
STAT 512 HW7 SOLUTIONS

8.34. Suppose Y1, Y2, ..., Yn is an iid sample from a Poisson population distribution with mean
λ > 0, where λ is unknown. We know Y is an unbiased estimator of λ. In other words,

E(Y ) = λ.

Therefore, Y is certainly a sensible estimator on the basis that it is unbiased. Furthermore,
calculating the standard error of Y is easy. We have

V (Y ) =
λ

n
=⇒ σY =

√
λ

n
.

Now, as is frequently the case, the standard error of our point estimator (here, Y ) depends on
λ, which is an unknown population parameter. Therefore, we can estimate the standard error
of Y by using

σ̂Y =

√
Y

n
.

Note that all we have done here is replace λ in the standard error with an unbiased estimator
of it. Interestingly, because S2 is also an unbiased estimator of λ, we could also estimate the
standard error by using

σ̂Y =

√
S2

n
=

S√
n
.

Either answer would be a reasonable way to estimate the standard error of Y .

8.36. This problem is similar to Problem 8.34. Suppose Y1, Y2, ..., Yn is an iid sample from an
exponential population distribution with mean θ > 0, where θ is unknown. We know Y is an
unbiased estimator of θ. The standard error of Y is calculated as follows:

V (Y ) =
θ2

n
=⇒ σY =

√
θ2

n
=

θ√
n
.

Again, the standard error of our point estimator (here, Y ) depends on θ, which is an unknown
population parameter. We can estimate the standard error of Y by using

σ̂Y =
Y√
n

Note that all we have done here is replace θ in the standard error with an unbiased estimator
of it.

8.60. In this problem, we envision an iid sample of n = 130 “healthy” humans, where, on each
individual, we measure

Y = body temperature (measured in deg F).

(a) From the sample, we are given y = 98.25 deg F and s = 0.73 deg F. The population
distribution of body temperatures is not known, so we can use a large-sample interval for the
population mean µ. A large-sample 99% confidence interval is

y ± zα/2
s√
n
−→ 98.25± 2.58

(
0.73√

130

)
−→ (98.08, 98.42).
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> qnorm(0.995,0,1) # upper 0.005 quantile from N(0,1)

[1] 2.575829

Interpretation: We are (approximately) 99% confident the population mean human body
temperature µ is between 98.08 and 98.42 deg F.

(b) The confidence interval for µ does not contain 98.6 deg F, the “accepted” average tem-
perature. What conclusions can we draw? This is hard to answer as there could be many
explanations:

• Our inference procedure only utilizes 99% confidence. Therefore, the population mean
could be µ = 98.6 deg F, and this is one of the few intervals that would exclude it.

• It could be the population mean µ really is 98.6 deg F; it’s just that our “sample” was
not a random sample from the population; e.g., perhaps some of the individuals were not
really “healthy.”

• It could be the sample was representative and the population mean µ is slightly less than
98.6 deg F. The interval certainly does not provide evidence that µ is larger than 98.6
deg F.

8.65. In this problem, we envision two independent random samples:

• Y11, Y12, ..., Y1n1 is an iid sample from a Bernoulli(p1) population

• Y21, Y22, ..., Y2n2 is an iid sample from a Bernoulli(p2) population.

Here, p1 (p2) is the population proportion of defective items from Line A (Line B). In part (a),
our goal is to estimate the parameter θ = p1− p2, the difference of the population proportions.
The problem gives the sample sizes n1 = n2 = 100 and the sample proportions (i.e., the point
estimates); these are

p̂1 =
18

100
= 0.18 and p̂2 =

12

100
= 0.12.

We can use this information to write a large-sample (approximate) confidence interval for
θ = p1 − p2. We will use the interval

(p̂1 − p̂2)± zα/2

√
p̂1(1− p̂1)

n1
+
p̂2(1− p̂2)

n2
.

We have

(0.18−0.12)±2.33

√
0.18(1− 0.18)

100
+

0.12(1− 0.12)

100
−→ 0.06±0.117 −→ (−0.057, 0.177).

Interpretation: We are (approximately) 98% confident the difference of the population pro-
portions θ = p1 − p2 is between −0.057 and 0.177.

> qnorm(0.99,0,1) # upper 0.01 quantile from N(0,1)

[1] 2.326348

(b) Note that the interval does include “0.” In other words, on the basis of this analysis, “0”
is a plausible value for θ = p1 − p2 as it resides in the confidence interval. Of course, if this is
true (i.e., if θ = p1 − p2 = 0), then the population proportions p1 and p2 would be equal.
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8.87. In this problem, we envision two independent random samples:

• Y11, Y12, ..., Y1n1 is an iid sample from a N (µ1, σ
2
1) population distribution

• Y21, Y22, ..., Y2n2 is an iid sample from a N (µ2, σ
2
2) population distribution,

The goal is to estimate the parameter θ = µ1−µ2, the difference of the population mean prices
in tuna packed with water (population 1) and tuna packed with oil (population 2). We have
samples of size n1 = 14 and n2 = 11 from these populations.

In part (a), we are being asked to write a 90% confidence interval for θ = µ1− µ2. This can be
done entirely in R, and we can request the equal-variance/unequal-variance intervals:

> water = c(0.99,1.92,1.23,0.85,0.65,0.69,0.60,0.53,1.41,1.12,0.63,0.67,0.60,0.66)

> oil = c(2.56,1.92,1.30,1.79,1.23,0.62,0.66,0.62,0.65,0.60,0.67)

> t.test(water,oil,conf.level=0.90,var.equal=TRUE)$conf.int

[1] -0.6229708 0.1212825

> t.test(water,oil,conf.level=0.90,var.equal=FALSE)$conf.int

[1] -0.6548617 0.1531734

There are minor differences in the intervals, but the overall message is the same. Note that the
interval for θ = µ1 − µ2 does include “0.” In other words, on the basis of this analysis, “0” is a
plausible value for θ = µ1 − µ2 as it resides in the confidence interval. Of course, if this is true
(i.e., if θ = µ1 − µ2 = 0), then the population mean prices µ1 and µ2 would be equal.

8.95. In this problem, the random variable

Y = noise level (measured in decibels)

is measured on each six heavy trucks. We envision Y1, Y2, ..., Y6 as an iid sample of size n = 6
from a N (µ, σ2) population distribution, where both µ and σ2 are unknown. Our goal is to
write a 90% confidence interval for the population variance σ2 on the basis of this sample. We
will use the interval we derived in class; i.e.,(

(n− 1)S2

χ2
n−1,α/2

,
(n− 1)S2

χ2
n−1,1−α/2

)
.

I coded the calculation of this interval in R:

> noise = c(85.4,86.8,86.1,85.3,84.8,86.0)

> ci.lower = 5*var(noise)/qchisq(0.95,5)

> ci.upper = 5*var(noise)/qchisq(0.05,5)

> round(c(ci.lower,ci.upper),1)

[1] 0.2 2.2

Interpretation: We are 90% confident the population variance σ2 is between 0.2 and 2.2
(decibels)2.
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8.127. In this problem, Y1, Y2, ..., Yn is an iid sample from a gamma(c0, β) population distribu-
tion, where the shape parameter α = c0 is known and the scale parameter β > 0 is unknown.
Our goal is to derive a confidence interval for β. The problem says “approximate” confidence
interval, so this should trigger in your mind that the Central Limit Theorem will be used.
Recall that in this population

µ = c0β

σ2 = c0β
2.

Therefore, applying the CLT directly, the approximate sampling distribution of Y is

Y ∼ N
(
c0β,

c0β
2

n

)
=⇒ Q =

Y − c0β√
c0β

2

n

∼ AN (0, 1),

when the sample size n is large (e.g., like n = 100). Note that because (the large-sample)
distribution of Q does not depend on any unknown population parameters, Q is a large-sample
pivot. Therefore, we can write

1− α ≈ P

−zα/2 < Y − c0β√
c0β

2

n

< zα/2

 = P

−zα/2 < Y − c0β

β

√
c0
n

< zα/2



= P

−zα/2 < Y

β

√
c0
n

− c0β

β

√
c0
n

< zα/2



= P

−zα/2 < Y

β

√
c0
n

−
√
c0n < zα/2



= P

−zα/2 +
√
c0n <

Y

β

√
c0
n

< zα/2 +
√
c0n



= P


√
c0
n

(
−zα/2 +

√
c0n
)

Y
<

1

β
<

√
c0
n

(
zα/2 +

√
c0n
)

Y



= P

 Y√
c0
n

(
−zα/2 +

√
c0n
) > β >

Y√
c0
n

(
zα/2 +

√
c0n
)


= P

 Y√
c0
n

(
zα/2 +

√
c0n
) < β <

Y√
c0
n

(
−zα/2 +

√
c0n
)
 .
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This argument shows that Y√
c0
n

(
zα/2 +

√
c0n
) , Y√

c0
n

(
−zα/2 +

√
c0n
)


is an approximate 100(1− α)% confidence interval for β. When n = 100, the lower endpoint is

Y√
c0

100

(
zα/2 +

√
100c0

) =
Y√

c0zα/2

10
+ c0

=
Y

c0 + 0.1zα/2
√
c0
,

as stated. The upper endpoint
Y

c0 − 0.1zα/2
√
c0

is found similarly.

8.128. This problem deals with comparing two population means µ1 and µ2, from normal
distributions, where the population variances obey σ22 = kσ21, where k is a known constant.
Of course, if k = 1, then this is our “equal-variance” case. Specifically, suppose we have two
independent random samples:

• Y11, Y12, ..., Y1n1 is an iid sample from a N (µ1, σ
2
1) population distribution

• Y21, Y22, ..., Y2n2 is an iid sample from a N (µ2, kσ
2
1) population distribution,

where all population parameters are unknown. Our goal is to derive a 100(1− α)% confidence
interval for µ1 − µ2, the difference of the two population means. The derivation will closely
mirror what we did in the notes.

(a) We know

Y 1+ ∼ N
(
µ1,

σ21
n1

)
and Y 2+ ∼ N

(
µ2,

kσ21
n2

)
.

Because Y 1+ and Y 2+ are both normally distributed, the difference Y 1+− Y 2+ is too (i.e., the
difference is a simple linear combination). Therefore, because the two samples are independent,

Y 1+ − Y 2+ ∼ N
(
µ1 − µ2,

σ21
n1

+
kσ21
n2

)
.

Standardizing, we get

Z∗ =
(Y 1+ − Y 2+)− (µ1 − µ2)√

σ21
n1

+
kσ21
n2

=
(Y 1+ − Y 2+)− (µ1 − µ2)

σ1

√
1

n1
+

k

n2

∼ N (0, 1).

(b) We also know

(n1 − 1)S2
1

σ21
∼ χ2(n1 − 1) and

(n2 − 1)S2
2

kσ21
∼ χ2(n2 − 1).
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Therefore, because the two samples are independent,

W ∗ =
(n1 − 1)S2

1

σ21
+

(n2 − 1)S2
2

kσ21
=

(n1 − 1)S2
1 + (n2 − 1)S2

2/k

σ21
∼ χ2(n1 + n2 − 2).

(c) Because Z∗ ⊥⊥W ∗ (why?), we have

T ∗ =

(Y 1+ − Y 2+)− (µ1 − µ2)

σ1

√
1

n1
+

k

n2√
(n1 − 1)S2

1 + (n2 − 1)S2
2/k

σ21

/
(n1 + n2 − 2)

∼ t(n1 + n2 − 2).

However, note that we can write T ∗ above as

T ∗ =
(Y 1+ − Y 2+)− (µ1 − µ2)

S∗
p

√
1

n1
+

k

n2

,

where

S∗
p =

√
(n1 − 1)S2

1 + (n2 − 1)S2
2/k

n1 + n2 − 2
.

(d) Pivoting off T ∗, we can write

1− α = P

−tn1+n2−2,α/2 <
(Y 1+ − Y 2+)− (µ1 − µ2)

S∗
p

√
1

n1
+

k

n2

< tn1+n2−2,α/2

 .

After performing the usual algebra; i.e., to isolate µ1 − µ2 in the center of the inequality, we
conclude

(Y 1+ − Y 2+)± tn1+n2−2,α/2S
∗
p

√
1

n1
+

k

n2

is a 100(1− α)% confidence interval for µ1 − µ2.

(e) If k = 1, then this is our “equal-variance” case, which was covered in the notes.

8.132. In this problem, Y1, Y2, ..., Yn is an iid sample from a power family population distribu-
tion with cumulative distribution function

FY (y) =


0, y < 0(y
θ

)α
, 0 ≤ y ≤ θ

1, y > θ.

In this population model, α is assumed to be known (with α = c) and θ > 0 is unknown. Our
goal is to derive a 100(1− α)% confidence interval for θ.

PAGE 6



STAT 512 HW7 SOLUTIONS

(a) For 0 ≤ y ≤ θ, the cdf of the maximum order statistic Y(n) is

FY(n)
(y) = P (Y(n) ≤ y) = P (Y1 ≤ y, Y2 ≤ y, ..., Yn ≤ y)

= P (Y1 ≤ y)P (Y2 ≤ y) · · ·P (Yn ≤ y) = [FY (y)]n =
[(y
θ

)c]n
=
(y
θ

)nc
.

Summarizing,

FY(n)
(y) =


0, y < 0(y
θ

)nc
, 0 ≤ y ≤ θ

1, y > θ.

(b) Define

Q =
Y(n)

θ
.

Note that
0 ≤ y(n) ≤ θ ⇐⇒ q =

y(n)

θ
∈ [0, 1].

Therefore, the support of Q = Y(n)/θ is

RQ = {q : 0 ≤ q ≤ 1}.

For 0 ≤ q ≤ 1, the cdf of Q is

FQ(q) = P (Q ≤ q) = P

(
Y(n)

θ
≤ q
)

= P (Y(n) ≤ θq) = FY(n)
(θq) =

(
θq

θ

)nc
= qnc.

Summarizing,

FQ(q) =


0, q < 0

qnc, 0 ≤ q ≤ 1

1, q > 1.

Because the distribution of Q (as described by its cdf) does not depend on any unknown
population parameters, Q is a pivotal quantity. Note further that

P (k < Q < 1) = P

(
k <

Y(n)

θ
< 1

)
= FQ(1)− FQ(k) = 1− knc.

(c) With n = 5 and c = 2.4, we have

0.95
set
= P

(
k <

Y(5)

θ
< 1

)
= 1− k12 =⇒ k12 = 0.05 =⇒ k = (0.05)1/12 ≈ 0.779.

Therefore, we have

0.95 = P

(
0.779 <

Y(5)

θ
< 1

)
= P

(
1

0.779
>

θ

Y(5)
> 1

)
= P

(
Y(5)

0.779
> θ > Y(5)

)
= P

(
Y(5) < θ <

Y(5)

0.779

)
.

This argument shows that (
Y(5),

Y(5)

0.779

)
is a 95% confidence interval for θ.
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8.134. Suppose Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2) population distribution, where
both parameters are unknown. We derived a 100(1 − α)% confidence interval for µ by using
the t distribution; in particular,(

Y − tn−1,α/2
S√
n
, Y + tn−1,α/2

S√
n

)
is a 100(1−α)% confidence interval for µ. The width of this interval (i.e., how long it is) is the
upper endpoint minus the lower endpoint; i.e., the width W is

W =

(
Y + tn−1,α/2

S√
n

)
−
(
Y − tn−1,α/2

S√
n

)
= 2tn−1,α/2

S√
n
.

We want to calculate the expected width; i.e., E(W ). Note that

E(W ) = E

(
2tn−1,α/2

S√
n

)
=

2tn−1,α/2√
n

E(S),

where S is the sample standard deviation. In Problem 8.16 (HW6), we showed that S is a
biased estimator of σ; in particular,

E(S) =

[ √
2Γ
(
n
2

)
√
n− 1Γ(n−1

2 )

]
σ.

Therefore, the expected width of the t confidence interval for µ is

E(W ) =
2tn−1,α/2√

n
E(S) =

2tn−1,α/2√
n

[ √
2Γ
(
n
2

)
√
n− 1Γ(n−1

2 )

]
σ =

[
2
√

2tn−1,α/2Γ
(
n
2

)√
n(n− 1)Γ(n−1

2 )

]
σ.

For example, if n = 10 and α = 0.05 (i.e., a 95% confidence interval), then

E(W ) =

[
2
√

2t9,0.025Γ (5)√
90Γ(4.5)

]
σ ≈ 1.39σ.

The constant above can be calculated in R:

> constant = 2*sqrt(2)*qt(0.975,9)*gamma(5)/(sqrt(90)*gamma(4.5))

> constant

[1] 1.391597
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