STAT 512 HWS8 SOLUTIONS

9.1. In this problem, Y7, Y2, Y3 is an iid sample of size n = 3 from an exponential(#) population
distribution, where the population mean 6 > 0 is unknown. We first want to compute
V(os) _ V(Y)

eﬁ'(§1 to 55) = V(é\l) = V(Yi)

We have V(Y;) = 62, the population variance. Also,
— 6 p?

V(T)=— =

Therefore,
~ o~ V(YY) 6%/3 1
ff(01 to b)) = ——~ = —— = —.
In other words, the sample mean Y is 3 times more efficient than Y; as an estimator of . We
next want to find N -
Vi(bs)  V(Y)

V(b)) V(3 +Ya)

Note that 52 = %(Yl + Y3) is the sample mean based on only the first n = 2 observations.
Therefore,

eﬂ"(gg to 55) =

1% (;(Y1 + Y2)> = 922

~ 6%2/3 2
eﬁ(02t095):02§2:3

Therefore,

In other words, the sample mean Y is 1.5 times more efficient than 52 = %(Yl + Y3) as an
estimator of #. Finally, we want to find

- 0: Y
eff(eg to 05) = V(,\S) = 1 V( ) .
V(os) V(z(Y1+2Y2))
Let’s find the variance of 53 = %(Yl + 2Y3), a weighted average of Y7 and Y3. We have
1 1 1, ., 5. 562
Vv 5(3’1 +2Y3) ) = 9 [V (Y1) + 4V (Y2) + 2Cov(Y1,2Y2)] = 5(9 +40°) = 5

Therefore,
~ 62/3 3
ff(f3 to O5) = —— = —.
eff(05 to 05) 502/9 5
In other words, the sample mean Y is about 1.67 times more efficient than 53 = %(Yl +2Y5) as
an estimator of 6.

9.3. In this problem, Y1,Y5, ..., Y, is an iid sample from a U(6,6 + 1) population distribution,
where the parameter 6 is unknown. The population pdf is

1, 0<y<6+1
fr(y) = .
0, otherwise.

This pdf is shown at the top of the next page.
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PDF
1
|

(a) We now show
~ — 1
=Y ——
! 2
is an unbiased estimator of . The sample mean Y is always an unbiased estimator of the

population mean, here,

0+ (0+1) 1
2 + 2
Therefore,
_ 1 — 1
E(Y):9+§ = E(Y—2>:0.
To show
by =Yy — —°
S O |

is an unbiased estimator of ¢, we need to derive the pdf of Y(,,). Recall that in general,

P ) = nfy OB )"

where Fy (y) is the population cdf. We calculate

0, y<©¢
Fyyy=< y—0, 6<y<6+1
1, y>0+1.

Therefore, for § <y < 6 + 1, the pdf of the maximum order statistic Y(, is

P W) =n()(y = )" =n(y — )" .

Summarizing,

n(y—0)"t f<y<h+1
fY(n)( ) = .
0, otherwise.
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Let’s find E(Y(,)). We have

0-+1
E(Yp) = /R yhve, (W)dy = /9 ny(y — 0)"dy.

In the last integral, let

The limits change under this transformation; note y : 8 — 6 + 1 implies v : 0 — 1. Therefore,

0+1 1
E(Yn) = /9 ny(y — )" 'dy = /0 n(u+ 0)u" 'du

= n [/Ol(u” + HU”_I)du} =n

un+1 Gun
)
n—+1 n

n n
B(Yi) = +0 = E()’(n)—n+1> =

Therefore,

Therefore, both 6; =Y — 1/2 and 6, = Y(n) — n/(n + 1) are unbiased estimators of 6.

(b) Which point estimator is better? Let’s calculate the variances of each one and form the
efficiency; i.e.,
P ) V(Y — -2
eﬁ(el to 02) — V(??) — ( (l ?’L+1)

V(61) V(Y —3)

Note that

n n n 12n°

V(y_1> V) o _[(0+1)—0]?/12 _1/12 1

Also,

2
v (Yo~ 77 = V0o = B0 ~ (B0l = B0 - (5 +0)

Note that o1
E(Y}) = / Y 1Y (0)dy —/ ny?(y — 0)"'dy.
R 0

In the last integral, let
u=y—0 = du=dy.

The limits change under this transformation; note y : 6 — 6 + 1 implies v : 0 — 1. Therefore,
0+1 1
E(Y(i)) = /0 ny*(y — 0" ldy = /0 n(u+ 0)*u™ du
= n/l(u2 + 20u + 0*)u" "t du
01
— n/o (™ 4 20u™ + 02u" ) du

+ 62

= n

un+2 29un+1 02un
- +
n-+2 n—+1 n

n+2+n—{—1

1] B n 20n

0
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Therefore,

2(n+2)

2
B 2\ L 20n 2 ([ N _
V(}/(n))_EO/(n)) [E()/(n))] _n+2+n+1+9 <n+1+9> N (TlJrl)

Note that I did not show the algebra in the last step (about 6 lines worth). Finally, we have

a0 V(b)) VOV —@)  (+12n+2)  120°
eff(f; to 02) = V(é\l) = V- %J)r 1/12n RCESE )

I used R to calculate eff(§1 to 52) forn=2,3,...,15:

> n = seq(2,15,1)
> eff = 12%n"2/((n+1) "2x(n+2))
> cbind(n,eff)

n eff
[1,] 2 1.3333333
[2,] 3 1.3500000
[3,] 4 1.2800000
[4,] 5 1.1904762
[5,] 6 1.1020408
[6,] 7 1.0208333
[7,] 8 0.9481481
[8,] 9 0.8836364
[9,] 10 0.8264463
[10,] 11 0.7756410
[11,] 12 0.7303466
[12,] 13 0.6897959
[13,] 14 0.6533333
[14,] 15 0.6204044

Therefore, 6=Y —1 /2 is a more efficient estimator of § when n < 7. On the other hand,
02 = Yy — n/(n + 1) is more efficient when n > 8.

9.7. In this problem, Y7,Y5,...,Y,, is an iid sample of size n from an exponential(§) population
distribution, where the population mean 6 > 0 is unknown. We want to compare the following
estimators:

b = Y
6, = Y.

Note that both estimators are unbiased. Recall if Y7,Y5,...,Y,, are iid exponential(6), then
Y{1) ~ exponential(¢/n). Therefore,

E(6y) = E(nY(y)) = nE(Yy)) =n <z> =0.

Also, we know E(Y) = 6 because Y is always an unbiased estimator of the population mean.
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Which point estimator is better? Let’s calculate the variances of each one and form the effi-

ciency; i.e., R
s V(o) V(Y)
eff 91 to (92 = =~ = .
( ) V() V(nYw)
We know

Also, because Y(;) ~ exponential(f/n), we have

62
V(nYy) = n*V(Yy)) =n? <2> =6

n
Therefore, B
Vy) 0%/n 1

eff(6; to 02) = O =

This means the sample mean 79\2 =Y is n times more efficient than él =nY(y); L.e., Y is much
better!

9.37. In this problem, X3, Xo, ..., X, is an iid sample from a Bernoulli(p) population distribu-
tion, where 0 < p < 1 is unknown. The population pmf is

11—z

(zlp) p*l—p) " =01
€T =
pxirip 0, otherwise.

We will use the Factorization Theorem to show T = T'(X1, X», ..., X,,) = > | X, is a sufficient
statistic. The likelihood function is

L(plx) = [[ px(@ilp) = px(a1lp) x px(zalp) X -+ X px (nlp)
=1

= pl’1(1 —p)l—xl X pr(l _p)l—xQ N pxn(l _p)l—xn
pZ?:1 i (1 — p)”_Z?ﬂ T

Note that we can write the likelihood function as

" n PILE
L(plx) = p=1 % (1 = p)" i1 % = <1€p> (I—p)" x 1 :

h(z1,22,...,2n)

g(tp)

where ¢ = )" | x;. By the Factorization Theorem, it follows that T =Y | X; is a sufficient
statistic for p.

9.38. In this problem, Y1,Y5, ..., Y, is an iid sample from a N'(u,c?) population distribution.
The likelihood function is

L(,ua 02|Y) = fY(y1|,u7 02) X fY(y2|,u7 02) XX fY(yn|M70'2)
_o e L e L e

e
V2mo? V2mo? V2mo?

_ < 1 )ne—Q;QZ?_l(yi—u)Q.
V2mo?
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(a) If 02 is known, then there is only 1 unknown parameter, namely, the population mean .
The likelihood function is

n
1 — L Y (yi—n)?
Lply) = e 270~ :
\/27‘(’0’%
Note that I have adopted the notation o2 = ag to emphasize the population variance o? is

known. Now, write

n n

n n
Y= 2y i) =) i - 2u )i H
=1 =1

i=1 =1

Therefore,

n
1 — 502 (X0 vf =20 300 it
Liply) = ( ) . 253(2 VYE 20 yitnp?)

\/ 27ra(2)
2

n
__l_§ywmoo2 poNtn o, np
_ ( 1 ) e 20(2) Zz:lyzeag Zz:lyze 20(2)

\/ 2%08

2 n
oSy D 1 LT
2 =1Y 2 2 =1Y
= e T e 0 x ( ) e 0T

\/ 271'0'3

h(y1,92,--,yn)

g(t,p)

where t = Y | y;. By the Factorization Theorem, it follows that 7" = )", Y; is a sufficient
statistic for u (when o2 = 03 is known).

Note: Because

Y =

" T

is a 1:1 function of T (i.e., it is a linear function of T'), then Y is also a sufficient statistic (when

0? = 03 is known).

S|

(b) If u is known, then there is only 1 unknown parameter, namely, the population variance
o2. The likelihood function is

1 " N S n L
L(02|y): <W> e LY (i o)?

Note that I have adopted the notation u = pg to emphasize the population mean p is known.
Note we can write

1 " 1 n ) 2
L(02|Y) = < > e 202 > i1 (yi—po) % 1 ,
> ——
\/ﬁ h(y17y27--~7yn)

g(t,0?)

where t = > (y; — po)?. By the Factorization Theorem, it follows that T = Y"1 | (Y; — uo)?
is a sufficient statistic for 02 (when p = jg is known).
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(c) Now, we assume both parameters ;1 and o2 are unknown. The likelihood function is

1 " __1_ s N2
L(M7 0'2’y) — (W) e 202 Zz:l(yl p‘)
1 n 1 n 2 Y n n,u2
= F— e 202 > yieaﬁ Dy yie_ﬁ « 1 ’
V2ro? NI
h(yl’y27“'7yn)

g(tl,t2,/},,0’2)

where t; = Y. y; and to = >.I'; y2. By the Factorization Theorem (the multiparameter
version), it follows that

n

DY

i=1

n
G
=1

T =

is a sufficient statistic for @ = (u, o).
Note: The statistics Y and S? (viewed together) are 1:1 functions of > 1 | Y; and > & | V2.
Note that we can write

n

1 — 1 - —2

i=1 i=1

In other words, if I know Y7 ; V; and Y ; V%, then I can calculate Y and S? (and vice versa).
Therefore,

is also a sufficient statistic for @ = (u, 0?).

9.41. In this problem, Y7,Y5, ..., Y, is an iid sample from a Weibull(m, «) population distribu-
tion, where m is known and « > 0 is unknown. The population pdf is
Tymflefym/a, y>0
fr(yle) = ¢ @
0, otherwise.

We will use the Factorization Theorem to show T = T'(Y1,Ys,...,Y,) = > i, Y/ is a sufficient
statistic. The likelihood function is

Lialy) = [[frwile) = fr(la) x fr(yala) x - x fy(ynle)
=1

m 1 _.m m 1 _,m m 1 _.m
= =y 1, yl/axiygn 1o yz/ax...xfyrfln Lo—yg/ex
(6% (6%

) (i)
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Note that we can write the likelihood function as

m—1
Lay) = (2) ez (m) ,
i=1

g(t.a)

h(y1,42,-yn)

where t = Y, y". By the Factorization Theorem, it follows that T'=>"" ;| ¥, is a sufficient
statistic for . Note that this is only true when m is known (which we were told to assume). If
m is unknown, then 7= >"7" | Y/ is not even a statistic.

9.42. In this problem, Y1, Y3, ..., Y,, is an iid sample from a geometric(p) population distribution,
where 0 < p < 1 is unknown. The population pmf is

(1—p)¥lp, y=1,2,3,..
0, otherwise.

py(ylp) = {

We will use the Factorization Theorem to show T' = T'(Y1,Y5,...,Y,) = > | Y; is a sufficient
statistic. The likelihood function is

Liply) = [[pv(wilp) = py(nlp) x py (v2lp) x - X py (yalp)
=1

= 1-p¥ lpxQ-p»lpx---xQ-p¥~lp =(1 _p)Z?:l yimngn

Note that we can write the likelihood function as

= — 2?21 Yi—n,n
L(ply) (1-p) D X 1 ,
g(t,p) h(y1,92;-sYn)

where ¢t = " | y;. By the Factorization Theorem, it follows that 7' = Y"1 | Y; is a sufficient
statistic for p.

9.44. In this problem, Y7, Ys, ..., Y}, is an iid sample from a Pareto(«, ) population distribution,
where  is known and « is unknown. The population pdf is

(6%
%a Y Z B
fr(yla)=< ¥
0, otherwise.

Note that if § is known (an assumption), then there is only 1 population parameter; i.e., a.
We will use the Factorization Theorem to show T' = T'(Y1,Ys,...,Y,) = [[I, Y; is a sufficient
statistic. The likelihood function is

Lialy) = [[ frwile) = fr(yila) x fr(yela) x - X fy(yal)
i=1

_of B aft (@) (aB)
yo Tt et ya ettt ([T )
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Note that we can write the likelihood function as

(alBa)n (aﬁa)n 1
L(aly) = Y ari — Trm o aa X n )
(H?:l Yi) i (Hi:l yz‘) Hi:1 Yi
g(t,a) h(y1,92,--yn)

where t =[], y;. By the Factorization Theorem, it follows that 7" = [[;" ;Y is a sufficient
statistic for a.

9.50. In this problem, Y7,Y5,..., Y, is an iid sample from a U(6,62) population distribution,
where both population parameters #; and 6. The population pdf is
1
——, h <y<b
fr(ylo1,02) = ¢ 02— 0

0, otherwise.
This pdf is shown at the top of the next page. Because the U(61,02) pdf is nonzero only when
01 <y < 0y, let’s write

1
(01 <y < 6y),

01,00) = — 1
fY(y’ 1, 2) 02_01 >~

where I(+) is the indicator function; i.e.,

1, 61 <y<bs

0, otherwise.

1(91<y<92)={

The likelihood function is given by

n

L(61,62ly) = ] /v (wil61,62)

=1
= fy(y1]01,02) x fy (y2]01,02) x --- X fy (yn|61,02)

1 1 1
= 101 <y1 <46 I <ys <0 10, <y,<8
0y — 0, (1,y1f2)><62_91 (01 < yo < 62) X X92_91 (01 <yn < 62)
1 \" £
() Hresuso
A sufficient statistic is “hiding” in the
[1160 <wi <62)
=1
term. To see why, note that
HI(91 <y <by)=1 <= I(6; < Y1)y < Yn) < 6y) =1.
i=1
Therefore, we can write the likelihood function as
1 n
L(61,62ly) = <92 — 91> 161 < yqy < ym) < 02)
1 n
= <92 — 91> 1(91 < Yy < ¥Ym) < 92) X 1 ,
h(y1,92,--yn)

g(t1,t2,01,62)
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PDF

1/(6,-8,)

where t; = y(1) and t2 = y(,). By the Factorization Theorem (the multiparameter version), it
follows that

is a sufficient statistic for 8 = (01, 62).

9.54. In this problem, Y7, Y5, ..., Y, is an iid sample from a power family population distribution,
where both population parameters oo > 0 and 6 > 0 are unknown. The population pdf is

aya—l
— . 0<y<#0
fryla,0) =3 "9 =V=
0, otherwise.

Because fy (y|a, 6) is nonzero only when 0 < y < 6, let’s write

a a—1
fr(yla,0) = 2~ 10 < y <),
where
1, 0<y<4@
[0<y<6)= .
0, otherwise.

The likelihood function is given by

L(a’ 9’}’) = H fY(yi|a’ 9)
i=1

= Fr ()0, 6) X fy(ylas8) X - X fy (ynlv, 6)
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Note that

[[T0<yi<6) = T0<ym, <o) =1
=1

Therefore, we can write the likelihood function as

n a—1
L(a,0ly) = <%>n (H%) I(0 < ym) < 0)
=1

n a—1
_ (%)" (1_[1y> I0<ym<6) x 1

h(y1,y2,-Yn)

g(tl ,t2 70679)

where t; = [, y; and t3 = Y(n)- By the Factorization Theorem (the multiparameter version),

it follows that .
po | 1I%
i=1

Yin)

is a sufficient statistic for 8 = («, ).
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