
STAT 512 HW8 SOLUTIONS

9.1. In this problem, Y1, Y2, Y3 is an iid sample of size n = 3 from an exponential(θ) population
distribution, where the population mean θ > 0 is unknown. We first want to compute

eff(θ̂1 to θ̂5) =
V (θ̂5)

V (θ̂1)
=
V (Y )

V (Y1)
.

We have V (Y1) = θ2, the population variance. Also,

V (Y ) =
θ2

n
=
θ2

3
.

Therefore,

eff(θ̂1 to θ̂5) =
V (Y )

V (Y1)
=
θ2/3

θ2
=

1

3
.

In other words, the sample mean Y is 3 times more efficient than Y1 as an estimator of θ. We
next want to find

eff(θ̂2 to θ̂5) =
V (θ̂5)

V (θ̂2)
=

V (Y )

V (12(Y1 + Y2))
.

Note that θ̂2 = 1
2(Y1 + Y2) is the sample mean based on only the first n = 2 observations.

Therefore,

V

(
1

2
(Y1 + Y2)

)
=
θ2

2
.

Therefore,

eff(θ̂2 to θ̂5) =
θ2/3

θ2/2
=

2

3
.

In other words, the sample mean Y is 1.5 times more efficient than θ̂2 = 1
2(Y1 + Y2) as an

estimator of θ. Finally, we want to find

eff(θ̂3 to θ̂5) =
V (θ̂5)

V (θ̂3)
=

V (Y )

V (13(Y1 + 2Y2))
.

Let’s find the variance of θ̂3 = 1
3(Y1 + 2Y2), a weighted average of Y1 and Y2. We have

V

(
1

3
(Y1 + 2Y2)

)
=

1

9
[V (Y1) + 4V (Y2) + 2Cov(Y1, 2Y2)] =

1

9
(θ2 + 4θ2) =

5θ2

9
.

Therefore,

eff(θ̂3 to θ̂5) =
θ2/3

5θ2/9
=

3

5
.

In other words, the sample mean Y is about 1.67 times more efficient than θ̂3 = 1
3(Y1 + 2Y2) as

an estimator of θ.

9.3. In this problem, Y1, Y2, ..., Yn is an iid sample from a U(θ, θ + 1) population distribution,
where the parameter θ is unknown. The population pdf is

fY (y) =

{
1, θ < y < θ + 1

0, otherwise.

This pdf is shown at the top of the next page.
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(a) We now show

θ̂1 = Y − 1

2

is an unbiased estimator of θ. The sample mean Y is always an unbiased estimator of the
population mean, here,

µ =
θ + (θ + 1)

2
= θ +

1

2
.

Therefore,

E(Y ) = θ +
1

2
=⇒ E

(
Y − 1

2

)
= θ.

To show
θ̂2 = Y(n) −

n

n+ 1

is an unbiased estimator of θ, we need to derive the pdf of Y(n). Recall that in general,

fY(n)(y) = nfY (y)[FY (y)]n−1,

where FY (y) is the population cdf. We calculate

FY (y) =


0, y ≤ θ

y − θ, θ < y < θ + 1

1, y ≥ θ + 1.

Therefore, for θ < y < θ + 1, the pdf of the maximum order statistic Y(n) is

fY(n)(y) = n(1)(y − θ)n−1 = n(y − θ)n−1.

Summarizing,

fY(n)(y) =

{
n(y − θ)n−1, θ < y < θ + 1

0, otherwise.
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Let’s find E(Y(n)). We have

E(Y(n)) =

∫
R
yfY(n)(y)dy =

∫ θ+1

θ
ny(y − θ)n−1dy.

In the last integral, let
u = y − θ =⇒ du = dy.

The limits change under this transformation; note y : θ → θ + 1 implies u : 0→ 1. Therefore,

E(Y(n)) =

∫ θ+1

θ
ny(y − θ)n−1dy =

∫ 1

0
n(u+ θ)un−1du

= n

[∫ 1

0
(un + θun−1)du

]
= n

[(
un+1

n+ 1
+
θun

n

)∣∣∣∣1
0

]
=

n

n+ 1
+ θ.

Therefore,

E(Y(n)) =
n

n+ 1
+ θ =⇒ E

(
Y(n) −

n

n+ 1

)
= θ.

Therefore, both θ̂1 = Y − 1/2 and θ̂2 = Y(n) − n/(n+ 1) are unbiased estimators of θ.

(b) Which point estimator is better? Let’s calculate the variances of each one and form the
efficiency; i.e.,

eff(θ̂1 to θ̂2) =
V (θ̂2)

V (θ̂1)
=
V (Y(n) − n

n+1)

V (Y − 1
2)

.

Note that

V

(
Y − 1

2

)
= V (Y ) =

σ2

n
=

[(θ + 1)− θ]2/12

n
=

1/12

n
=

1

12n
.

Also,

V

(
Y(n) −

n

n+ 1

)
= V (Y(n)) = E(Y 2

(n))− [E(Y(n))]
2 = E(Y 2

(n))−
(

n

n+ 1
+ θ

)2

.

Note that

E(Y 2
(n)) =

∫
R
y2fY(n)(y)dy =

∫ θ+1

θ
ny2(y − θ)n−1dy.

In the last integral, let
u = y − θ =⇒ du = dy.

The limits change under this transformation; note y : θ → θ + 1 implies u : 0→ 1. Therefore,

E(Y 2
(n)) =

∫ θ+1

θ
ny2(y − θ)n−1dy =

∫ 1

0
n(u+ θ)2un−1du

= n

∫ 1

0
(u2 + 2θu+ θ2)un−1du

= n

∫ 1

0
(un+1 + 2θun + θ2un−1)du

= n

[(
un+2

n+ 2
+

2θun+1

n+ 1
+
θ2un

n

)∣∣∣∣1
0

]
=

n

n+ 2
+

2θn

n+ 1
+ θ2.
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Therefore,

V (Y(n)) = E(Y 2
(n))− [E(Y(n))]

2 =
n

n+ 2
+

2θn

n+ 1
+ θ2 −

(
n

n+ 1
+ θ

)2

=
n

(n+ 1)2(n+ 2)
.

Note that I did not show the algebra in the last step (about 6 lines worth). Finally, we have

eff(θ̂1 to θ̂2) =
V (θ̂2)

V (θ̂1)
=
V (Y(n) − n

n+1)

V (Y − 1
2)

=

n

(n+ 1)2(n+ 2)

1/12n
=

12n2

(n+ 1)2(n+ 2)
.

I used R to calculate eff(θ̂1 to θ̂2) for n = 2, 3, ..., 15:

> n = seq(2,15,1)

> eff = 12*n^2/((n+1)^2*(n+2))

> cbind(n,eff)

n eff

[1,] 2 1.3333333

[2,] 3 1.3500000

[3,] 4 1.2800000

[4,] 5 1.1904762

[5,] 6 1.1020408

[6,] 7 1.0208333

[7,] 8 0.9481481

[8,] 9 0.8836364

[9,] 10 0.8264463

[10,] 11 0.7756410

[11,] 12 0.7303466

[12,] 13 0.6897959

[13,] 14 0.6533333

[14,] 15 0.6204044

Therefore, θ̂1 = Y − 1/2 is a more efficient estimator of θ when n ≤ 7. On the other hand,
θ̂2 = Y(n) − n/(n+ 1) is more efficient when n ≥ 8.

9.7. In this problem, Y1, Y2, ..., Yn is an iid sample of size n from an exponential(θ) population
distribution, where the population mean θ > 0 is unknown. We want to compare the following
estimators:

θ̂1 = nY(1)

θ̂2 = Y .

Note that both estimators are unbiased. Recall if Y1, Y2, ..., Yn are iid exponential(θ), then
Y(1) ∼ exponential(θ/n). Therefore,

E(θ̂1) = E(nY(1)) = nE(Y(1)) = n

(
θ

n

)
= θ.

Also, we know E(Y ) = θ because Y is always an unbiased estimator of the population mean.

PAGE 4



STAT 512 HW8 SOLUTIONS

Which point estimator is better? Let’s calculate the variances of each one and form the effi-
ciency; i.e.,

eff(θ̂1 to θ̂2) =
V (θ̂2)

V (θ̂1)
=

V (Y )

V (nY(1))
.

We know

V (Y ) =
θ2

n
.

Also, because Y(1) ∼ exponential(θ/n), we have

V (nY(1)) = n2V (Y(1)) = n2
(
θ2

n2

)
= θ2.

Therefore,

eff(θ̂1 to θ̂2) =
V (Y )

V (nY(1))
=
θ2/n

θ2
=

1

n
.

This means the sample mean θ̂2 = Y is n times more efficient than θ̂1 = nY(1); i.e., Y is much
better!

9.37. In this problem, X1, X2, ..., Xn is an iid sample from a Bernoulli(p) population distribu-
tion, where 0 < p < 1 is unknown. The population pmf is

pX(x|p) =

{
px(1− p)1−x, x = 0, 1

0, otherwise.

We will use the Factorization Theorem to show T = T (X1, X2, ..., Xn) =
∑n

i=1Xi is a sufficient
statistic. The likelihood function is

L(p|x) =
n∏
i=1

pX(xi|p) = pX(x1|p)× pX(x2|p)× · · · × pX(xn|p)

= px1(1− p)1−x1 × px2(1− p)1−x2 × · · · × pxn(1− p)1−xn

= p
∑n
i=1 xi(1− p)n−

∑n
i=1 xi .

Note that we can write the likelihood function as

L(p|x) = p
∑n
i=1 xi(1− p)n−

∑n
i=1 xi =

(
p

1− p

)∑n
i=1 xi

(1− p)n︸ ︷︷ ︸
g(t,p)

× 1︸ ︷︷ ︸
h(x1,x2,...,xn)

,

where t =
∑n

i=1 xi. By the Factorization Theorem, it follows that T =
∑n

i=1Xi is a sufficient
statistic for p.

9.38. In this problem, Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2) population distribution.
The likelihood function is

L(µ, σ2|y) = fY (y1|µ, σ2)× fY (y2|µ, σ2)× · · · × fY (yn|µ, σ2)

=
1√

2πσ2
e−

1
2σ2

(y1−µ)2 × 1√
2πσ2

e−
1

2σ2
(y2−µ)2 × · · · × 1√

2πσ2
e−

1
2σ2

(yn−µ)2

=

(
1√

2πσ2

)n
e−

1
2σ2

∑n
i=1(yi−µ)2 .
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(a) If σ2 is known, then there is only 1 unknown parameter, namely, the population mean µ.
The likelihood function is

L(µ|y) =

(
1√

2πσ20

)n
e
− 1

2σ20

∑n
i=1(yi−µ)2

.

Note that I have adopted the notation σ2 = σ20 to emphasize the population variance σ2 is
known. Now, write

n∑
i=1

(yi − µ)2 =
n∑
i=1

(y2i − 2µyi + µ2) =
n∑
i=1

y2i − 2µ
n∑
i=1

yi + nµ2.

Therefore,

L(µ|y) =

(
1√

2πσ20

)n
e
− 1

2σ20
(
∑n
i=1 y

2
i−2µ

∑n
i=1 yi+nµ

2)

=

(
1√

2πσ20

)n
e
− 1

2σ20

∑n
i=1 y

2
i
e
µ

σ20

∑n
i=1 yi

e
−nµ2

2σ20

= e
µ

σ20

∑n
i=1 yi

e
−nµ2

2σ20︸ ︷︷ ︸
g(t,µ)

×

(
1√

2πσ20

)n
e
− 1

2σ20

∑n
i=1 y

2
i

︸ ︷︷ ︸
h(y1,y2,...,yn)

,

where t =
∑n

i=1 yi. By the Factorization Theorem, it follows that T =
∑n

i=1 Yi is a sufficient
statistic for µ (when σ2 = σ20 is known).

Note: Because

Y =
1

n

n∑
i=1

Yi =
T

n

is a 1:1 function of T (i.e., it is a linear function of T ), then Y is also a sufficient statistic (when
σ2 = σ20 is known).

(b) If µ is known, then there is only 1 unknown parameter, namely, the population variance
σ2. The likelihood function is

L(σ2|y) =

(
1√

2πσ2

)n
e−

1
2σ2

∑n
i=1(yi−µ0)2 .

Note that I have adopted the notation µ = µ0 to emphasize the population mean µ is known.
Note we can write

L(σ2|y) =

(
1√

2πσ2

)n
e−

1
2σ2

∑n
i=1(yi−µ0)2︸ ︷︷ ︸

g(t,σ2)

× 1︸ ︷︷ ︸
h(y1,y2,...,yn)

,

where t =
∑n

i=1(yi − µ0)2. By the Factorization Theorem, it follows that T =
∑n

i=1(Yi − µ0)2
is a sufficient statistic for σ2 (when µ = µ0 is known).
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(c) Now, we assume both parameters µ and σ2 are unknown. The likelihood function is

L(µ, σ2|y) =

(
1√

2πσ2

)n
e−

1
2σ2

∑n
i=1(yi−µ)2

=

(
1√

2πσ2

)n
e−

1
2σ2

∑n
i=1 y

2
i e

µ

σ2

∑n
i=1 yie−

nµ2

2σ2︸ ︷︷ ︸
g(t1,t2,µ,σ2)

× 1︸ ︷︷ ︸
h(y1,y2,...,yn)

,

where t1 =
∑n

i=1 yi and t2 =
∑n

i=1 y
2
i . By the Factorization Theorem (the multiparameter

version), it follows that

T =


n∑
i=1

Yi

n∑
i=1

Y 2
i


is a sufficient statistic for θ = (µ, σ2).

Note: The statistics Y and S2 (viewed together) are 1:1 functions of
∑n

i=1 Yi and
∑n

i=1 Y
2
i .

Note that we can write

S2 =
1

n− 1

n∑
i=1

(Yi − Y )2 =
1

n− 1

(
n∑
i=1

Y 2
i − nY

2

)
.

In other words, if I know
∑n

i=1 Yi and
∑n

i=1 Y
2
i , then I can calculate Y and S2 (and vice versa).

Therefore,

T =

(
Y

S2

)
is also a sufficient statistic for θ = (µ, σ2).

9.41. In this problem, Y1, Y2, ..., Yn is an iid sample from a Weibull(m,α) population distribu-
tion, where m is known and α > 0 is unknown. The population pdf is

fY (y|α) =


m

α
ym−1e−y

m/α, y > 0

0, otherwise.

We will use the Factorization Theorem to show T = T (Y1, Y2, ..., Yn) =
∑n

i=1 Y
m
i is a sufficient

statistic. The likelihood function is

L(α|y) =

n∏
i=1

fY (yi|α) = fY (y1|α)× fY (y2|α)× · · · × fY (yn|α)

=
m

α
ym−1
1 e−y

m
1 /α × m

α
ym−1
2 e−y

m
2 /α × · · · × m

α
ym−1
n e−y

m
n /α

=
(m
α

)n( n∏
i=1

yi

)m−1

e−
∑n
i=1 y

m
i /α.
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Note that we can write the likelihood function as

L(α|y) =
(m
α

)n
e−

∑n
i=1 y

m
i /α︸ ︷︷ ︸

g(t,α)

×

(
n∏
i=1

yi

)m−1

︸ ︷︷ ︸
h(y1,y2,...,yn)

,

where t =
∑n

i=1 y
m
i . By the Factorization Theorem, it follows that T =

∑n
i=1 Y

m
i is a sufficient

statistic for α. Note that this is only true when m is known (which we were told to assume). If
m is unknown, then T =

∑n
i=1 Y

m
i is not even a statistic.

9.42. In this problem, Y1, Y2, ..., Yn is an iid sample from a geometric(p) population distribution,
where 0 < p < 1 is unknown. The population pmf is

pY (y|p) =

{
(1− p)y−1p, y = 1, 2, 3, ...

0, otherwise.

We will use the Factorization Theorem to show T = T (Y1, Y2, ..., Yn) =
∑n

i=1 Yi is a sufficient
statistic. The likelihood function is

L(p|y) =

n∏
i=1

pY (yi|p) = pY (y1|p)× pY (y2|p)× · · · × pY (yn|p)

= (1− p)y1−1p× (1− p)y2−1p× · · · × (1− p)yn−1p = (1− p)
∑n
i=1 yi−npn.

Note that we can write the likelihood function as

L(p|y) = (1− p)
∑n
i=1 yi−npn︸ ︷︷ ︸

g(t,p)

× 1︸ ︷︷ ︸
h(y1,y2,...,yn)

,

where t =
∑n

i=1 yi. By the Factorization Theorem, it follows that T =
∑n

i=1 Yi is a sufficient
statistic for p.

9.44. In this problem, Y1, Y2, ..., Yn is an iid sample from a Pareto(α, β) population distribution,
where β is known and α is unknown. The population pdf is

fY (y|α) =


αβα

yα+1
, y ≥ β

0, otherwise.

Note that if β is known (an assumption), then there is only 1 population parameter; i.e., α.
We will use the Factorization Theorem to show T = T (Y1, Y2, ..., Yn) =

∏n
i=1 Yi is a sufficient

statistic. The likelihood function is

L(α|y) =
n∏
i=1

fY (yi|α) = fY (y1|α)× fY (y2|α)× · · · × fY (yn|α)

=
αβα

yα+1
1

× αβα

yα+1
2

× · · · × αβα

yα+1
n

=
(αβα)n

yα+1
1 yα+1

2 · · · yα+1
n

=
(αβα)n

(
∏n
i=1 yi)

α+1 .
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Note that we can write the likelihood function as

L(α|y) =
(αβα)n

(
∏n
i=1 yi)

α+1 =
(αβα)n

(
∏n
i=1 yi)

α︸ ︷︷ ︸
g(t,α)

× 1∏n
i=1 yi︸ ︷︷ ︸

h(y1,y2,...,yn)

,

where t =
∏n
i=1 yi. By the Factorization Theorem, it follows that T =

∏n
i=1 Yi is a sufficient

statistic for α.

9.50. In this problem, Y1, Y2, ..., Yn is an iid sample from a U(θ1, θ2) population distribution,
where both population parameters θ1 and θ2. The population pdf is

fY (y|θ1, θ2) =


1

θ2 − θ1
, θ1 ≤ y ≤ θ2

0, otherwise.

This pdf is shown at the top of the next page. Because the U(θ1, θ2) pdf is nonzero only when
θ1 ≤ y ≤ θ2, let’s write

fY (y|θ1, θ2) =
1

θ2 − θ1
I(θ1 ≤ y ≤ θ2),

where I(·) is the indicator function; i.e.,

I(θ1 ≤ y ≤ θ2) =

{
1, θ1 ≤ y ≤ θ2
0, otherwise.

The likelihood function is given by

L(θ1, θ2|y) =
n∏
i=1

fY (yi|θ1, θ2)

= fY (y1|θ1, θ2)× fY (y2|θ1, θ2)× · · · × fY (yn|θ1, θ2)

=
1

θ2 − θ1
I(θ1 ≤ y1 ≤ θ2)×

1

θ2 − θ1
I(θ1 ≤ y2 ≤ θ2)× · · · ×

1

θ2 − θ1
I(θ1 ≤ yn ≤ θ2)

=

(
1

θ2 − θ1

)n n∏
i=1

I(θ1 ≤ yi ≤ θ2).

A sufficient statistic is “hiding” in the

n∏
i=1

I(θ1 ≤ yi ≤ θ2)

term. To see why, note that

n∏
i=1

I(θ1 ≤ yi ≤ θ2) = 1 ⇐⇒ I(θ1 ≤ y(1) < y(n) ≤ θ2) = 1.

Therefore, we can write the likelihood function as

L(θ1, θ2|y) =

(
1

θ2 − θ1

)n
I(θ1 ≤ y(1) < y(n) ≤ θ2)

=

(
1

θ2 − θ1

)n
I(θ1 ≤ y(1) < y(n) ≤ θ2)︸ ︷︷ ︸
g(t1,t2,θ1,θ2)

× 1︸ ︷︷ ︸
h(y1,y2,...,yn)

,
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y

P
D

F

0 θ1 θ2

0
1

(θ
2

−
θ 1

)

where t1 = y(1) and t2 = y(n). By the Factorization Theorem (the multiparameter version), it
follows that

T =

(
Y(1)
Y(n)

)
is a sufficient statistic for θ = (θ1, θ2).

9.54. In this problem, Y1, Y2, ..., Yn is an iid sample from a power family population distribution,
where both population parameters α > 0 and θ > 0 are unknown. The population pdf is

fY (y|α, θ) =


αyα−1

θα
, 0 ≤ y ≤ θ

0, otherwise.

Because fY (y|α, θ) is nonzero only when 0 ≤ y ≤ θ, let’s write

fY (y|α, θ) =
αyα−1

θα
I(0 ≤ y ≤ θ),

where

I(0 ≤ y ≤ θ) =

{
1, 0 ≤ y ≤ θ
0, otherwise.

The likelihood function is given by

L(α, θ|y) =

n∏
i=1

fY (yi|α, θ)

= fY (y1|α, θ)× fY (y2|α, θ)× · · · × fY (yn|α, θ)

=
αyα−1

1

θα
I(0 ≤ y1 ≤ θ)×

αyα−1
2

θα
I(0 ≤ y2 ≤ θ)× · · · ×

αyα−1
n

θα
I(0 ≤ yn ≤ θ)

=
( α
θα

)n (
n∏
i=1

yi

)α−1 n∏
i=1

I(0 ≤ yi ≤ θ).
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Note that
n∏
i=1

I(0 ≤ yi ≤ θ) ⇐⇒ I(0 ≤ y(n) ≤ θ) = 1.

Therefore, we can write the likelihood function as

L(α, θ|y) =
( α
θα

)n (
n∏
i=1

yi

)α−1

I(0 ≤ y(n) ≤ θ)

=
( α
θα

)n (
n∏
i=1

yi

)α−1

I(0 ≤ y(n) ≤ θ)︸ ︷︷ ︸
g(t1,t2,α,θ)

× 1︸ ︷︷ ︸
h(y1,y2,...,yn)

,

where t1 =
∏n
i=1 yi and t2 = y(n). By the Factorization Theorem (the multiparameter version),

it follows that

T =


n∏
i=1

Yi

Y(n)


is a sufficient statistic for θ = (α, θ).
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