8.34. Suppose $Y_{1}, Y_{2}, \ldots, Y_{n}$ is an iid sample from a Poisson population distribution with mean $\lambda>0$, where λ is unknown. We know \bar{Y} is an unbiased estimator of λ. In other words,

$$
E(\bar{Y})=\lambda .
$$

Therefore, \bar{Y} is certainly a sensible estimator on the basis that it is unbiased. Furthermore, calculating the standard error of \bar{Y} is easy. We have

$$
V(\bar{Y})=\frac{\lambda}{n} \Longrightarrow \sigma_{\bar{Y}}=\sqrt{\frac{\lambda}{n}} .
$$

Now, as is frequently the case, the standard error of our point estimator (here, \bar{Y}) depends on λ, which is an unknown population parameter. Therefore, we can estimate the standard error of \bar{Y} by using

$$
\widehat{\sigma}_{\bar{Y}}=\sqrt{\frac{\bar{Y}}{n}} .
$$

Note that all we have done here is replace λ in the standard error with an unbiased estimator of it. Interestingly, because S^{2} is also an unbiased estimator of λ, we could also estimate the standard error by using

$$
\widehat{\sigma}_{\bar{Y}}=\sqrt{\frac{S^{2}}{n}}=\frac{S}{\sqrt{n}} .
$$

Either answer would be a reasonable way to estimate the standard error of \bar{Y}.
8.36. This problem is similar to Problem 8.34. Suppose $Y_{1}, Y_{2}, \ldots, Y_{n}$ is an iid sample from an exponential population distribution with mean $\theta>0$, where θ is unknown. We know \bar{Y} is an unbiased estimator of θ. The standard error of \bar{Y} is calculated as follows:

$$
V(\bar{Y})=\frac{\theta^{2}}{n} \quad \Longrightarrow \quad \sigma_{\bar{Y}}=\sqrt{\frac{\theta^{2}}{n}}=\frac{\theta}{\sqrt{n}} .
$$

Again, the standard error of our point estimator (here, \bar{Y}) depends on θ, which is an unknown population parameter. We can estimate the standard error of \bar{Y} by using

$$
\widehat{\sigma}_{\bar{Y}}=\frac{\bar{Y}}{\sqrt{n}}
$$

Note that all we have done here is replace θ in the standard error with an unbiased estimator of it.
8.60. In this problem, we envision an iid sample of $n=130$ "healthy" humans, where, on each individual, we measure

$$
Y=\text { body temperature (measured in deg F). }
$$

(a) From the sample, we are given $\bar{y}=98.25 \mathrm{deg} \mathrm{F}$ and $s=0.73 \mathrm{deg} \mathrm{F}$. The population distribution of body temperatures is not known, so we can use a large-sample interval for the population mean μ. A large-sample 99% confidence interval is

$$
\bar{y} \pm z_{\alpha / 2} \frac{s}{\sqrt{n}} \longrightarrow 98.25 \pm 2.58\left(\frac{0.73}{\sqrt{130}}\right) \longrightarrow(98.08,98.42) .
$$

```
> qnorm(0.995,0,1) # upper 0.005 quantile from N (0,1)
[1] 2.575829
```

Interpretation: We are (approximately) 99% confident the population mean human body temperature μ is between 98.08 and 98.42 deg F .
(b) The confidence interval for μ does not contain 98.6 deg F , the "accepted" average temperature. What conclusions can we draw? This is hard to answer as there could be many explanations:

- Our inference procedure only utilizes 99% confidence. Therefore, the population mean could be $\mu=98.6 \mathrm{deg} \mathrm{F}$, and this is one of the few intervals that would exclude it.
- It could be the population mean μ really is 98.6 deg F ; it's just that our "sample" was not a random sample from the population; e.g., perhaps some of the individuals were not really "healthy."
- It could be the sample was representative and the population mean μ is slightly less than 98.6 deg F . The interval certainly does not provide evidence that μ is larger than 98.6 deg F.
8.65. In this problem, we envision two independent random samples:
- $Y_{11}, Y_{12}, \ldots, Y_{1 n_{1}}$ is an iid sample from a $\operatorname{Bernoulli}\left(p_{1}\right)$ population
- $Y_{21}, Y_{22}, \ldots, Y_{2 n_{2}}$ is an iid sample from a $\operatorname{Bernoulli}\left(p_{2}\right)$ population.

Here, $p_{1}\left(p_{2}\right)$ is the population proportion of defective items from Line A (Line B). In part (a), our goal is to estimate the parameter $\theta=p_{1}-p_{2}$, the difference of the population proportions. The problem gives the sample sizes $n_{1}=n_{2}=100$ and the sample proportions (i.e., the point estimates); these are

$$
\widehat{p}_{1}=\frac{18}{100}=0.18 \quad \text { and } \quad \widehat{p}_{2}=\frac{12}{100}=0.12
$$

We can use this information to write a large-sample (approximate) confidence interval for $\theta=p_{1}-p_{2}$. We will use the interval

$$
\left(\widehat{p}_{1}-\widehat{p}_{2}\right) \pm z_{\alpha / 2} \sqrt{\frac{\widehat{p}_{1}\left(1-\widehat{p}_{1}\right)}{n_{1}}+\frac{\widehat{p}_{2}\left(1-\widehat{p}_{2}\right)}{n_{2}}}
$$

We have
$(0.18-0.12) \pm 2.33 \sqrt{\frac{0.18(1-0.18)}{100}+\frac{0.12(1-0.12)}{100}} \longrightarrow 0.06 \pm 0.117 \longrightarrow(-0.057,0.177)$.
Interpretation: We are (approximately) 98% confident the difference of the population proportions $\theta=p_{1}-p_{2}$ is between -0.057 and 0.177 .

```
> qnorm(0.99,0,1) # upper 0.01 quantile from N(0,1)
```

[1] 2.326348
(b) Note that the interval does include " 0 ." In other words, on the basis of this analysis, " 0 " is a plausible value for $\theta=p_{1}-p_{2}$ as it resides in the confidence interval. Of course, if this is true (i.e., if $\theta=p_{1}-p_{2}=0$), then the population proportions p_{1} and p_{2} would be equal.
8.87. In this problem, we envision two independent random samples:

- $Y_{11}, Y_{12}, \ldots, Y_{1 n_{1}}$ is an iid sample from a $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ population distribution
- $Y_{21}, Y_{22}, \ldots, Y_{2 n_{2}}$ is an iid sample from a $\mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ population distribution,

The goal is to estimate the parameter $\theta=\mu_{1}-\mu_{2}$, the difference of the population mean prices in tuna packed with water (population 1) and tuna packed with oil (population 2). We have samples of size $n_{1}=14$ and $n_{2}=11$ from these populations.

In part (a), we are being asked to write a 90% confidence interval for $\theta=\mu_{1}-\mu_{2}$. This can be done entirely in R , and we can request the equal-variance/unequal-variance intervals:

```
> water = c(0.99,1.92,1.23,0.85,0.65,0.69,0.60,0.53,1.41,1.12,0.63,0.67,0.60,0.66)
> oil = c(2.56,1.92,1.30,1.79,1.23,0.62,0.66,0.62,0.65,0.60,0.67)
> t.test(water,oil,conf.level=0.90,var.equal=TRUE)$conf.int
[1] -0.6229708 0.1212825
> t.test(water,oil,conf.level=0.90,var.equal=FALSE)$conf.int
[1] -0.6548617 0.1531734
```

There are minor differences in the intervals, but the overall message is the same. Note that the interval for $\theta=\mu_{1}-\mu_{2}$ does include " 0 ." In other words, on the basis of this analysis, " 0 " is a plausible value for $\theta=\mu_{1}-\mu_{2}$ as it resides in the confidence interval. Of course, if this is true (i.e., if $\theta=\mu_{1}-\mu_{2}=0$), then the population mean prices μ_{1} and μ_{2} would be equal.
8.95. In this problem, the random variable

$$
Y=\text { noise level (measured in decibels) }
$$

is measured on each six heavy trucks. We envision $Y_{1}, Y_{2}, \ldots, Y_{6}$ as an iid sample of size $n=6$ from a $\mathcal{N}\left(\mu, \sigma^{2}\right)$ population distribution, where both μ and σ^{2} are unknown. Our goal is to write a 90% confidence interval for the population variance σ^{2} on the basis of this sample. We will use the interval we derived in class; i.e.,

$$
\left(\frac{(n-1) S^{2}}{\chi_{n-1, \alpha / 2}^{2}}, \frac{(n-1) S^{2}}{\chi_{n-1,1-\alpha / 2}^{2}}\right) .
$$

I coded the calculation of this interval in R :

```
> noise = c(85.4,86.8,86.1,85.3,84.8,86.0)
> ci.lower = 5*var(noise)/qchisq(0.95,5)
> ci.upper = 5*var(noise)/qchisq(0.05,5)
> round(c(ci.lower,ci.upper),1)
[1] 0.2 2.2
```

Interpretation: We are 90% confident the population variance σ^{2} is between 0.2 and 2.2 (decibels) ${ }^{2}$.
8.127. In this problem, $Y_{1}, Y_{2}, \ldots, Y_{n}$ is an iid sample from a gamma $\left(c_{0}, \beta\right)$ population distribution, where the shape parameter $\alpha=c_{0}$ is known and the scale parameter $\beta>0$ is unknown. Our goal is to derive a confidence interval for β. The problem says "approximate" confidence interval, so this should trigger in your mind that the Central Limit Theorem will be used. Recall that in this population

$$
\begin{aligned}
\mu & =c_{0} \beta \\
\sigma^{2} & =c_{0} \beta^{2}
\end{aligned}
$$

Therefore, applying the CLT directly, the approximate sampling distribution of \bar{Y} is

$$
\bar{Y} \sim \mathcal{N}\left(c_{0} \beta, \frac{c_{0} \beta^{2}}{n}\right) \Longrightarrow Q=\frac{\bar{Y}-c_{0} \beta}{\sqrt{\frac{c_{0} \beta^{2}}{n}}} \sim \mathcal{A} \mathcal{N}(0,1)
$$

when the sample size n is large (e.g., like $n=100$). Note that because (the large-sample) distribution of Q does not depend on any unknown population parameters, Q is a large-sample pivot. Therefore, we can write

$$
\begin{aligned}
1-\alpha \approx P\left(-z_{\alpha / 2}<\frac{\bar{Y}-c_{0} \beta}{\sqrt{\frac{c_{0} \beta^{2}}{n}}}<z_{\alpha / 2}\right) & =P\left(-z_{\alpha / 2}<\frac{\bar{Y}-c_{0} \beta}{\beta \sqrt{\frac{c_{0}}{n}}}<z_{\alpha / 2}\right) \\
& =P\left(-z_{\alpha / 2}<\frac{\bar{Y}}{\beta \sqrt{\frac{c_{0}}{n}}}-\frac{c_{0} \beta}{\beta \sqrt{\frac{c_{0}}{n}}}<z_{\alpha / 2}\right) \\
& =P\left(-z_{\alpha / 2}<\frac{\bar{Y}}{\beta \sqrt{\frac{c_{0}}{n}}}-\sqrt{c_{0} n}<z_{\alpha / 2}\right) \\
& =P\left(-z_{\alpha / 2}+\sqrt{c_{0} n}<\frac{\bar{Y}}{\beta \sqrt{\frac{c_{0}}{n}}}<z_{\alpha / 2}+\sqrt{c_{0} n}\right) \\
& =P\left(\frac{\sqrt{\frac{c_{0}}{n}}\left(-z_{\alpha / 2}+\sqrt{c_{0} n}\right)}{\bar{Y}}<\frac{1}{\beta}<\frac{\sqrt{\frac{c_{0}}{n}}\left(z_{\alpha / 2}+\sqrt{c_{0} n}\right)}{\bar{Y}}\right) \\
& =P\left(\frac{\bar{Y}}{\sqrt{\frac{c_{0}}{n}}\left(-z_{\alpha / 2}+\sqrt{c_{0} n}\right)}>\beta>\frac{\bar{Y}}{\sqrt{\frac{c_{0}}{n}}\left(z_{\alpha / 2}+\sqrt{c_{0} n}\right)}\right) \\
& =P\left(\frac{\bar{Y}}{\sqrt{\frac{c_{0}}{n}}\left(z_{\alpha / 2}+\sqrt{c_{0} n}\right)}<\beta<\frac{\bar{Y}}{\sqrt{\frac{c_{0}}{n}}\left(-z_{\alpha / 2}+\sqrt{c_{0} n}\right)}\right) .
\end{aligned}
$$

This argument shows that

$$
\left(\frac{\bar{Y}}{\sqrt{\frac{c_{0}}{n}}\left(z_{\alpha / 2}+\sqrt{c_{0} n}\right)}, \frac{\bar{Y}}{\sqrt{\frac{c_{0}}{n}}\left(-z_{\alpha / 2}+\sqrt{c_{0} n}\right)}\right)
$$

is an approximate $100(1-\alpha) \%$ confidence interval for β. When $n=100$, the lower endpoint is

$$
\frac{\bar{Y}}{\sqrt{\frac{c_{0}}{100}}\left(z_{\alpha / 2}+\sqrt{100 c_{0}}\right)}=\frac{\bar{Y}}{\frac{\sqrt{c_{0}} z_{\alpha / 2}}{10}+c_{0}}=\frac{\bar{Y}}{c_{0}+0.1 z_{\alpha / 2} \sqrt{c_{0}}},
$$

as stated. The upper endpoint

$$
\frac{\bar{Y}}{c_{0}-0.1 z_{\alpha / 2} \sqrt{c_{0}}}
$$

is found similarly.
8.128. This problem deals with comparing two population means μ_{1} and μ_{2}, from normal distributions, where the population variances obey $\sigma_{2}^{2}=k \sigma_{1}^{2}$, where k is a known constant. Of course, if $k=1$, then this is our "equal-variance" case. Specifically, suppose we have two independent random samples:

- $Y_{11}, Y_{12}, \ldots, Y_{1 n_{1}}$ is an iid sample from a $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ population distribution
- $Y_{21}, Y_{22}, \ldots, Y_{2 n_{2}}$ is an iid sample from a $\mathcal{N}\left(\mu_{2}, k \sigma_{1}^{2}\right)$ population distribution,
where all population parameters are unknown. Our goal is to derive a $100(1-\alpha) \%$ confidence interval for $\mu_{1}-\mu_{2}$, the difference of the two population means. The derivation will closely mirror what we did in the notes.
(a) We know

$$
\bar{Y}_{1+} \sim \mathcal{N}\left(\mu_{1}, \frac{\sigma_{1}^{2}}{n_{1}}\right) \quad \text { and } \quad \bar{Y}_{2+} \sim \mathcal{N}\left(\mu_{2}, \frac{k \sigma_{1}^{2}}{n_{2}}\right)
$$

Because \bar{Y}_{1+} and \bar{Y}_{2+} are both normally distributed, the difference $\bar{Y}_{1+}-\bar{Y}_{2+}$ is too (i.e., the difference is a simple linear combination). Therefore, because the two samples are independent,

$$
\bar{Y}_{1+}-\bar{Y}_{2+} \sim \mathcal{N}\left(\mu_{1}-\mu_{2}, \frac{\sigma_{1}^{2}}{n_{1}}+\frac{k \sigma_{1}^{2}}{n_{2}}\right) .
$$

Standardizing, we get

$$
Z^{*}=\frac{\left(\bar{Y}_{1+}-\bar{Y}_{2+}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{k \sigma_{1}^{2}}{n_{2}}}}=\frac{\left(\bar{Y}_{1+}-\bar{Y}_{2+}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sigma_{1} \sqrt{\frac{1}{n_{1}}+\frac{k}{n_{2}}}} \sim \mathcal{N}(0,1) .
$$

(b) We also know

$$
\frac{\left(n_{1}-1\right) S_{1}^{2}}{\sigma_{1}^{2}} \sim \chi^{2}\left(n_{1}-1\right) \quad \text { and } \quad \frac{\left(n_{2}-1\right) S_{2}^{2}}{k \sigma_{1}^{2}} \sim \chi^{2}\left(n_{2}-1\right)
$$

Therefore, because the two samples are independent,

$$
W^{*}=\frac{\left(n_{1}-1\right) S_{1}^{2}}{\sigma_{1}^{2}}+\frac{\left(n_{2}-1\right) S_{2}^{2}}{k \sigma_{1}^{2}}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2} / k}{\sigma_{1}^{2}} \sim \chi^{2}\left(n_{1}+n_{2}-2\right)
$$

(c) Because $Z^{*} \Perp W^{*}$ (why?), we have

$$
T^{*}=\frac{\frac{\left(\bar{Y}_{1+}-\bar{Y}_{2+}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sigma_{1} \sqrt{\frac{1}{n_{1}}+\frac{k}{n_{2}}}}}{\sqrt{\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2} / k}{\sigma_{1}^{2}}} /\left(n_{1}+n_{2}-2\right)} \sim t\left(n_{1}+n_{2}-2\right)
$$

However, note that we can write T^{*} above as

$$
T^{*}=\frac{\left(\bar{Y}_{1+}-\bar{Y}_{2+}\right)-\left(\mu_{1}-\mu_{2}\right)}{S_{p}^{*} \sqrt{\frac{1}{n_{1}}+\frac{k}{n_{2}}}}
$$

where

$$
S_{p}^{*}=\sqrt{\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2} / k}{n_{1}+n_{2}-2}}
$$

(d) Pivoting off T^{*}, we can write

$$
1-\alpha=P\left(-t_{n_{1}+n_{2}-2, \alpha / 2}<\frac{\left(\bar{Y}_{1+}-\bar{Y}_{2+}\right)-\left(\mu_{1}-\mu_{2}\right)}{S_{p}^{*} \sqrt{\frac{1}{n_{1}}+\frac{k}{n_{2}}}}<t_{n_{1}+n_{2}-2, \alpha / 2}\right)
$$

After performing the usual algebra; i.e., to isolate $\mu_{1}-\mu_{2}$ in the center of the inequality, we conclude

$$
\left(\bar{Y}_{1+}-\bar{Y}_{2+}\right) \pm t_{n_{1}+n_{2}-2, \alpha / 2} S_{p}^{*} \sqrt{\frac{1}{n_{1}}+\frac{k}{n_{2}}}
$$

is a $100(1-\alpha) \%$ confidence interval for $\mu_{1}-\mu_{2}$.
(e) If $k=1$, then this is our "equal-variance" case, which was covered in the notes.
8.132. In this problem, $Y_{1}, Y_{2}, \ldots, Y_{n}$ is an iid sample from a power family population distribution with cumulative distribution function

$$
F_{Y}(y)=\left\{\begin{array}{cc}
0, & y<0 \\
\left(\frac{y}{\theta}\right)^{\alpha}, & 0 \leq y \leq \theta \\
1, & y>\theta
\end{array}\right.
$$

In this population model, α is assumed to be known (with $\alpha=c$) and $\theta>0$ is unknown. Our goal is to derive a $100(1-\alpha) \%$ confidence interval for θ.
(a) For $0 \leq y \leq \theta$, the cdf of the maximum order statistic $Y_{(n)}$ is

$$
\begin{aligned}
F_{Y_{(n)}}(y)=P\left(Y_{(n)} \leq y\right) & =P\left(Y_{1} \leq y, Y_{2} \leq y, \ldots, Y_{n} \leq y\right) \\
& =P\left(Y_{1} \leq y\right) P\left(Y_{2} \leq y\right) \cdots P\left(Y_{n} \leq y\right)=\left[F_{Y}(y)\right]^{n}=\left[\left(\frac{y}{\theta}\right)^{c}\right]^{n}=\left(\frac{y}{\theta}\right)^{n c} .
\end{aligned}
$$

Summarizing,

$$
F_{Y_{(n)}}(y)=\left\{\begin{array}{cc}
0, & y<0 \\
\left(\frac{y}{\theta}\right)^{n c}, & 0 \leq y \leq \theta \\
1, & y>\theta
\end{array}\right.
$$

(b) Define

$$
Q=\frac{Y_{(n)}}{\theta}
$$

Note that

$$
0 \leq y_{(n)} \leq \theta \Longleftrightarrow q=\frac{y_{(n)}}{\theta} \in[0,1]
$$

Therefore, the support of $Q=Y_{(n)} / \theta$ is

$$
R_{Q}=\{q: 0 \leq q \leq 1\} .
$$

For $0 \leq q \leq 1$, the cdf of Q is

$$
F_{Q}(q)=P(Q \leq q)=P\left(\frac{Y_{(n)}}{\theta} \leq q\right)=P\left(Y_{(n)} \leq \theta q\right)=F_{Y_{(n)}}(\theta q)=\left(\frac{\theta q}{\theta}\right)^{n c}=q^{n c}
$$

Summarizing,

$$
F_{Q}(q)=\left\{\begin{array}{cc}
0, & q<0 \\
q^{n c}, & 0 \leq q \leq 1 \\
1, & q>1
\end{array}\right.
$$

Because the distribution of Q (as described by its cdf) does not depend on any unknown population parameters, Q is a pivotal quantity. Note further that

$$
P(k<Q<1)=P\left(k<\frac{Y_{(n)}}{\theta}<1\right)=F_{Q}(1)-F_{Q}(k)=1-k^{n c} .
$$

(c) With $n=5$ and $c=2.4$, we have

$$
0.95 \stackrel{\text { set }}{=} P\left(k<\frac{Y_{(5)}}{\theta}<1\right)=1-k^{12} \quad \Longrightarrow \quad k^{12}=0.05 \quad \Longrightarrow \quad k=(0.05)^{1 / 12} \approx 0.779
$$

Therefore, we have

$$
\begin{aligned}
0.95=P\left(0.779<\frac{Y_{(5)}}{\theta}<1\right) & =P\left(\frac{1}{0.779}>\frac{\theta}{Y_{(5)}}>1\right) \\
& =P\left(\frac{Y_{(5)}}{0.779}>\theta>Y_{(5)}\right)=P\left(Y_{(5)}<\theta<\frac{Y_{(5)}}{0.779}\right) .
\end{aligned}
$$

This argument shows that

$$
\left(Y_{(5)}, \frac{Y_{(5)}}{0.779}\right)
$$

is a 95% confidence interval for θ.
8.134. Suppose $Y_{1}, Y_{2}, \ldots, Y_{n}$ is an iid sample from a $\mathcal{N}\left(\mu, \sigma^{2}\right)$ population distribution, where both parameters are unknown. We derived a $100(1-\alpha) \%$ confidence interval for μ by using the t distribution; in particular,

$$
\left(\bar{Y}-t_{n-1, \alpha / 2} \frac{S}{\sqrt{n}}, \bar{Y}+t_{n-1, \alpha / 2} \frac{S}{\sqrt{n}}\right)
$$

is a $100(1-\alpha) \%$ confidence interval for μ. The width of this interval (i.e., how long it is) is the upper endpoint minus the lower endpoint; i.e., the width W is

$$
W=\left(\bar{Y}+t_{n-1, \alpha / 2} \frac{S}{\sqrt{n}}\right)-\left(\bar{Y}-t_{n-1, \alpha / 2} \frac{S}{\sqrt{n}}\right)=2 t_{n-1, \alpha / 2} \frac{S}{\sqrt{n}}
$$

We want to calculate the expected width; i.e., $E(W)$. Note that

$$
E(W)=E\left(2 t_{n-1, \alpha / 2} \frac{S}{\sqrt{n}}\right)=\frac{2 t_{n-1, \alpha / 2}}{\sqrt{n}} E(S)
$$

where S is the sample standard deviation. In Problem 8.16 (HW6), we showed that S is a biased estimator of σ; in particular,

$$
E(S)=\left[\frac{\sqrt{2} \Gamma\left(\frac{n}{2}\right)}{\sqrt{n-1} \Gamma\left(\frac{n-1}{2}\right)}\right] \sigma
$$

Therefore, the expected width of the t confidence interval for μ is

$$
E(W)=\frac{2 t_{n-1, \alpha / 2}}{\sqrt{n}} E(S)=\frac{2 t_{n-1, \alpha / 2}}{\sqrt{n}}\left[\frac{\sqrt{2} \Gamma\left(\frac{n}{2}\right)}{\sqrt{n-1} \Gamma\left(\frac{n-1}{2}\right)}\right] \sigma=\left[\frac{2 \sqrt{2} t_{n-1, \alpha / 2} \Gamma\left(\frac{n}{2}\right)}{\sqrt{n(n-1)} \Gamma\left(\frac{n-1}{2}\right)}\right] \sigma
$$

For example, if $n=10$ and $\alpha=0.05$ (i.e., a 95% confidence interval), then

$$
E(W)=\left[\frac{2 \sqrt{2} t_{9,0.025} \Gamma(5)}{\sqrt{90} \Gamma(4.5)}\right] \sigma \approx 1.39 \sigma
$$

The constant above can be calculated in R :

```
> constant = 2*sqrt(2)*qt(0.975,9)*gamma(5)/(sqrt(90)*gamma(4.5))
> constant
[1] 1.391597
```

