̂3 = aθ̂1 + (1− a)θ̂2 is

V (θ̂3) = V [aθ̂1 + (1− a)θ̂2] = a2V (θ̂1) + (1− a)2V (θ̂2) + 2a(1− a)Cov(θ̂1, θ̂2).

However, because θ̂1 and θ̂2 are independent (by assumption), we have Cov(θ̂1, θ̂2) = 0 and
therefore

V (θ̂3) = a2V (θ̂1) + (1− a)2V (θ̂2) = a2σ21 + (1− a)2σ22︸ ︷︷ ︸
=g(a), say

.

Let g(a) = a2σ21 + (1− a)2σ22; i.e., view V (θ̂3) as a function of a. We want to find the value of
a that minimizes g(a). Note that

d

da
g(a) = 2aσ21 + 2(1− a)(−1)σ22

set
= 0 =⇒ 2aσ21 − 2σ22 + 2aσ22 = 0

=⇒ 2aσ21 + 2aσ22 = 2σ22

=⇒ aσ21 + aσ22 = σ22 =⇒ a =
σ22

σ21 + σ22
.

This is the solution to
d

da
g(a) = 0;

i.e.,

a =
σ22

σ21 + σ22

is a first-order critical point of g(a). Use the second derivative test to determine if this critical
point is a minimizer; we have

d2

da2
g(a) =

d

da
[2aσ21 + 2(1− a)(−1)σ22] = 2σ21 + 2(−1)(−1)σ22 = 2(σ21 + σ22) > 0,

because variances are positive. Because (d2/da2)g(a) > 0 for all a ∈ R, the function g(a) is
concave up and therefore the first-order critical point above is a minimizer of g(a). Therefore,
a = σ22/(σ

2
1 + σ22) minimizes V (θ̂3).

8.9. In this problem, Y1, Y2, ..., Yn is an iid sample from an exponential population distribution
with mean β = θ + 1. Therefore, we know

E(Y ) = µ = β = θ + 1.

Therefore,
E(Y − 1) = θ + 1− 1 = θ.

This shows θ̂ = Y − 1 is an unbiased estimator of θ.

8.12. In this problem, Y1, Y2, ..., Yn is an iid sample from a uniform population distribution
from θ to θ+1; i.e., the population distribution is U(θ, θ+1). For part (a), note the population
mean is

µ = E(Y ) =
θ + (θ + 1)

2
= θ +

1

2
.
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Therefore, we know

E(Y ) = µ = θ +
1

2
.

This shows Y is a biased estimator of θ. The bias of Y as a point estimator of θ is

B(Y ) = E(Y )− θ = θ +
1

2
− θ =

1

2
.

(b) Note that

E(Y ) = θ +
1

2
=⇒ E

(
Y − 1

2

)
= θ +

1

2
− 1

2
= θ.

This shows θ̂ = Y − 1
2 is an unbiased estimator of θ.

(c) The MSE of Y is
MSE(Y ) = V (Y ) + [B(Y )]2.

We have already calculated B(Y ) = 1
2 . Recall

V (Y ) =
σ2

n
,

where σ2 = V (Y ) is the population variance. Using what we know about the uniform distribu-
tion, we have

σ2 = V (Y ) =
[(θ + 1)− θ]2

12
=

1

12
.

Therefore,

MSE(Y ) = V (Y ) + [B(Y )]2 =
(1/12)

n
+

(
1

2

)2

=
1

12n
+

1

4
.

8.13. In this problem, we have Y ∼ b(n, p). We know

E

(
Y

n

)
=
E(Y )

n
=
np

n
= p;

i.e., the usual sample proportion Y/n is an unbiased estimator of p. In part (a), consider the
estimator

n

(
Y

n

)(
1− Y

n

)
= Y

(
1− Y

n

)
= Y − Y 2

n
.

We have

E

[
n

(
Y

n

)(
1− Y

n

)]
= E

(
Y − Y 2

n

)
= E(Y )− E(Y 2)

n
.

We know E(Y ) = np and

E(Y 2) = V (Y ) + [E(Y )]2 = np(1− p) + (np)2.

Therefore,

E

[
n

(
Y

n

)(
1− Y

n

)]
= E(Y )− E(Y 2)

n
= np− np(1− p) + (np)2

n

= np− p(1− p)− np2

= np− np2 − p(1− p)
= np(1− p)− p(1− p) = V (Y )− p(1− p).
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This shows that

n

(
Y

n

)(
1− Y

n

)
is a biased estimator of V (Y ) = np(1− p).

(b) In part (a), we showed

E

[
n

(
Y

n

)(
1− Y

n

)]
= V (Y )− p(1− p).

Pre-multiply the estimator in part (a) by n and consider

n2
(
Y

n

)(
1− Y

n

)
.

We have

E

[
n2
(
Y

n

)(
1− Y

n

)]
= nE

[
n

(
Y

n

)(
1− Y

n

)]
= n [V (Y )− p(1− p)]

= nV (Y )− np(1− p)
= nV (Y )− V (Y ) = (n− 1)V (Y ).

Therefore,

E

[
n2
(
Y
n

) (
1− Y

n

)
n− 1

]
=

(
1

n− 1

)
E

[
n2
(
Y

n

)(
1− Y

n

)]
=

(
1

n− 1

)
(n− 1)V (Y ) = V (Y ).

This shows
n2
(
Y
n

) (
1− Y

n

)
n− 1

=

(
n2

n− 1

)(
Y

n

)(
1− Y

n

)
is an unbiased estimator of the population variance V (Y ) = np(1− p).

8.15. In this problem, Y1, Y2, ..., Yn is an iid sample from a Pareto population distribution with
pdf

fY (y) =


3β3

y4
, y ≥ β

0, otherwise,

where β > 0 is unknown. We consider the point estimator β̂ = Y(1), the minimum order

statistic. If we are going to derive the bias and MSE of β̂, then we need to know its sampling
distribution. Recall the pdf of Y(1), in general, is

fY(1)(y) = nfY (y)[1− FY (y)]n−1,

where FY (y) is the cdf of Y . Therefore, we need to derive the cdf of Y first. For y < β, we have

FY (y) =

∫ y

−∞
fY (t)dt =

∫ y

−∞
0dt = 0.
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For y ≥ β, we have

FY (y) =

∫ y

−∞
fY (t)dt =

∫ β

−∞
0dt+

∫ y

β

3β3

t4
dt

= 0 + 3β3
(
−1

3

)
1

t3

∣∣∣∣y
β

=
β3

t3

∣∣∣∣β
y

= 1−
(
β

y

)3

.

Summarizing, the population cdf is

FY (y) =


0, y < β

1−
(
β

y

)3

, y ≥ β.

Therefore, the pdf of Y(1), for y ≥ β, is

fY(1)(y) = nfY (y)[1−FY (y)]n−1 = n×3β3

y4
×

{
1−

[
1−

(
β

y

)3
]}n−1

=
3nβ3

y4
×
(
β

y

)3n−3
=

3nβ3n

y3n+1
.

Summarizing,

fY(1)(y) =


3nβ3n

y3n+1
, y ≥ β

0, otherwise.

(a) Let’s calculate the expected value of β̂ = Y(1). We have

E(β̂) = E(Y(1)) =

∫
R
yfY(1)(y)dy =

∫ ∞
β

y × 3nβ3n

y3n+1
dy

= 3nβ3n
∫ ∞
β

1

y3n
dy

= 3nβ3n
(
− 1

3n− 1

)
1

y3n−1

∣∣∣∣∞
β

=

(
3nβ3n

3n− 1

)
1

y3n−1

∣∣∣∣β
∞

=

(
3nβ3n

3n− 1

)(
1

β3n−1
− 0

)
=

(
3n

3n− 1

)
β.

Therefore, β̂ = Y(1) is a (positively) biased estimator of β. The bias of β̂ = Y(1) is

B(β̂) = B(Y(1)) = E(Y(1))− β =

(
3n

3n− 1

)
β − β =

(
1

3n− 1

)
β.

(b) We want to calculate

MSE(β̂) = MSE(Y(1)) = V (Y(1)) + [B(Y(1))]
2.

Therefore, we need to calculate

V (Y(1)) = E(Y 2
(1))− [E(Y(1))]

2
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first. The second moment of Y(1) is

E(Y 2
(1)) =

∫
R
y2fY(1)(y)dy =

∫ ∞
β

y2 × 3nβ3n

y3n+1
dy

= 3nβ3n
∫ ∞
β

1

y3n−1
dy

= 3nβ3n
(
− 1

3n− 2

)
1

y3n−2

∣∣∣∣∞
β

=

(
3nβ3n

3n− 2

)
1

y3n−2

∣∣∣∣β
∞

=

(
3nβ3n

3n− 2

)(
1

β3n−2
− 0

)
=

(
3n

3n− 2

)
β2.

Therefore,

V (Y(1)) = E(Y 2
(1))− [E(Y(1))]

2 =

(
3n

3n− 2

)
β2 −

[(
3n

3n− 1

)
β

]2
=

[(
3n

3n− 2

)
−
(

3n

3n− 1

)2
]
β2 =

[
3n

(3n− 1)2(3n− 2)

]
β2.

Finally,

MSE(β̂) = MSE(Y(1)) = V (Y(1)) + [B(Y(1))]
2

=

[
3n

(3n− 1)2(3n− 2)

]
β2 +

[(
1

3n− 1

)
β

]2
=

[
2

(3n− 1)(3n− 2)

]
β2.

Note: In the calculations for V (Y(1)) and MSE(β̂) above, I did not show the algebra that led
to the final simplified answers.

8.16. In this problem, Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2) population distribution
where both µ and σ2 are unknown. We know the sample variance S2 is an unbiased estimator
of σ2; i.e.,

E(S2) = σ2.

However, the sample standard deviation S is not an unbiased estimator of σ; this makes sense
because S =

√
S2 and the square-root function is not linear. Therefore, bias is introduced when

we take square roots. In part (a), we want to calculate E(S). From Result 6 in Chapter 7,
recall that when Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2), we know

(n− 1)S2

σ2
∼ χ2(n− 1)

d
= gamma

(
n− 1

2
, 2

)
.

Therefore,

S2 =
σ2

n− 1

[
(n− 1)S2

σ2

]
∼ gamma

(
n− 1

2
,

2σ2

n− 1

)
.

Therefore, calculating E(S) results from calculating

E(X
1
2 ), where X ∼ gamma

(
n− 1

2
,

2σ2

n− 1

)
.
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We have

E(X
1
2 ) =

∫
R
x

1
2 fX(x)dx =

∫ ∞
0

x
1
2

1

Γ(n−12 )
(

2σ2

n−1

)n−1
2

x
n−1
2
−1e
−x
/(

2σ2

n−1

)

︸ ︷︷ ︸
gamma

(
n−1
2
, 2σ

2

n−1

)
pdf

dx

=
1

Γ(n−12 )
(

2σ2

n−1

)n−1
2

∫ ∞
0

x
n
2
−1e
−x
/(

2σ2

n−1

)︸ ︷︷ ︸
gamma

(
n
2
, 2σ

2

n−1

)
kernel

dx

=
1

Γ(n−12 )
(

2σ2

n−1

)n−1
2

Γ
(n

2

)( 2σ2

n− 1

)n
2

=
Γ
(
n
2

)
Γ(n−12 )

(
2σ2

n− 1

) 1
2

=

[ √
2Γ
(
n
2

)
√
n− 1Γ(n−12 )

]
σ.

Therefore, the sample standard deviation S is a biased estimator of σ because

E(S) =

[ √
2Γ
(
n
2

)
√
n− 1Γ(n−12 )

]
σ.

(b) Adjusting S to “make it unbiased” is easy. Note that

E(S) =

[ √
2Γ
(
n
2

)
√
n− 1Γ(n−12 )

]
σ =⇒ E

[√
n− 1Γ(n−12 )
√

2Γ
(
n
2

) S

]
= σ;

i.e., we just multiplied by the reciprocal. This shows

σ̂ =

√
n− 1Γ(n−12 )
√

2Γ
(
n
2

) S

is an unbiased estimator of σ.

(c) The function φα = µ− zασ is the αth quantile of Y ∼ N (µ, σ2). Note that

α = P (Y ≤ φα) = P

(
Z ≤ φα − µ

σ

)
=⇒ φα − µ

σ
= zα =⇒ φα = µ− zασ.

We already know Y is an unbiased estimator of µ. We have an unbiased estimator of σ from
above. Because zα is a constant, we have

E(Y − zασ̂) = E(Y )− zαE(σ̂) = µ− zασ.

This shows

Y − zασ̂ = Y − zα

[√
n− 1Γ(n−12 )
√

2Γ
(
n
2

) ]
S

is an unbiased estimator of the αth quantile of Y ∼ N (µ, σ2).
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8.18. In this problem, Y1, Y2, ..., Yn is an iid sample from a U(0, θ) population distribution
where θ > 0 is unknown. We want to find E(Y(1)), where Y(1) is the minimum order statistic.
Recall the pdf of Y(1), in general, is

fY(1)(y) = nfY (y)[1− FY (y)]n−1,

where FY (y) is the cdf of Y . The population pdf of Y ∼ U(0, θ) is

fY (y) =


1

θ
, 0 < y < θ

0, otherwise

and the population cdf is

FY (y) =


0, y ≤ 0
y

θ
, 0 < y < θ

1, y ≥ θ.
Therefore, for 0 < y < θ, the pdf of Y(1) is

fY(1)(y) = nfY (y)[1− FY (y)]n−1 = n

(
1

θ

)(
1− y

θ

)n−1
=
n

θ

(
1− y

θ

)n−1
.

Summarizing,

fY(1)(y) =


n

θ

(
1− y

θ

)n−1
, 0 < y < θ

0, otherwise.

Therefore,

E(Y(1)) =

∫
R
yfY(1)(y)dy =

∫ θ

0
y × n

θ

(
1− y

θ

)n−1
dy.

In the last integral, let

u =
y

θ
=⇒ du =

dy

θ
.

Note also that with this u-substitution, the limits of integration change. As y : 0 → θ, the
transformed variable u : 0→ 1. Therefore, we have

E(Y(1)) =

∫ θ

0
y × n

θ

(
1− y

θ

)n−1
dy =

∫ 1

0
θu× n

θ
(1− u)n−1 θdu

= nθ

∫ 1

0
u(1− u)n−1du = nθ

[
Γ(2)Γ(n)

Γ(n+ 2)

]
.

Note that the last integrand u(1 − u)n−1 is the beta(2, n) kernel and we are integrating over
(0, 1). Therefore,

E(Y(1)) = nθ

[
Γ(2)Γ(n)

Γ(n+ 2)

]
= nθ

[
Γ(n)

(n+ 1)nΓ(n)

]
=

(
1

n+ 1

)
θ.

Finally, note that

E(Y(1)) =

(
1

n+ 1

)
θ =⇒ E

[
(n+ 1)Y(1)

]
= θ.

This shows θ̂ = (n+ 1)Y(1) is an unbiased estimator of θ.
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8.20. In this problem, Y1, Y2, Y3, Y4 is an iid sample of size n = 4 from an exponential(θ)
population distribution where θ > 0 is unknown. In part (a), we have

E(X) = E(
√
Y1Y2) = E(

√
Y1
√
Y2) = E(

√
Y1)E(

√
Y2).

The last step follows because Y1 ⊥⊥ Y2, so
√
Y1 ⊥⊥

√
Y2; i.e., functions of independent random

variables are also independent. Note that E(
√
Y1) = E(

√
Y2) because Y1 and Y2 are identically

distributed. Therefore, let’s calculate E(
√
Y ), where Y ∼ exponential(θ). We have

E(
√
Y ) =

∫
R

√
yfY (y)dy =

∫ ∞
0

y
1
2 × 1

θ
e−y/θdy =

1

θ

∫ ∞
0

y
1
2 e−y/θdy.

We recognize y
1
2 e−y/θ = y

3
2
−1e−y/θ as the kernel of a gamma pdf with shape parameter α = 3/2

and scale parameter β = θ. Therefore,

E(
√
Y ) =

1

θ
Γ

(
3

2

)
θ

3
2 =

1

2
Γ

(
1

2

)
θ

1
2 =

√
πθ

2
,

because Γ(12) =
√
π, a result we proved in STAT 511. Therefore,

E(X) = E(
√
Y1)E(

√
Y2) =

√
πθ

2

√
πθ

2
=
(π

4

)
θ.

Finally, note that

E(X) =
(π

4

)
θ =⇒ E

(
X

π/4

)
= θ.

Therefore,
X

π/4
=

4X

π
=

4
√
Y1Y2
π

is an unbiased estimator of θ.

(b) The argument for this part is identical. We have

E(W ) = E(
√
Y1Y2Y3Y4) = E(

√
Y1
√
Y2
√
Y3
√
Y4)

= E(
√
Y1)E(

√
Y2)E(

√
Y3)E(

√
Y4) =

(√
πθ

2

)4

=

(
π2

16

)
θ2.

Therefore,

E(W ) =

(
π2

16

)
θ2 =⇒ E

(
W

π2/16

)
= θ2.

Therefore,
W

π2/16
=

16W

π2
=

16
√
Y1Y2Y3Y4
π2

is an unbiased estimator of θ2.

8.133. In this problem, we have two independent random samples:

• Y11, Y12, ..., Y1n1 is an iid sample from a N (µ1, σ
2) population distribution
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• Y21, Y22, ..., Y2n2 is an iid sample from a N (µ2, σ
2) population distribution,

where all population parameters are unknown. Important: Note that the population variance
σ2 is assumed to be the same in each population.

Define the sample means

Y 1+ =
1

n1

n1∑
j=1

Y1j and Y 2+ =
1

n2

n2∑
j=1

Y2j

and the sample variances

S2
1 =

1

n1 − 1

n1∑
j=1

(Y1j − Y 1+)2 and S2
2 =

1

n2 − 1

n2∑
j=1

(Y2j − Y 2+)2.

The pooled sample variance estimator is

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

In part (a), we want to show that S2
p is an unbiased estimator of the common population

variance σ2; i.e., we want to show
E(S2

p) = σ2.

Showing this is easy. Recall that the sample variance is always an unbiased estimator of the
population variance (in any population distribution, provided that the population variance is
finite, of course). Therefore, we have

E(S2
1) = σ2

E(S2
2) = σ2.

Therefore,

E(S2
p) = E

[
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

]
=

1

n1 + n2 − 2
E[(n1 − 1)S2

1 + (n2 − 1)S2
2 ]

=
1

n1 + n2 − 2
[(n1 − 1)E(S2

1) + (n2 − 1)E(S2
2)]

=
1

n1 + n2 − 2
[(n1 − 1)σ2 + (n2 − 1)σ2]

=

(
n1 + n2 − 2

n1 + n2 − 2

)
σ2 = σ2.

This shows S2
p is an unbiased estimator of σ2.

(b) To calculate V (S2
p), recall that

(n1 − 1)S2
1

σ2
∼ χ2(n1 − 1) and

(n2 − 1)S2
2

σ2
∼ χ2(n2 − 1).

Therefore,

V

(
(n1 − 1)S2

1

σ2

)
= 2(n1 − 1) =⇒ (n1 − 1)2

σ4
V (S2

1) = 2(n1 − 1) =⇒ V (S2
1) =

2σ4

n1 − 1
,
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a result we saw in Chapter 7 (Result 5). Similarly,

V (S2
2) =

2σ4

n2 − 1
.

Therefore,

V (S2
p) = V

[
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

]
=

(
1

n1 + n2 − 2

)2

V [(n1 − 1)S2
1 + (n2 − 1)S2

2 ]

=

(
1

n1 + n2 − 2

)2

[(n1 − 1)2V (S2
1) + (n2 − 1)2V (S2

2)].

The last equality is true because Cov(S2
1 , S

2
2) = 0. This is true because the samples are inde-

pendent (i.e., S2
1 is a statistic from sample 1, and S2

2 is a statistic from sample 2). Therefore,

V (S2
p) =

(
1

n1 + n2 − 2

)2

[(n1 − 1)2V (S2
1) + (n2 − 1)2V (S2

2)]

=

(
1

n1 + n2 − 2

)2 [
(n1 − 1)2

(
2σ4

n1 − 1

)
+ (n2 − 1)2

(
2σ4

n2 − 1

)]
= 2σ4

(
1

n1 + n2 − 2

)2

[(n1 − 1) + (n2 − 1)]

= 2σ4
(

1

n1 + n2 − 2

)2

(n1 + n2 − 2) =
2σ4

n1 + n2 − 2
.
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