
STAT 512 HW9 SOLUTIONS

9.56. In this problem, Y1, Y2, ..., Yn are iid N (µ0, σ
2), where µ = µ0 is known and σ2 > 0

is unknown. We want find the MVUE for σ2. We start by finding a sufficient statistic. The
likelihood function is

L(σ2|y) = fY (y1|σ2)× fY (y2|σ2)× · · · × fY (yn|σ2)

=
1√

2πσ2
e−

1
2σ2

(y1−µ0)2 × 1√
2πσ2

e−
1

2σ2
(y2−µ0)2 × · · · × 1√

2πσ2
e−

1
2σ2

(yn−µ0)2

=

(
1√

2πσ2

)n
e−

1
2σ2

∑n
i=1(yi−µ0)2 .

Note we can write

L(σ2|y) =

(
1√

2πσ2

)n
e−

1
2σ2

∑n
i=1(yi−µ0)2︸ ︷︷ ︸

g(t,σ2)

× 1︸ ︷︷ ︸
h(y1,y2,...,yn)

,

where t =
∑n

i=1(yi − µ0)2. By the Factorization Theorem, it follows that

T =
n∑
i=1

(Yi − µ0)2

is a sufficient statistic for σ2 (when µ = µ0 is known). From the Rao-Blackwell Theorem, we
know the MVUE of σ2 must be a function of T . Therefore, let’s calculate the expectation of
T . We have

E(T ) = E

[
n∑
i=1

(Yi − µ0)2
]

=
n∑
i=1

E[(Yi − µ0)2] =
n∑
i=1

σ2 = nσ2.

Recall σ2 = V (Y ) = E[(Y −µ0)2]; i.e., this is the definition of the variance of a random variable
Y . Therefore,

E(T ) = nσ2 =⇒ E

(
T

n

)
= σ2.

Therefore,

T

n
=

1

n

n∑
i=1

(Yi − µ0)2

is the MVUE of σ2. It is a function of a sufficient statistic T =
∑n

i=1(Yi−µ0)2 and it is unbiased.

9.59. In this problem, Y1, Y2, ..., Yn is an iid sample from a Poisson(λ) population distribution
where λ > 0 is unknown. We want to find the MVUE of

E(C) = E(3Y 2) = 3E(Y 2) = 3{V (Y ) + [E(Y )]2} = 3(λ+ λ2).

We start by finding a sufficient statistic. The likelihood function is given by

L(λ|y) = pY (y1|λ)× pY (y2|λ)× · · · × pY (yn|λ)

=
λy1e−λ

y1!
× λy2e−λ

y2!
× · · · × λyne−λ

yn!
=

λ
∑n
i=1 yie−nλ

y1!y2! · · · yn!
=
λ
∑n
i=1 yie−nλ∏n
i=1 yi!

.
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Note that we can write the likelihood function as

L(λ|y) =
λ
∑n
i=1 yie−nλ∏n
i=1 yi!

= λ
∑n
i=1 yie−nλ︸ ︷︷ ︸
g(t,λ)

× 1∏n
i=1 yi!︸ ︷︷ ︸

h(y1,y2,...,yn)

,

where t =
∑n

i=1 yi. By the Factorization Theorem, it follows that T =
∑n

i=1 Yi is a sufficient
statistic for λ. From the Rao-Blackwell Theorem, we know the MVUE of E(C) = 3(λ + λ2)
must be a function of T . We know

E(T ) = E

(
n∑
i=1

Yi

)
=

n∑
i=1

E(Yi) =
n∑
i=1

λ = nλ.

Therefore,

E(Y ) = E

(
T

n

)
= λ.

We also need to estimate λ2 unbiasedly. Let’s try Y
2
. Note that

E(Y
2
) = V (Y ) + [E(Y )]2 =

λ

n
+ λ2.

Therefore, Y
2

is a biased estimator of λ2. However, note that

E(Y
2
) =

λ

n
+ λ2 =⇒ E

(
Y

2 − Y

n

)
=
λ

n
+ λ2 − λ

n
= λ2.

Therefore, Y
2 − Y

n is an unbiased estimator of λ2. Therefore,

E

[
3

(
Y + Y

2 − Y

n

)]
= 3

[
E(Y ) + E

(
Y

2 − Y

n

)]
= 3(λ+ λ2).

This shows

3

(
Y + Y

2 − Y

n

)
is the MVUE of E(C) = 3(λ+ λ2). It is a function of a sufficient statistic T =

∑n
i=1 Yi and it

is unbiased.

9.63. In this problem, Y1, Y2, ..., Yn is an iid sample from a population with pdf

fY (y) =


3y2

θ3
, 0 ≤ y ≤ θ

0, otherwise,

where the population parameter θ > 0 is unknown. We want to find the MVUE of θ. We start
by finding a sufficient statistic. The likelihood function is

L(θ|y) = fY (y1|θ)× fY (y2|θ)× · · · × fY (yn|θ)

=
3y21
θ3

I(0 ≤ y1 ≤ θ)×
3y22
θ3

I(0 ≤ y2 ≤ θ)× · · · ×
3y2n
θ3

I(0 ≤ yn ≤ θ)

=

(
3

θ3

)n( n∏
i=1

y2i

)
n∏
i=1

I(0 ≤ yi ≤ θ)

=

(
3

θ3

)n( n∏
i=1

y2i

)
I(0 ≤ y(n) ≤ θ).
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Note we can write

L(θ|y) =

(
3

θ3

)n
I(0 ≤ y(n) ≤ θ)︸ ︷︷ ︸
g(t,θ)

×
n∏
i=1

y2i︸ ︷︷ ︸
h(y1,y2,...,yn)

,

where t = y(n). By the Factorization Theorem, it follows that T = Y(n) is a sufficient statistic
for θ. From the Rao-Blackwell Theorem, we know the MVUE of θ must be a function of T .
Therefore, let’s calculate the expectation of T .

In part (a), the authors ask you to derive the pdf of T = Y(n); you need to know this so that
you can calculate E(T ) = E(Y(n)). Recall that in general,

fY(n)(y) = nfY (y)[FY (y)]n−1,

where FY (y) is the population cdf. We calculate

FY (y) =


0, y < 0(y
θ

)3
, 0 ≤ y ≤ θ

1, y > θ.

Therefore, for 0 ≤ y ≤ θ, the pdf of the maximum order statistic Y(n) is

fY(n)(y) = n

(
3y2

θ3

)[(y
θ

)3]n−1
=

3ny3n−1

θ3n
.

Summarizing,

fY(n)(y) =


3ny3n−1

θ3n
, 0 ≤ y ≤ θ

0, otherwise.

(b) To find the MVUE, let’s first find E(Y(n)). We have

E(Y(n)) =

∫
R
yfY(n)(y)dy =

∫ θ

0

3ny3n

θ3n
dy =

3n

θ3n

(
1

3n+ 1

)
y3n+1

∣∣∣∣θ
0

=
3n

3n+ 1

θ3n+1

θ3n
=

(
3n

3n+ 1

)
θ.

Therefore, Y(n) is a biased estimator of θ; however, note that

E(Y(n)) =

(
3n

3n+ 1

)
θ =⇒ E

[(
3n+ 1

3n

)
Y(n)

]
= θ.

Therefore, (
3n+ 1

3n

)
Y(n)

is the MVUE of θ. It is a function of a sufficient statistic T = Y(n) and it is unbiased.
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9.64. In this problem, Y1, Y2, ..., Yn is an iid sample from a N (µ, 1) population distribution
where −∞ < µ <∞ is unknown and the population variance is 1. In part (a), we want to find
the MVUE for µ2. We start by finding a sufficient statistic. The likelihood function is

L(µ|y) = fY (y1|µ)× fY (y2|µ)× · · · × fY (yn|µ)

=
1√
2π
e−

1
2
(y1−µ)2 × 1√

2π
e−

1
2
(y2−µ)2 × · · · × 1√

2π
e−

1
2
(yn−µ)2

=

(
1√
2π

)n
e−

1
2

∑n
i=1(yi−µ)2 .

Now, write
n∑
i=1

(yi − µ)2 =
n∑
i=1

(y2i − 2µyi + µ2) =
n∑
i=1

y2i − 2µ
n∑
i=1

yi + nµ2.

Therefore,

L(µ|y) =

(
1√
2π

)n
e−

1
2(

∑n
i=1 y

2
i−2µ

∑n
i=1 yi+nµ

2)

=

(
1√
2π

)n
e−

1
2

∑n
i=1 y

2
i eµ

∑n
i=1 yi e−

nµ2

2

= eµ
∑n
i=1 yie−

nµ2

2︸ ︷︷ ︸
g(t,µ)

×
(

1√
2π

)n
e−

1
2

∑n
i=1 y

2
i︸ ︷︷ ︸

h(y1,y2,...,yn)

,

where t =
∑n

i=1 yi. By the Factorization Theorem, it follows that T =
∑n

i=1 Yi is a sufficient
statistic for µ. From the Rao-Blackwell Theorem, we know the MVUE of µ2 must be a function
of T . We know

E(Y ) = E

(
T

n

)
= µ,

so (to estimate µ2) let’s try working with Y
2
. Note that

E(Y
2
) = V (Y ) + [E(Y )]2 =

1

n
+ µ2.

Therefore, Y
2

is a biased estimator of µ2. However, note that

E(Y
2
) =

1

n
+ µ2 =⇒ E

(
Y

2 − 1

n

)
= µ2.

Therefore,

Y
2 − 1

n

is the MVUE of µ2. It is a function of a sufficient statistic T =
∑n

i=1 Yi and it is unbiased.

(b) In this part, we want to calculate

V

(
Y

2 − 1

n

)
= V (Y

2
).
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The only way I know how to find V (Y
2
) is to write (via the variance computing formula)

V (Y
2
) = E(Y

4
)− [E(Y

2
)]2.

Now, E(Y
4
) is the fourth moment of

Y ∼ N
(
µ,

1

n

)
.

The mgf of Y is

mY (t) = exp

[
µt+

(
1
n

)
t2

2

]
= exp

(
µt+

t2

2n

)
.

Therefore, we can get E(Y
4
) by calculating

E(Y
4
) =

d4

dt4
mY (t)

∣∣∣∣
t=0

.

Here are the derivatives of mY (t):

d

dt
mY (t) =

(
µ+

t

n

)
exp

(
µt+

t2

2n

)
d2

dt2
mY (t) =

1

n
exp

(
µt+

t2

2n

)
+

(
µ+

t

n

)2

exp

(
µt+

t2

2n

)
=

[
1

n
+

(
µ+

t

n

)2
]

exp

(
µt+

t2

2n

)
d3

dt3
mY (t) = 2

(
µ+

t

n

)
1

n
exp

(
µt+

t2

2n

)
+

[
1

n
+

(
µ+

t

n

)2
](

µ+
t

n

)
exp

(
µt+

t2

2n

)
=

(
µ+

t

n

)3

exp

(
µt+

t2

2n

)
+ 3

(
µ+

t

n

)
1

n
exp

(
µt+

t2

2n

)
=

[(
µ+

t

n

)3

+ 3

(
µ+

t

n

)
1

n

]
exp

(
µt+

t2

2n

)
and

d4

dt4
mY (t) =

[
3

(
µ+

t

n

)2 1

n
+

3

n2

]
exp

(
µt+

t2

2n

)

+

[(
µ+

t

n

)3

+ 3

(
µ+

t

n

)
1

n

](
µ+

t

n

)
exp

(
µt+

t2

2n

)
.

Therefore,

E(Y
4
) =

d4

dt4
mY (t)

∣∣∣∣
t=0

=

(
3µ2

n
+

3

n2

)
+

(
µ3 +

3µ

n

)
µ = µ4 +

6µ2

n
+

3

n2
.

Also,

E(Y
2
) =

d2

dt2
mY (t)

∣∣∣∣
t=0

=
1

n
+ µ2.

PAGE 5



STAT 512 HW9 SOLUTIONS

Therefore, the variance of the MVUE of µ2 is

V

(
Y

2 − 1

n

)
= V (Y

2
) = E(Y

4
)− [E(Y

2
)]2

= µ4 +
6µ2

n
+

3

n2
−
(

1

n
+ µ2

)2

= µ4 +
6µ2

n
+

3

n2
−
(

1

n2
+

2µ2

n
+ µ4

)
= µ4 +

6µ2

n
+

3

n2
− 1

n2
− 2µ2

n
− µ4 =

4µ2

n
+

2

n2
.

9.72. In this problem, Y1, Y2, ..., Yn are iid from a N (µ, σ2) population distribution, where both
parameters are unknown; i.e., there are d = 2 parameters to estimate. Therefore, to find the
MOM estimators of µ and σ2, we need two equations. The first two population moments are

E(Y ) = µ

E(Y 2) = V (Y ) + [E(Y )]2 = σ2 + µ2.

The first two sample moments are

1

n

n∑
i=1

Yi = Y

1

n

n∑
i=1

Y 2
i = m′2.

Therefore, the MOM estimators of µ and σ2 are found by solving

µ
set
= Y

σ2 + µ2
set
= m′2.

The solution to the first equation is obvious; i.e.,

µ̂ = Y .

Substituting µ̂ = Y into the second equation, we get

σ̂2 = m′2 − Y
2

=
1

n

n∑
i=1

Y 2
i − Y

2
=

1

n

n∑
i=1

Y 2
i −

nY
2

n

=
1

n

(
n∑
i=1

Y 2
i − nY

2

)
=

1

n

n∑
i=1

(Yi − Y )2.

Therefore, the MOM estimator of θ = (µ, σ2) is

θ̂ =

 Y

1

n

n∑
i=1

(Yi − Y )2

 .

Note that the MOM estimator of θ and the MLE of θ are the same under N (µ, σ2) assumption;
see Example 9.20 (notes).
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9.74. In this problem, Y1, Y2, ..., Yn is an iid sample from a population with pdf

fY (y|θ) = fY (y) =


2

θ2
(θ − y), 0 ≤ y ≤ θ

0, otherwise,

where θ > 0 is unknown. In part (a), we want to find the MOM estimator of θ. There is only
1 parameter in this population pdf, so to find the MOM estimator we only need one equation.
The first population moment is

E(Y ) =

∫
R
yfY (y)dy =

∫ θ

0

2y

θ2
(θ − y)dy =

∫ θ

0

(
2y

θ
− 2y2

θ2

)
dy

=

(
y2

θ
− 2y3

3θ2

)∣∣∣∣θ
0

= θ − 2θ

3
=
θ

3
.

The first sample moment is

1

n

n∑
i=1

Yi = Y .

Therefore, the MOM estimator of θ is found by solving

θ

3

set
= Y =⇒ θ̂ = 3Y .

(b) Note that the support of Y depends on θ; i.e., 0 ≤ y ≤ θ, so the sufficient statistic will be
an order statistic or a function of the order statistics Y(1), Y(2), ..., Y(n). The MOM estimator

3Y is not sufficient because it is not a 1:1 function of the order statistics; i.e., if you know
Y(1), Y(2), ..., Y(n), you can calculate 3Y , but not the other way−if you know 3Y , you can not
determine the order statistics.

Interesting: In this population-level model, the order statistics Y(1), Y(2), ..., Y(n) are sufficient
and you cannot reduce any further. If you do, then you will start to lose information about θ.

9.75. In this problem, Y1, Y2, ..., Yn is an iid sample from a beta population distribution where
α = θ and β = θ; i.e., the population parameters α and β are both equal. In other words, the
population distribution is Y ∼ beta(θ, θ). We want to find the MOM estimator of θ. There is
only 1 unknown parameter in this model, so we only need 1 equation.

However, we quickly encounter a problem. Recall that the first population moment is

E(Y ) =
α

α+ β
=

θ

θ + θ
=

θ

2θ
=

1

2
.

Therefore, if we were to set the first population moment equal to the first sample moment Y ,
we would get

1

2

set
= Y ,

which is not helpful (because this equation does not involve θ).

Q: What do we do in this situation?
A: Move to second moments.
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The second moment of Y is

E(Y 2) = V (Y ) + [E(Y )]2 =
θ(θ)

(θ + θ + 1)(θ + θ)2
+

(
1

2

)2

=
θ2

(2θ + 1)4θ2
+

1

4

=
1

4(2θ + 1)
+

1

4
.

The second sample moment is

1

n

n∑
i=1

Y 2
i = m′2.

Therefore, to find the MOM estimator of θ, we set

1

4(2θ + 1)
+

1

4

set
= m′2,

and solve for θ. We have

1

4(2θ + 1)
= m′2 −

1

4
=⇒ 4(2θ + 1) =

1

m′2 − 1
4

=⇒ 2θ + 1 =
1

4m′2 − 1

=⇒ 2θ =
1

4m′2 − 1
− 1 =

2− 4m′2
4m′2 − 1

=
2(1− 2m′2)

4m′2 − 1
=⇒ θ̂ =

1− 2m′2
4m′2 − 1

.

The MOM estimator of θ is

θ̂ =
1− 2m′2
4m′2 − 1

=

1− 2

n

n∑
i=1

Y 2
i

4

n

n∑
i=1

Y 2
i − 1

.

9.77. In this problem, Y1, Y2, ..., Yn is an iid sample from a U(0, 3θ) population distribution,
where θ > 0 is unknown. We want to find the MOM estimator of θ. There is only 1 parameter
in this population pdf, so to find the MOM estimator we only need one equation. The first
population moment is

E(Y ) =
3θ

2
;

i.e., the midpoint of 0 and 3θ. The first sample moment is

1

n

n∑
i=1

Yi = Y .

Therefore, the MOM estimator of θ is found by solving

3θ

2

set
= Y =⇒ θ̂ =

2Y

3
.

PAGE 8



STAT 512 HW9 SOLUTIONS

9.88. In this problem, Y1, Y2, ..., Yn is an iid sample from a population with pdf

fY (y|θ) =

{
(θ + 1)yθ, 0 < y < 1

0, otherwise,

where θ > −1 is unknown. Note that this is of pdf of Y ∼ beta(θ + 1, 1). The likelihood
function is given by

L(θ|y) = fY (y1|θ)× fY (y2|θ)× · · · × fY (yn|θ)

= (θ + 1)yθ1 × (θ + 1)yθ2 × · · · × (θ + 1)yθn = (θ + 1)n
(

n∏
i=1

yi

)θ
.

The log-likelihood function is given by

lnL(θ|y) = ln

(θ + 1)n
(

n∏
i=1

yi

)θ
= ln [(θ + 1)n] + ln

( n∏
i=1

yi

)θ
= n ln(θ + 1) + θ ln

(
n∏
i=1

yi

)
= n ln(θ + 1) + θ

n∑
i=1

ln yi.

The derivative of the log-likelihood function is given by

∂

∂θ
lnL(θ|y) =

n

θ + 1
+

n∑
i=1

ln yi
set
= 0

=⇒
n∑
i=1

ln yi = − n

θ + 1
=⇒ θ + 1 = − n∑n

i=1 ln yi
=⇒ θ̂ = − n∑n

i=1 ln yi
− 1.

We now show this first-order critical point θ̂ maximizes lnL(θ|y). The second derivative of the
log-likelihood function is given by

∂2

∂θ2
lnL(θ|y) = − n

(θ + 1)2
.

Note that
∂2

∂θ2
lnL(θ|y)

∣∣∣
θ=θ̂

= − n

(θ̂ + 1)2
< 0.

Therefore, θ̂ maximizes lnL(θ|y). The MLE of θ is

θ̂ = − n∑n
i=1 lnYi

− 1.

What is the MOM estimator of θ in this example? The first population moment is

E(Y ) =
θ + 1

(θ + 1) + 1
=
θ + 1

θ + 2
;
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recall the mean for a beta random variable. If you did not recognize Y ∼ beta(θ + 1, 1), then
just calculate E(Y ) directly by using the pdf; i.e.,

E(Y ) =

∫
R
yfY (y)dy =

∫ 1

0
y × (θ + 1)yθdy

=

∫ 1

0
(θ + 1)yθ+1dy = (θ + 1)

(
1

θ + 2
yθ+2

)∣∣∣∣1
0

=
θ + 1

θ + 2
.

The first sample moment is

1

n

n∑
i=1

Yi = Y .

Therefore, the MOM estimator of θ is found by solving

θ + 1

θ + 2

set
= Y =⇒ θ + 1 = Y (θ + 2)

=⇒ θ + 1 = θY + 2Y

=⇒ θ − θY = 2Y − 1 =⇒ θ(1− Y ) = 2Y − 1 =⇒ θ̂ =
2Y − 1

1− Y
.

How do these estimators compare? One observation is that the MLE depends on the sufficient
statistic, and the MOM does not (a common occurrence). Note that we can write the likelihood
function

L(θ|y) = (θ + 1)n
(

n∏
i=1

yi

)θ
= (θ + 1)n

(
n∏
i=1

yi

)θ
︸ ︷︷ ︸

g(t,θ)

× 1︸ ︷︷ ︸
h(y1,y2,...,yn)

,

where t =
∏n
i=1 yi. By the Factorization Theorem, it follows that T =

∏n
i=1 Yi is a sufficient

statistic for θ. Note that the MLE

θ̂ = − n∑n
i=1 lnYi

− 1 = − n

ln
∏n
i=1 Yi

− 1 = − n

lnT
− 1,

which is a function of T . The MOM estimator is not a function of T ; it is a function of the
sample mean Y (which is not sufficient).

9.104. In this problem, Y1, Y2, ..., Yn is an iid sample from

fY (y) =

{
e−(y−θ), y ≥ θ

0, otherwise,

where the population parameter θ > 0 is unknown. Note that this is a shifted exponential
distribution; specifically, an exponential(1) pdf shifted to the right by θ units (since θ > 0).
This pdf is shown at the top of the next page.

(a) We want to find the MOM estimator. The first population moment is

E(Y ) =

∫
R
yfY (y)dy =

∫ ∞
θ

ye−(y−θ)dy.
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y

P
D

F

0 θ

In this integral, let
u = y − θ =⇒ du = dy.

The limits change with this transformation; note that y : θ →∞ =⇒ u : 0→∞. Therefore,

E(Y ) =

∫ ∞
θ

ye−(y−θ)dy =

∫ ∞
0

(u+ θ)e−udu = E(U + θ),

where U ∼ exponential(1). Note that e−u is the exponential(1) pdf and we are integrating over
(0,∞). Therefore, E(Y ) = E(U + θ) = E(U) + θ = 1 + θ. The first sample moment is

1

n

n∑
i=1

Yi = Y .

Therefore, the MOM estimator of θ is found by solving

1 + θ
set
= Y =⇒ θ̂ = Y − 1.

(b) The likelihood function is given by

L(θ|y) =

n∏
i=1

fY (yi|θ) = fY (y1|θ)× fY (y2|θ)× · · · × fY (yn|θ)

= e−(y1−θ)I(y1 ≥ θ)× e−(y2−θ)I(y2 ≥ θ)× · · · × e−(yn−θ)I(yn ≥ θ)

= e−
∑n
i=1(yi−θ)

n∏
i=1

I(yi ≥ θ).

Note that
n∏
i=1

I(yi ≥ θ) = 1 ⇐⇒ I(y(1) ≥ θ) = 1.
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θ

Li
ke

lih
oo

d 
fu
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tio

n

0 y(1)

Therefore, we can write the likelihood function as

L(θ|y) = e−
∑n
i=1(yi−θ)I(y(1) ≥ θ).

The likelihood function L(θ|y) is shown at the top of this page. Note that L(θ|y) is not
differentiable for all θ; therefore, we cannot use a calculus argument. However, note that

• For θ ≤ y(1), L(θ|y) = e−
∑n
i=1(yi−θ) = enθ−

∑n
i=1 yi , which is an increasing function of θ

(see above).

• For θ > y(1), L(θ|y) = 0.

Clearly, the MLE of θ is θ̂ = Y(1).

(c) In this part, we want to compare

θ̂1 = Y − 1 (MOM)

θ̂2 = Y(1) (MLE).

The MOM estimator is unbiased so no “adjustment” is necessary. Note that

E(θ̂1) = E(Y − 1) = E(Y )− 1 = (1 + θ)− 1 = θ.

The MLE is biased. Let’s find the pdf of θ̂2 = Y(1) so we can calculate its expectation. Recall
that in general,

fY(1)(y) = nfY (y)[1− FY (y)]n−1.

The population cdf is

FY (y) =

{
0, y < θ

1− e−(y−θ), y ≥ θ.
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Therefore, for y ≥ θ, the pdf of Y(1) is

fY(1)(y) = ne−(y−θ)
{

1− [1− e−(y−θ)]
}n−1

= ne−(y−θ)
[
e−(y−θ)

]n−1
= n

[
e−(y−θ)

]n
= ne−n(y−θ).

Summarizing,

fY(1)(y) =

{
ne−n(y−θ), y ≥ θ

0, otherwise.

The mean of Y(1) is

E(Y(1)) =

∫
R
yfY(1)(y)dy =

∫ ∞
θ

y × ne−n(y−θ)dy.

In the last integral, let
u = y − θ =⇒ du = dy

so that

E(Y(1)) =

∫ ∞
0

(u+ θ) ne−nudu = E(U + θ),

where U ∼ exponential(1/n); note that ne−nu is the exponential(1/n) pdf and the last integral
is over (0,∞). Therefore,

E(θ̂2) = E(Y(1)) = E(U + θ) = E(U) + θ =
1

n
+ θ =⇒ E

(
Y(1) −

1

n

)
= θ.

Therefore, the “adjusted” version of the MLE; i.e.,

Y(1) −
1

n
,

is an unbiased estimator of θ. We now want to calculate the efficiency of

Y − 1 (MOM) to Y(1) −
1

n
(adjusted MLE).

That is, we want to calculate

eff

(
Y − 1 to Y(1) −

1

n

)
=
V (Y(1) − 1

n)

V (Y − 1)
.

This calculation makes sense because both the MOM and the adjusted MLE are unbiased.
First, we have

V (Y − 1) = V (Y ) =
σ2

n
,

where σ2 = V (Y ), the population variance. The population variance of Y is 1. Note that fY (y)
is the exponential(1) pdf shifted to the right by θ units. The right shift will not affect the
variance, so V (Y ) is the same as it would be if Y were exponential(1). Therefore,

V (Y − 1) =
1

n
.

Now, for the numerator. We have

V

(
(Y(1) −

1

n

)
= V (Y(1)) = E(Y 2

(1))− [E(Y(1))]
2 = E(Y 2

(1))−
(

1

n
+ θ

)2

.
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Let’s get the second moment of Y(1). We have

E(Y 2
(1)) =

∫
R
y2fY(1)(y)dy =

∫ ∞
θ

y2 × ne−n(y−θ)dy.

In the last integral, let
u = y − θ =⇒ du = dy

so that

E(Y 2
(1)) =

∫ ∞
0

(u+ θ)2 ne−nudu = E[(U + θ)2],

where U ∼ exponential(1/n); note that ne−nu is the exponential(1/n) pdf and the last integral
is over (0,∞). Therefore,

E(Y 2
(1)) = E[(U + θ)2] = E(U2 + 2θU + θ2) = E(U2) + 2θ

(
1

n

)
+ θ2.

The second moment of U ∼ exponential(1/n) is

E(U2) = V (U) + [E(U)]2 =
1

n2
+

1

n2
=

2

n2
.

Therefore,

E(Y 2
(1)) = E(U2) + 2θ

(
1

n

)
+ θ2 =

2

n2
+

2θ

n
+ θ2.

Therefore,

V

(
(Y(1) −

1

n

)
= E(Y 2

(1))−
(

1

n
+ θ

)2

=
2

n2
+

2θ

n
+ θ2 −

(
1

n
+ θ

)2

=
2

n2
+

2θ

n
+ θ2 −

(
1

n2
+

2θ

n
+ θ2

)
=

1

n2
.

Finally,

eff

(
Y − 1 to Y(1) −

1

n

)
=
V (Y(1) − 1

n)

V (Y − 1)
=

1/n2

1/n
=

1

n
< 1.

This means the adjusted MLE Y(1) − 1
n is only (1/n)th as variable the MOM estimator Y − 1;

i.e., the adjusted MLE is n times more efficient!
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