
STAT 512
MATHEMATICAL STATISTICS

Spring 2024

Lecture Notes

Joshua M. Tebbs

Department of Statistics

University of South Carolina

c© by Joshua M. Tebbs



TABLE OF CONTENTS JOSHUA M. TEBBS

Contents

6 Functions of Random Variables 1

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

6.2 Method of distribution functions . . . . . . . . . . . . . . . . . . . . . . . . . 2

6.3 Method of transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6.4 Method of moment generating functions . . . . . . . . . . . . . . . . . . . . 17

6.5 Bivariate transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.6 Order statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Sampling Distributions and the Central Limit Theorem 45

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.2 Sample sums and averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.3 Sampling distributions arising from the normal distribution . . . . . . . . . . 50

7.4 t and F distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.5 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8 Estimation 73

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.2 Bias and mean-squared error . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.3 Common point estimators and their standard errors . . . . . . . . . . . . . . 84

8.3.1 One population mean . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.3.2 One population proportion . . . . . . . . . . . . . . . . . . . . . . . . 86

8.3.3 Difference of two population means (independent samples) . . . . . . 87

8.3.4 Difference of two population proportions (independent samples) . . . 88

8.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.4 Confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.5 Large-sample confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . 97

8.6 Sample size determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.7 Confidence intervals arising from normal populations . . . . . . . . . . . . . 102

8.7.1 Population mean µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.7.2 Population variance σ2 . . . . . . . . . . . . . . . . . . . . . . . . . . 104

i



TABLE OF CONTENTS JOSHUA M. TEBBS

8.7.3 Difference of two population means µ1 − µ2 (independent samples) . . 105

8.7.4 Ratio of two population variances σ2
2/σ

2
1 (independent samples) . . . 109

9 Properties of Point Estimators and Methods of Estimation 111

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.2 Relative efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.3 Sufficient statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.4 Minimum variance unbiased estimators (MVUEs) . . . . . . . . . . . . . . . 128

9.5 Method of moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.6 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.7 Large-sample (asymptotic) considerations . . . . . . . . . . . . . . . . . . . . 154

9.7.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.7.2 Slutsky’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.7.3 Large-sample properties of MLEs . . . . . . . . . . . . . . . . . . . . 163

ii



STAT 512: CHAPTER 6 JOSHUA M. TEBBS

6 Functions of Random Variables

6.1 Introduction

Preview: We are now ready to address the following important questions in probability
and distribution theory, namely,

1. “If we know the distribution of a random variable Y , what is the distribution of U =
h(Y ), a function of Y ?”

2. “If we know the joint distribution of the random variables Y1, Y2, ..., Yn, what is the
distribution of U = h(Y1, Y2, ..., Yn), a function of Y1, Y2, ..., Yn?”

This chapter deals with finding distributions of functions of random variables. In the first
question above, the function h : R→ R. In the second, h : Rn → R. Therefore, U = h(Y ) or
U = h(Y1, Y2, ..., Yn) are (univariate) random variables that have their own distributions. We
will also consider functions h : Rn → Rn in Section 6.6 (WMS), paying particular attention
to the bivariate (n = 2) case. This situation arises if we want to answer this question:

3. “If we know the bivariate distribution of Y = (Y1, Y2) and

U1 = h1(Y1, Y2)

U2 = h2(Y1, Y2),

what is the bivariate distribution of U = (U1, U2)?”

In the third question, h : R2 → R2; i.e., h is a vector-valued function.

Examples: Here are some applications that motivate why these questions are important:

• Physicians measure the systolic blood pressure Y for pregnant women at elevated risk
for preeclampsia. What is the distribution of U = h(Y ) = lnY ?

• Actuaries record the losses due to liability Y1 and collision Y2 for drivers in South
Carolina. What is the distribution of the total loss

U = h(Y1, Y2) = Y1 + Y2?

• Researchers observe test scores Y1, Y2, ..., Yn for a sample of n students. What is the
distribution of

Y =
1

n

n∑
i=1

Yi,

the average test score, or perhaps

Y(n) = max{Y1, Y2, ..., Yn},

the maximum test score? Note that both Y and Y(n) are functions of Y1, Y2, ..., Yn.

PAGE 1



STAT 512: CHAPTER 6 JOSHUA M. TEBBS

Preview: This chapter deals with finding distributions of functions of random variables.
We will investigate three methods for doing this:

1. Method of distribution functions (or “cdf technique”)

2. Method of transformations

3. Method of moment generating functions (or “mgf technique”).

6.2 Method of distribution functions

Setting: Suppose Y is a continuous random variable with cumulative distribution function
(cdf) FY (y) and probability density function (pdf) fY (y). Define

U = h(Y ).

The cdf technique is implemented by deriving the cdf of U , that is,

FU(u) = P (U ≤ u) = P (h(Y ) ≤ u),

for all u ∈ R. The last probability suggests we can find FU(u) if we know the distribution of
Y , because we can always integrate fY (y) over the set B = {y : h(y) ≤ u}. If we can derive
FU(u) in this way, then the pdf of U is simply

fU(u) =
d

du
FU(u).

Note: The method of distribution functions (or “cdf technique”) is especially useful when
the cdf of Y exists in closed form; i.e., we know a formula for FY (y). When this is true,
we can usually write FU(u) in terms of this formula. This is illustrated in the next two
examples.

Example 6.1. Suppose Y ∼ U(0, 1); i.e., Y has a uniform distribution from 0 to 1. The
pdf of Y is

fY (y) =

{
1, 0 < y < 1

0, otherwise.

(a) Find the distribution of U = h(Y ) = − lnY .
(b) Calculate E(U).

Solutions. (a) The pdf of Y is shown in Figure 6.1 (left). Note that the support of Y is

RY = {y : 0 < y < 1}.

A graph of the function h(y) = − ln y over (0, 1) is shown in Figure 6.1 (right). Note that

0 < y < 1 ⇐⇒ u = h(y) = − ln y > 0.

Therefore, the support of U = h(Y ) = − lnY is

RU = {u : u > 0}.

PAGE 2
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Figure 6.1: Left: Pdf of Y ∼ U(0, 1) in Example 6.1. Right: A graph of the function
h(y) = − ln y over (0, 1); i.e., over the support RY = {y : 0 < y < 1}.

For u > 0, the cdf of U is

FU(u) = P (U ≤ u) = P (− lnY ≤ u)

= P (lnY > −u)

= P (Y > e−u) = 1− P (Y ≤ e−u) = 1− FY (e−u).

Notice how we have written FU(u) in terms of FY (y). We now recall the cdf of Y ∼ U(0, 1)
is given by

FY (y) =


0, y ≤ 0

y, 0 < y < 1

1, y ≥ 1.

Therefore, for 0 < y < 1⇐⇒ u > 0, the cdf of U = h(Y ) = − lnY is

FU(u) = 1− FY (e−u) = 1− e−u.

For u > 0, the pdf of U is

fU(u) =
d

du
FU(u) =

d

du
(1− e−u) = e−u.

Summarizing,

fU(u) =

{
e−u, u > 0

0, otherwise.

We recognize this as an exponential pdf with mean β = 1; i.e., U ∼ exponential(1).
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(b) Because U ∼ exponential(1), we know E(U) = 1. However, would we get the same
answer if we calculated

E(− lnY ) =

∫
R
− ln y fY (y)dy =

∫ 1

0

− ln y dy;

i.e., by using the distribution of Y ? Let

u = − ln y du = − 1
y
dy

dv = dy v = y.

Indeed, integration by parts shows we get the same answer:∫ 1

0

− ln y dy = −y ln y
∣∣∣1
0
−
∫ 1

0

(−1)dy = (0− 0) + 1 = 1.

This is not a coincidence. In fact, these calculations illustrate the following result.

Law of the Unconscious Statistician: Suppose Y is a continuous random variable with
pdf fY (y) and let U = h(Y ). We can calculate E(U) in two ways:

E(U) = E[h(Y )] =

∫
R
h(y)fY (y)dy ←− STAT 511 way

E(U) =

∫
R
ufU(u)du,

where fU(u) is the pdf of U . The Law of the Unconscious Statistician says E(U) = E[h(Y )]
in the sense that if one expectation exists, so does the other and they are equal. This result
is also true in the discrete case.

Example 6.2. Suppose Y ∼ exponential(α); i.e., Y has an exponential distribution with
mean α > 0. The pdf of Y is

fY (y) =


1

α
e−y/α, y > 0

0, otherwise.

For m > 0, find the distribution of U = h(Y ) = Y 1/m.

Solution. The pdf of Y is shown in Figure 6.2 (left). Note that the support of Y is

RY = {y : y > 0}.

For m > 0, a graph of h(y) = y1/m over (0,∞) is shown in Figure 6.2 (right). Note that

y > 0 ⇐⇒ u = h(y) = y1/m > 0.

Therefore, the support of U = h(Y ) = Y 1/m is

RU = {u : u > 0}.
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Figure 6.2: Left: Pdf of Y ∼ exponential(α) in Example 6.2. Right: A graph of the function
h(y) = y1/m over (0,∞); i.e., over the support RY = {y : y > 0}.

For u > 0, the cdf of U is

FU(u) = P (U ≤ u) = P (Y 1/m ≤ u) = P (Y ≤ um) = FY (um).

Notice how we have written FU(u) in terms of FY (y). We now recall the cdf of Y ∼
exponential(α) is given by

FY (y) =

{
0, y ≤ 0

1− e−y/α, y > 0.

Therefore, for y > 0⇐⇒ u > 0, the cdf of U = h(Y ) = Y 1/m is

FU(u) = FY (um) = 1− e−um/α.

For u > 0, the pdf of U is

fU(u) =
d

du
FU(u) =

d

du
(1− e−um/α) =

m

α
um−1e−u

m/α.

Summarizing,

fU(u) =

{ m

α
um−1e−u

m/α, u > 0

0, otherwise.

We recognize this as a Weibull pdf with parameters m > 0 and α > 0; see Exercise 6.26
(WMS, pp 317). We write U ∼Weibull(m,α). �
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Figure 6.3: Weibull(m,α) pdfs for different combinations of m and α.

Remark: The Weibull(m,α) family of pdfs is a flexible family; see Figure 6.3 above. The
Weibull distribution is most often used in engineering and the natural sciences to model
positive quantities; e.g., time to part failure, breaking strength, wind speeds, etc.

Example 6.3. Suppose Y is a continuous random variable with cdf FY (y) and pdf fY (y).
Derive a general expression for the pdf of U = h(Y ) = Y 2.

Solution. The cdf of U = h(Y ) = Y 2 is

FU(u) = P (U ≤ u) = P (Y 2 ≤ u) = P (−
√
u ≤ Y ≤

√
u) = FY (

√
u)− FY (−

√
u).

Notice how we have written FU(u) in terms of FY (y). The pdf of U is

fU(u) =
d

du
FU(u) =

d

du

[
FY (
√
u)− FY (−

√
u)
]

= fY (
√
u)

1

2
√
u
− fY (−

√
u)

(
− 1

2
√
u

)
=

1

2
√
u

[
fY (
√
u) + fY (−

√
u)
]
.

PAGE 6



STAT 512: CHAPTER 6 JOSHUA M. TEBBS

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

y

P
D

F

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

2.
0

u

P
D

F

Figure 6.4: Left: Pdf of Y ∼ N (0, 1). Right: Pdf of U = Y 2 ∼ χ2(1).

Summarizing, a general formula for the pdf of U = h(Y ) = Y 2 is

fU(u) =
1

2
√
u

[
fY (
√
u) + fY (−

√
u)
]
.

Example 6.4. Suppose Y ∼ N (0, 1); i.e., Y has a normal distribution with mean µ = 0
and variance σ2 = 1. This is also called the standard normal distribution. The pdf of Y is

fY (y) =


1√
2π
e−y

2/2, −∞ < y <∞

0, otherwise.

Derive the pdf of U = h(Y ) = Y 2.

Solution. We apply the result from Example 6.3. For u > 0, note that

fY (
√
u) =

1√
2π
e−(
√
u)2/2 =

1√
2π
e−u/2

fY (−
√
u) =

1√
2π
e−(−

√
u)2/2 =

1√
2π
e−u/2.

Therefore, for u > 0,

fU(u) =
1

2
√
u

(
1√
2π
e−u/2 +

1√
2π
e−u/2

)
=

1√
u

1√
2π
e−u/2

=
1

Γ(1
2
)21/2

u
1
2
−1e−u/2.
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Figure 6.5: The support R = {(y1, y2) : y1 > 0, y2 > 0} in Example 6.5; i.e., the entire first
quadrant.

We recognize this as a gamma pdf with shape parameter α = 1/2 and scale parameter β = 2,
which is the same as the χ2 pdf with 1 degree of freedom; i.e., U ∼ χ2(1). Therefore,

Y ∼ N (0, 1) =⇒ U = Y 2 ∼ χ2(1).

Both of these pdfs are shown in Figure 6.4 (see last page). �

Remark: The cdf technique is also useful in bivariate settings where Y1 and Y2 are contin-
uous and we want to derive the distribution of U = h(Y1, Y2). This is illustrated next.

Example 6.5. Suppose Y1 and Y2 are continuous random variables with joint pdf

fY1,Y2(y1, y2) =

{
e−(y1+y2), y1 > 0, y2 > 0

0, otherwise.

Find the pdf of U = h(Y1, Y2) = Y1 + Y2 and calculate E(U).

Solution. The bivariate support of (Y1, Y2) is RY1,Y2 = {(y1, y2) : y1 > 0, y2 > 0}, the entire
first quadrant; see Figure 6.5 (above). The joint pdf fY1,Y2(y1, y2) is a three-dimensional
function which takes the value e−(y1+y2) over this region (and equals zero, otherwise).
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0
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Figure 6.6: The set B = {(y1, y2) : y1 > 0, y2 > 0, y1 + y2 ≤ u} in Example 6.5. The upper
boundary line is y2 = u− y1.

To find the distribution of U = Y1 + Y2, we use the cdf technique. First, observe that

y1 > 0, y2 > 0 =⇒ u = h(y1, y2) = y1 + y2 > 0.

Therefore, the support of U = h(Y1, Y2) = Y1 + Y2 is

RU = {u : u > 0}.

For u > 0, the cdf of U is

FU(u) = P (U ≤ u) = P (Y1 + Y2 ≤ u)

=

∫ ∫
(y1,y2)∈B

fY1,Y2(y1, y2)dy1dy2 =

∫ ∫
(y1,y2)∈B

e−(y1+y2)dy1dy2,

where the set B = {(y1, y2) : y1 > 0, y2 > 0, y1 + y2 ≤ u} is shown in Figure 6.6 (see above).
Note that the boundary of B is

y1 + y2 = u =⇒ y2 = u− y1,

PAGE 9
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a linear function of y1 with slope −1 and intercept u > 0. Therefore,

FU(u) = P (U ≤ u) = P (Y1 + Y2 ≤ u)

=

∫ u

y1=0

∫ u−y1

y2=0

e−(y1+y2)dy2dy1

=

∫ u

y1=0

e−y1
(
−e−y2

∣∣∣u−y1
y2=0

)
dy1

=

∫ u

y1=0

e−y1 [1− e−(u−y1)]dy1

=

∫ u

y1=0

(e−y1 − e−u)dy1 =
(
−e−y1 − e−uy1

) ∣∣∣u
y1=0

= 1− e−u − ue−u.

Therefore, the pdf of U , for u > 0, is

fU(u) =
d

du
FU(u) =

d

du
(1− e−u − ue−u) = e−u − (e−u − ue−u) = ue−u.

Summarizing,

fU(u) =

{
ue−u, u > 0

0, otherwise.

We recognize this as the gamma pdf with shape parameter α = 2 and scale parameter β = 1;
i.e., U ∼ gamma(2, 1). Therefore, E(U) = 2. If you did not recognize U ∼ gamma(2, 1),
then you could calculate

E(U) =

∫
R
ufU(u)du =

∫ ∞
0

u2e−udu = Γ(3)13 = 2! = 2.

Remark: In the joint pdf

fY1,Y2(y1, y2) =

{
e−(y1+y2), y1 > 0, y2 > 0

0, otherwise,

note that
fY1,Y2(y1, y2) = e−(y1+y2) = e−y1e−y2 = fY1(y1)fY2(y2),

for all (y1, y2) ∈ R2; i.e., Y1 and Y2 are independent exponential(1) random variables. There-
fore, if all we wanted to do was find E(U) = E(Y1 + Y2), we wouldn’t have to derive the pdf
of U . We could appeal to the Law of the Unconscious Statistician and simply write

E(U) = E(Y1 + Y2) = E(Y1) + E(Y2) = 1 + 1 = 2.

Note: If you didn’t realize that Y1 and Y2 were exponential(1), then you could calculate

E(U) = E(Y1 + Y2) =

∫ ∞
y1=0

∫ ∞
y2=0

(y1 + y2)e
−(y1+y2)dy2dy1 = 2

by using the joint pdf of Y1 and Y2. �

PAGE 10



STAT 512: CHAPTER 6 JOSHUA M. TEBBS

6.3 Method of transformations

Remark: We have just learned the method of distribution functions (i.e., the “cdf tech-
nique”) to derive the distribution of U = h(Y ), a function of Y . The method of transfor-
mations is a special case of the cdf technique when h : R → R is a one-to-one function
over RY , the support of Y . In this situation, we obtain a formula for fU(u), the pdf of U , in
terms of fY (u), the pdf of Y . Therefore, we can avoid having to work with cdfs.

Recall: By “one-to-one function,” we mean either (a) h is strictly increasing over RY or (b)
h is strictly decreasing over RY . Recall

• strictly increasing: y1 < y2 =⇒ h(y1) < h(y2); if h is differentiable, h′(y) > 0.

• strictly decreasing: y1 < y2 =⇒ h(y1) > h(y2); if h is differentiable, h′(y) < 0.

Setting: Suppose Y is a continuous random variable with cdf FY (y) and pdf fY (y) which
is nonzero over the support RY . Let U = h(Y ), where h is a one-to-one function over RY .

Case 1: If h is strictly increasing, then

FU(u) = P (U ≤ u) = P (h(Y ) ≤ u) = P (Y ≤ h−1(u)) = FY (h−1(u)).

Notice how we have written FU(u) in terms of FY (y). The penultimate equality results from
noting that {y : h(y) ≤ u} = {y : y ≤ h−1(u)}. Taking derivatives, the pdf of U (where
nonzero) is

fU(u) =
d

du
FU(u) =

d

du
FY (h−1(u)) = fY (h−1(u))

d

du
h−1(u)︸ ︷︷ ︸
>0

.

Recall: From calculus, recall that if h is strictly increasing (decreasing), then h−1 is also
strictly increasing (decreasing).

Case 2: If h is strictly decreasing, then

FU(u) = P (U ≤ u) = P (h(Y ) ≤ u) = P (Y ≥ h−1(u)) = 1− FY (h−1(u)).

Notice how we have again written FU(u) in terms of FY (y). The penultimate equality in this
case results from noting that {y : h(y) ≤ u} = {y : y ≥ h−1(u)}. Taking derivatives, the pdf
of U (where nonzero) is

fU(u) =
d

du
FU(u) =

d

du

[
1− FY (h−1(u))

]
= −fY (h−1(u))

d

du
h−1(u)︸ ︷︷ ︸
<0

.

Combining both cases, we arrive at the following result.

Result: Suppose Y is a continuous random variable with pdf fY (y) which is nonzero over
the support RY . Let U = h(Y ), where h is a one-to-one function over RY . The pdf of U ,
where nonzero, is

fU(u) = fY (h−1(u))

∣∣∣∣ dduh−1(u)

∣∣∣∣ .
PAGE 11
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Figure 6.7: Left: Pdf of Y ∼ beta(2, 6). Right: Pdf of U = 1− Y ∼ beta(6, 2).

Example 6.6. Suppose Y ∼ beta(α, β), where α > 0 and β > 0; i.e., the pdf of Y is

fY (y) =


Γ(α + β)

Γ(α)Γ(β)
yα−1(1− y)β−1, 0 < y < 1

0, otherwise.

Find the pdf of U = h(Y ) = 1− Y .

Solution. We use the transformation method. Note that h(y) = 1− y is a linear function of
y with slope −1. Therefore, h(y) is strictly decreasing and hence one-to-one over RY = {y :
0 < y < 1}. To find the support of U , note that

0 < y < 1 ⇐⇒ 0 < 1− y < 1.

Therefore, RU = {u : 0 < u < 1}. We now find the inverse transformation:

u = h(y) = 1− y =⇒ y = h−1(u) = 1− u.

The derivative of the inverse transformation is

d

du
h−1(u) =

d

du
(1− u) = −1.

Therefore, for 0 < u < 1, the pdf of U is

fU(u) = fY (h−1(u))

∣∣∣∣ dduh−1(u)

∣∣∣∣
=

Γ(α + β)

Γ(α)Γ(β)
(1− u)α−1[1− (1− u)]β−1 × | − 1| =

Γ(α + β)

Γ(α)Γ(β)
uβ−1(1− u)α−1.
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Figure 6.8: Left: Pdf of Y ∼ U(−π

2
, π
2
). Right: A graph of the function h(y) = tan y over

(−π
2
, π
2
); i.e., over the support RY = {y : −π

2
< y < π

2
}.

Summarizing, the pdf of U = h(Y ) = 1− Y is

fU(u) =


Γ(α + β)

Γ(α)Γ(β)
uβ−1(1− u)α−1, 0 < u < 1

0, otherwise.

We recognize this as a beta pdf with the roles of α and β reversed; i.e., U ∼ beta(β, α). �

Example 6.7. Suppose Y ∼ U(−π
2
, π
2
); i.e., Y has a uniform distribution from −π

2
to π

2
.

The pdf of Y is

fY (y) =


1

π
, −π

2
< y <

π

2
0, otherwise.

Find the pdf of U = h(Y ) = tanY .

Solution. We use the transformation method. The pdf of Y is shown in Figure 6.8 (left).
Note that h(y) = tan y is not a one-to-one function over R; however, it is one-to-one over
RY = {y : −π

2
< y < π

2
}; see Figure 6.8 (right). To find the support of U , note that

−π
2
< y <

π

2
⇐⇒ −∞ < tan y <∞.

Therefore, RU = {u : −∞ < u <∞}. We now find the inverse transformation. Note that

u = h(y) = tan y =⇒ y = h−1(u) = tan−1 u.
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Figure 6.9: The standard Cauchy pdf.

The derivative of the inverse transformation is

d

du
h−1(u) =

d

du
tan−1 u =

1

1 + u2
.

Therefore, for −∞ < u <∞, the pdf of U is

fU(u) = fY (h−1(u))

∣∣∣∣ dduh−1(u)

∣∣∣∣ =
1

π

∣∣∣∣ 1

1 + u2

∣∣∣∣ =
1

π(1 + u2)
.

Summarizing, the pdf of U = h(Y ) = tanY is

fU(u) =


1

π(1 + u2)
, −∞ < u <∞

0, otherwise.

A random variable U with this pdf is said to have a standard Cauchy distribution. One
interesting fact about the Cauchy distribution is that E(U) does not exist (nor do any of
the higher order moments). This is true because the integral∫

R
ufU(u)du =

∫ ∞
−∞

u

π(1 + u2)
du

does not converge absolutely. �
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Example 6.8. Suppose Y ∼ N (µ, σ2); i.e., the pdf of Y is

fY (y) =


1√
2πσ

e−
1
2( y−µσ )

2

, −∞ < y <∞

0, otherwise.

(a) Find the pdf of U = h(Y ) = eY .
(b) Find E(U) and V (U).

Solutions. (a) We use the transformation method. Note that h(y) = ey is a one-to-one
function over RY = {y : −∞ < y <∞}, the support of Y . To find the support of U , note

−∞ < y <∞ ⇐⇒ u = ey > 0.

Therefore, RU = {u : u > 0}. We now find the inverse transformation. Note that

u = h(y) = ey =⇒ y = h−1(u) = lnu.

The derivative of the inverse transformation is

d

du
h−1(u) =

d

du
lnu =

1

u
.

Therefore, for u > 0, the pdf of U is

fU(u) = fY (h−1(u))

∣∣∣∣ dduh−1(u)

∣∣∣∣ =
1√
2πσ

e−
1
2( lnu−µ

σ )
2
∣∣∣∣ 1

u

∣∣∣∣ =
1√

2πσu
e−

1
2( lnu−µ

σ )
2

.

Summarizing, the pdf of U = eY is

fU(u) =


1√

2πσu
e−

1
2( lnu−µ

σ )
2

, u > 0

0, otherwise.

A random variable U with this pdf is said to have a lognormal distribution with param-
eters µ and σ2. We write U ∼ lognormal(µ, σ2). Figure 6.10 (next page) displays lognormal
pdfs for different combinations of µ and σ2.

(b) The mean of U ∼ lognormal(µ, σ2) is

E(U) =

∫
R
ufU(u)du =

∫ ∞
0

u√
2πσu

e−
1
2( lnu−µ

σ )
2

du =

∫ ∞
0

1√
2πσ

e−
1
2( lnu−µ

σ )
2

du.

This integral is not easy. It is easier to use the Law of the Unconscious Statistician, write

E(U) = E(eY ),

and then recognize that E(eY ) is the moment generating function (mgf) of Y ∼ N (µ, σ2)
when t = 1. We know the mgf of Y ; recall that

mY (t) = exp

(
µt+

σ2t2

2

)
.

Therefore,

E(U) = E(eY ) = E(etY )
∣∣∣
t=1

= mY (1) = exp

(
µ+

σ2

2

)
.

PAGE 15



STAT 512: CHAPTER 6 JOSHUA M. TEBBS

0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

u

P
D

F
µ=1, σ=1
µ=1.5, σ=0.5
µ=2.5, σ=0.25 

Figure 6.10: Lognormal(µ, σ2) pdfs for different combinations of µ and σ2.

To find V (U), we find the second moment E(U2) and then use the variance computing
formula. Note that

E(U2) = E[(eY )2] = E(e2Y ) = E(etY )
∣∣∣
t=2

= mY (2) = e2(µ+σ
2).

Therefore,

V (U) = E(U2)− [E(U)]2 = e2(µ+σ
2) −

[
exp

(
µ+

σ2

2

)]2
= e2(µ+σ

2) − e2µ+σ2

.

Remark: The lognormal distribution is commonly used to model positive quantities (like
the gamma and Weibull distributions). Note that

Y ∼ N (µ, σ2) ⇐⇒ eY ∼ lognormal(µ, σ2)

is equivalent to
U ∼ lognormal(µ, σ2) ⇐⇒ lnU ∼ N (µ, σ2).

This is another reason the lognormal distribution is useful. In many applications, measure-
ments are normal (or at least approximately normal) after taking logarithms. �
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6.4 Method of moment generating functions

Recall: Suppose Y is a random variable. When Y is discrete with support R, the moment
generating function (mgf) of Y is

mY (t) = E(etY ) =
∑
y∈R

etypY (y),

where pY (y) is the probability mass function (pmf) of Y . When Y is continuous, the mgf
of Y is

mY (t) = E(etY ) =

∫
R
etyfY (y)dy,

where fY (y) is the probability density function (pdf) of Y . In both cases, we require the
expectation E(etY ) < ∞ for all t in an open neighborhood about t = 0; i.e., ∃b > 0 such
that E(etY ) <∞ ∀t ∈ (−b, b). If no such b > 0 exists, then the mgf of Y does not exist.

Moments: A random variable’s mgf is a powerful tool. For one, we learned

E(Y k) = m
(k)
Y (0),

where

m
(k)
Y (0) =

dk

dtk
mY (t)

∣∣∣∣
t=0

.

In other words, the moments of Y can be found by differentiating the mgf.

Uniqueness: Another reason the mgf is important is that it uniquely identifies the distri-
bution of Y . For example, suppose I have a random variable Y whose mgf is given by

mY (t) = e2.5(e
t−1).

Then I know Y ∼ Poisson(λ = 2.5) because this is the mgf of a Poisson random variable
with mean λ = 2.5. Or, perhaps Y has the following mgf:

mY (t) =

(
1

1− 3.6t

)2

, for t < 1/3.6.

In this case, I know Y ∼ gamma(α = 2, β = 3.6) because this is the mgf of a gamma random
variable with shape parameter α = 2 and scale parameter β = 3.6. The uniqueness property
of mgfs stems from the uniqueness of LaPlace transforms in mathematical analysis.

Usefulness: Because a random variable’s mgf uniquely identifies its distribution, we can
exploit this to answer the question posed at the beginning of this chapter, namely,

“If we know the distribution of Y , what is the distribution of U = h(Y )?”

Because mgfs are unique, we now have another approach to try when answering this question.
We can derive the mgf of U and then match it to one that we know (e.g., Poisson, gamma,
etc.). If we can do this, then we know U must have the distribution identified by that mgf.
This is called the method of moment generating functions (i.e., the “mgf technique”).
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Example 6.9. Suppose that Y ∼ gamma(α, β); i.e., Y has a gamma distribution with shape
parameter α > 0 and scale parameter β > 0. For the constant c > 0, find the distribution
of U = h(Y ) = cY .

Solution. We could apply the method of transformations here. Note that u = h(y) = cy is
a strictly increasing (and hence one-to-one) function over RY = {y : y > 0}, the support of
Y . Let’s use the mgf technique instead. Recall that the mgf of Y is

mY (t) =

(
1

1− βt

)α
, t <

1

β
.

The mgf of U = h(Y ) = cY is therefore

mU(t) = E(etU) = E(ectY )

= mY (ct)

=

(
1

1− βct

)α
,

which exists for ct < 1/β ⇐⇒ t < 1/βc. We recognize mU(t) as the mgf of a gamma random
variable with shape parameter α and scale parameter βc. Because mgfs are unique (i.e., they
uniquely identify a distribution), we have U = cY ∼ gamma(α, βc). �

Special case: Suppose Y ∼ gamma(α, β) and take c = 2/β so that

U = h(Y ) = cY =
2Y

β
.

The result in Example 6.9 says

Y ∼ gamma(α, β) =⇒ U =
2Y

β
∼ gamma(α, 2)

d
= χ2(2α).

In other words, we can always convert a gamma random variable Y into a χ2 random variable
by using this specific transformation. This fact is important and will be used repeatedly.

The symbol “
d
=” is read “is equal in distribution” or “has the same distribution as.”

Example 6.10. Suppose Y ∼ N (µ, σ2). For constants a, b ∈ R, derive the distribution of
U = h(Y ) = aY + b.

Solution. Again, we could apply the method of transformations here. Note that u = h(y) =
a+by is a linear (and hence one-to-one) function over RY = {y : −∞ < y <∞}, the support
of Y . Let’s use the mgf technique instead. Recall that the mgf of Y is

mY (t) = exp

(
µt+

σ2t2

2

)
.

The mgf of U = h(Y ) = aY + b is

mU(t) = E(etU) = E[et(aY+b)] = E(eatY+bt) = E(eatY ebt) = ebtE(eatY ) = ebtmY (at).
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Therefore,

mU(t) = ebt exp

[
µ(at) +

σ2(at)2

2

]
= exp

[
(aµ+ b)t+

(a2σ2)t2

2

]
.

We recognize mU(t) as the mgf of a normal random variable with mean aµ+ b and variance
a2σ2. Because mgfs are unique, we have shown

Y ∼ N (µ, σ2) =⇒ U = h(Y ) = aY + b ∼ N (aµ+ b, a2σ2).

In other words, linear functions of normal random variables are normally distributed.

Special case: Suppose Y ∼ N (µ, σ2) and consider

Z =
Y − µ
σ

= aY + b,

where a = 1/σ and b = −µ/σ. With these values of a and b, note that

aµ+ b =
µ

σ
− µ

σ
= 0 and a2σ2 =

σ2

σ2
= 1.

This shows Z ∼ N (0, 1); i.e., Z has a standard normal distribution. �

Remark: The mgf technique is perhaps most useful when finding the distribution of the
sum of independent random variables Y1, Y2, ..., Yn. We start with the n = 2 case.

Result: Suppose Y1 and Y2 are random variables with moment generating functions mY1(t)
and mY2(t), respectively. Define

U = Y1 + Y2,

the sum of Y1 and Y2. If Y1 and Y2 are independent, then

mU(t) = E(etU) = E[et(Y1+Y2)] = E(etY1+tY2) = E(etY1etY2)
Y1⊥⊥Y2= E(etY1)E(etY2) = mY1(t)mY2(t).

Recall from STAT 511 that if Y1 and Y2 are independent, then functions of Y1 and Y2 are
too; e.g., etY1 and etY2 . Therefore, we have shown the mgf of the sum of independent random
variables is the product of the marginal mgfs.

Example 6.11. Suppose Y1 ∼ Poisson(λ1) and Y2 ∼ Poisson(λ2). If Y1 and Y2 are indepen-
dent, the mgf of U = Y1 + Y2 is

mU(t) = mY1(t)mY2(t) = eλ1(e
t−1)eλ2(e

t−1) = e(λ1+λ2)(e
t−1).

We recognize this as the mgf of a Poisson random variable with mean λ = λ1 + λ2. Because
mgfs are unique, we have shown

Y1 ∼ Poisson(λ1), Y2 ∼ Poisson(λ2), Y1 ⊥⊥ Y2 =⇒ U = Y1 + Y2 ∼ Poisson(λ1 + λ2). �
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Note: The mgf result on the last page can be generalized. Suppose Y1, Y2, ..., Yn are mutually
independent random variables with moment generating functions mY1(t), mY2(t), ..., mYn(t),
respectively. Define

U =
n∑
i=1

Yi = Y1 + Y2 + · · ·+ Yn,

the sum of Y1, Y2, ..., Yn. Then

mU(t) = mY1(t)mY2(t) · · ·mYn(t) =
n∏
i=1

mYi(t).

For example, as a generalization of Example 6.11 (last page), if Y1, Y2, ..., Yn were mutually
independent Poisson random variables with means λ1, λ2, ..., λn, respectively, then

U =
n∑
i=1

Yi ∼ Poisson(λ1 + λ2 + · · ·+ λn).

Example 6.12. Suppose Y1, Y2, ..., Yn are mutually independent exponential random vari-
ables, each with the same mean β > 0. For t < 1/β, the mgf of U = Y1 + Y2 + · · · + Yn
is

mU(t) = mY1(t)mY2(t) · · ·mYn(t)

=

(
1

1− βt

)
×
(

1

1− βt

)
× · · · ×

(
1

1− βt

)
=

(
1

1− βt

)n
.

We recognize this as the mgf of a gamma random variable with shape parameter α = n and
scale parameter β. Because mgfs are unique, U = Y1 + Y2 + · · ·+ Yn ∼ gamma(n, β). �

Remark: As wonderful as the mgf technique is (especially when dealing with sums of
independent random variables), it is not always helpful. Suppose that in Example 6.12, the
random variables Y1, Y2, ..., Yn were mutually independent with exponential distributions,
but suppose they had different means, that is, suppose

Y1 ∼ exponential(β1)

Y2 ∼ exponential(β2)
...

Yn ∼ exponential(βn).

In this situation, the mgf of U = Y1 + Y2 + · · ·+ Yn is

mU(t) = mY1(t)mY2(t) · · ·mYn(t)

=

(
1

1− β1t

)
×
(

1

1− β2t

)
× · · · ×

(
1

1− βnt

)
=

n∏
i=1

1

1− βit
.

This is the mgf of U = Y1 + Y2 + · · ·+ Yn, but it does not have a form of one we recognize.
Therefore, we are unable to conclude what the distribution of U is in this case.
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Example 6.13. Suppose Y1, Y2, ..., Yn are mutually independent Bernoulli random variables,
each with success probability (mean) p, where 0 < p < 1. Recall the Bernoulli(p) distribution
is another name for the b(n, p) distribution when n = 1; i.e., the pmf of Y ∼ Bernoulli(p) is

pY (y) =

{
py(1− p)1−y, y = 0, 1

0, otherwise.

The Bernoulli distribution applies when Y has only two outcomes: “success” (Y = 1) and
“failure” (Y = 0). Find the distribution of U = Y1 + Y2 + · · ·+ Yn.

Solution. The mgf of Y ∼ Bernoulli(p) is given by

mY (t) = E(etY ) = (1− p)et(0) + pet(1) = q + pet,

where q = 1− p. Therefore, the mgf of U = Y1 + Y2 + · · ·+ Yn is

mU(t) = mY1(t)mY2(t) · · ·mYn(t)

= (q + pet)× (q + pet)× · · · × (q + pet) = (q + pet)n.

We recognize this as the mgf of a binomial random variable with number of trials n and
success probability p. Because mgfs are unique, U = Y1 + Y2 + · · · + Yn ∼ b(n, p). This
example shows a binomial random variable U ∼ b(n, p) can always be expressed as the sum
of mutually independent Bernoulli random variables, each with the same mean p. �

Example 6.14. Suppose Y1, Y2, ..., Yn are mutually independent normal random variables
with means µ1, µ2, ..., µn and variances σ2

1, σ
2
2, ..., σ

2
n, respectively. That is, suppose

Y1 ∼ N (µ1, σ
2
1)

Y2 ∼ N (µ2, σ
2
2)

...

Yn ∼ N (µn, σ
2
n).

Find the distribution of the linear combination

U =
n∑
i=1

aiYi = a1Y1 + a2Y2 + · · ·+ anYn.

Solution. We studied linear combinations in STAT 511. Recall the mean of U is

E(U) = E

(
n∑
i=1

aiYi

)
=

n∑
i=1

aiE(Yi) =
n∑
i=1

aiµi

and the variance of U is

V (U) = V

(
n∑
i=1

aiYi

)
=

n∑
i=1

a2iV (Yi) + 2
∑∑

i<j

aiajCov(Yi, Yj)︸ ︷︷ ︸
= 0

=
n∑
i=1

a2iV (Yi) =
n∑
i=1

a2iσ
2
i ,
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because Y1, Y2, ..., Yn are mutually independent (i.e., all the covariances are zero). So, we
already know the mean and variance of U . However, what is the distribution of U? The mgf
of U is

mU(t) = E(etU) = E[et(a1Y1+a2Y2+···+anYn)]

= E(ea1tY1ea2tY2 · · · eantYn)

= E(ea1tY1)E(ea2tY2) · · ·E(eantYn)

= mY1(a1t)mY2(a2t) · · ·mYn(ant) =
n∏
i=1

mYi(ait).

Now recall that

mYi(t) = exp

(
µit+

σ2
i t

2

2

)
=⇒ mYi(ait) = exp

(
aiµit+

a2iσ
2
i t

2

2

)
.

Therefore,

mU(t) =
n∏
i=1

exp

(
aiµit+

a2iσ
2
i t

2

2

)
= exp

[(
n∑
i=1

aiµi

)
t+

(
∑n

i=1 a
2
iσ

2
i ) t

2

2

]
.

We recognize this as the mgf of a normal random variable with mean
∑n

i=1 aiµi and variance∑n
i=1 a

2
iσ

2
i . Because mgfs are unique, we have shown

U =
n∑
i=1

aiYi ∼ N

(
n∑
i=1

aiµi,
n∑
i=1

a2iσ
2
i

)
.

In other words, linear combinations of normal random variables are normally distributed.

Remark: Note that if we take

• a1 = a2 = · · · = an = 1:
n∑
i=1

Yi ∼ N

(
n∑
i=1

µi,
n∑
i=1

σ2
i

)
.

• a1 = a2 = · · · = an = 1; µi = µ and σ2
i = σ2 (i.e., common means and variances):

n∑
i=1

Yi ∼ N
(
nµ, nσ2

)
.

• a1 = a2 = · · · = an = 1
n
; µi = µ and σ2

i = σ2 (i.e., common means and variances):

Y =
1

n

n∑
i=1

Yi ∼ N
(
µ,
σ2

n

)
.

Therefore, Example 6.14 has many important special cases (which will be used later). �
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Example 6.15. Suppose Y1, Y2, ..., Yn are mutually independent random variables with

Y1 ∼ N (µ1, σ
2
1)

Y2 ∼ N (µ2, σ
2
2)

...

Yn ∼ N (µn, σ
2
n).

Find the distribution of

U =
n∑
i=1

(
Yi − µi
σi

)2

.

Solution. We have already shown (in Example 6.10) that

Zi =
Yi − µi
σi

∼ N (0, 1)

and we know (from Example 6.4) that Zi ∼ N (0, 1) =⇒ Z2
i ∼ χ2(1). Therefore, we can

write

U =
n∑
i=1

(
Yi − µi
σi

)2

=
n∑
i=1

Z2
i .

Because Y1, Y2, ..., Yn are mutually independent (by assumption), we know that Z2
1 , Z

2
2 , ..., Z

2
n

are too because functions of mutually independent random variables are also mutually inde-
pendent. Recall the mgf of each Z2

i ∼ χ2(1) is given by

mZ2
i
(t) =

(
1

1− 2t

)1/2

, for t < 1/2.

Therefore, the mgf of U is

mU(t) = mZ2
1
(t)mZ2

2
(t) · · ·mZ2

n
(t)

=

(
1

1− 2t

)1/2

×
(

1

1− 2t

)1/2

× · · · ×
(

1

1− 2t

)1/2

=

(
1

1− 2t

)n/2
.

We recognize this as the mgf of a χ2 random variable with n degrees of freedom. Because
mgfs are unique, we have shown

U =
n∑
i=1

(
Yi − µi
σi

)2

∼ χ2(n).

Special case: µi = µ and σ2
i = σ2 (i.e., common means and variances):

1

σ2

n∑
i=1

(Yi − µ)2 ∼ χ2(n).

In Chapter 7, we will show that if we replace µ above with Y , we get

1

σ2

n∑
i=1

(Yi − Y )2 ∼ χ2(n− 1).

A degree of freedom is “lost” for “estimating” the common mean µ with Y . �
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6.5 Bivariate transformations

Univariate transformations: Recall if Y is a continuous random variable with pdf fY (y),
then the pdf of the one-to-one function U = h(Y ), where nonzero, is

fU(u) = fY (h−1(u))

∣∣∣∣ dduh−1(u)

∣∣∣∣ .
We now extend the transformation technique to bivariate distributions.

Setting: Suppose Y = (Y1, Y2) is a continuous random vector with joint pdf fY1,Y2(y1, y2)
and support RY1,Y2 ; i.e., the region in R2 where fY1,Y2(y1, y2) > 0. Define

U1 = h1(Y1, Y2)

U2 = h2(Y1, Y2)

so that (
U1

U2

)
= h

(
Y1
Y2

)
=

(
h1(Y1, Y2)
h2(Y1, Y2)

)
is a vector-valued mapping from RY1,Y2 to

RU1,U2 = {(u1, u2) : u1 = h1(y1, y2), u2 = h2(y1, y2), for (y1, y2) ∈ RY1,Y2},

the support of U = (U1, U2). In what follows, we require h to be a one-to-one transformation.
That is, for each (u1, u2) ∈ RU1,U2 , there is only one (y1, y2) ∈ RY1,Y2 satisfying

u1 = h1(y1, y2)

u2 = h2(y1, y2).

Because h is one-to-one, we can find the inverse transformation

y1 = h−11 (u1, u2)

y2 = h−12 (u1, u2).

The Jacobian of the (inverse) transformation is defined as

J = det

∣∣∣∣∣∣∣∣
∂h−11 (u1, u2)

∂u1

∂h−11 (u1, u2)

∂u2
∂h−12 (u1, u2)

∂u1

∂h−12 (u1, u2)

∂u2

∣∣∣∣∣∣∣∣ ,
that is, J is the determinant of this 2 × 2 matrix of partial derivatives. By the Change of
Variables Theorem from analysis, we conclude the joint pdf of U = (U1, U2), where nonzero,
is given by

fU1,U2(u1, u2) = fY1,Y2(h
−1
1 (u1, u2), h

−1
2 (u1, u2))|J |,

where |J | denotes the absolute value of J .
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Recall: We calculate the determinant of a 2× 2 matrix as follows:

det

∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc.

Example 6.16. Suppose Y1 ∼ gamma(α, 1), Y2 ∼ gamma(β, 1), and Y1 and Y2 are inde-
pendent. Use a bivariate transformation to find the joint pdf of U = (U1, U2), where

U1 = h1(Y1, Y2) = Y1 + Y2

U2 = h2(Y1, Y2) =
Y1

Y1 + Y2
.

Solution. Because Y1 and Y2 are independent, we know the joint pdf of Y = (Y1, Y2) is given
by

fY1,Y2(y1, y2)
Y1⊥⊥Y2= fY1(y1)fY2(y2)

=
1

Γ(α)
yα−11 e−y1︸ ︷︷ ︸
fY1 (y1)

1

Γ(β)
yβ−12 e−y2︸ ︷︷ ︸
fY2 (y2)

=
1

Γ(α)Γ(β)
yα−11 yβ−12 e−(y1+y2),

for y1 > 0 and y2 > 0. That is, the support of Y = (Y1, Y2) is

RY1,Y2 = {(y1, y2) : y1 > 0, y2 > 0},

the entire first quadrant. What is the support of U = (U1, U2)? The transformation

u1 = h1(y1, y2) = y1 + y2

u2 = h2(y1, y2) =
y1

y1 + y2

maps values of (y1, y2) ∈ RY1,Y2 to

RU1,U2 = {(u1, u2) : u1 > 0, 0 < u2 < 1}.

Both support sets are shown in Figure 6.11 (see next page). To verify the transformation
above is one-to-one, we show h(y1, y2) = h(y∗1, y

∗
2) =⇒ y1 = y∗1 and y2 = y∗2, where

h

(
y1
y2

)
=

(
h1(y1, y2)
h2(y1, y2)

)
=

(
y1 + y2
y1

y1 + y2

)
.

Suppose h(y1, y2) = h(y∗1, y
∗
2). This means both of these equations hold:

y1 + y2 = y∗1 + y∗2 and
y1

y1 + y2
=

y∗1
y∗1 + y∗2

.

The two equations together imply that y1 = y∗1. The first equation then implies y2 = y∗2.
Hence, the transformation h : RY1,Y2 → RU1,U2 is one-to-one.
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y1

y 2

0

0

u1

u 2

0

0
1

Figure 6.11: Left: The support RY1,Y2 = {(y1, y2) : y1 > 0, y2 > 0} in Example 6.16. Right:
RU1,U2 = {(u1, u2) : u1 > 0, 0 < u2 < 1}. The transformation h : RY1,Y2 → RU1,U2 .

The inverse transformation is found by solving

u1 = y1 + y2

u2 =
y1

y1 + y2

for y1 = h−11 (u1, u2) and y2 = h−12 (u1, u2). Straightforward algebra shows

y1 = h−11 (u1, u2) = u1u2

y2 = h−12 (u1, u2) = u1(1− u2).

The Jacobian is

J = det

∣∣∣∣∣∣∣∣
∂h−11 (u1, u2)

∂u1

∂h−11 (u1, u2)

∂u2
∂h−12 (u1, u2)

∂u1

∂h−12 (u1, u2)

∂u2

∣∣∣∣∣∣∣∣ = det

∣∣∣∣ u2 u1
1− u2 −u1

∣∣∣∣ = −u1u2 − u1(1− u2) = −u1.

Therefore, the joint pdf of U = (U1, U2), where nonzero, is

fU1,U2(u1, u2) = fY1,Y2(h
−1
1 (u1, u2), h

−1
2 (u1, u2))|J |

= fY1,Y2(u1u2, u1(1− u2))| − u1|

=
1

Γ(α)Γ(β)
(u1u2)

α−1[u1(1− u2)]β−1e−u1u2−u1(1−u2) × u1

=
1

Γ(α)Γ(β)
uα+β−11 uα−12 (1− u2)β−1e−u1 .
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Summarizing,

fU1,U2(u1, u2) =


1

Γ(α)Γ(β)
uα+β−11 uα−12 (1− u2)β−1e−u1 , u1 > 0, 0 < u2 < 1

0, otherwise.

Note: We are done performing the bivariate transformation. We started with the joint pdf
of Y = (Y1, Y2), and now we have the joint pdf of U = (U1, U2). We now make further
observations.

Q: What is the marginal pdf of U1?
A: To find the marginal pdf of U1, we take the joint pdf fU1,U2(u1, u2) and integrate over u2,
that is,

fU1(u1)
u1>0
=

∫ 1

u2=0

1

Γ(α)Γ(β)
uα+β−11 uα−12 (1− u2)β−1e−u1du2

=
1

Γ(α)Γ(β)
uα+β−11 e−u1

∫ 1

u2=0

uα−12 (1− u2)β−1du2

=
1

Γ(α)Γ(β)
uα+β−11 e−u1 × Γ(α)Γ(β)

Γ(α + β)
=

1

Γ(α + β)
uα+β−11 e−u1 .

Summarizing,

fU1(u1) =


1

Γ(α + β)
uα+β−11 e−u1 , u1 > 0

0, otherwise.

We recognize this as a gamma pdf with shape parameter α+β and scale parameter 1. That
is, U1 ∼ gamma(α + β, 1).

Q: What is the marginal pdf of U2?
A: To find the marginal pdf of U2, we take the joint pdf fU1,U2(u1, u2) and integrate over u1,
that is,

fU2(u2)
0<u2<1

=

∫ ∞
u1=0

1

Γ(α)Γ(β)
uα+β−11 uα−12 (1− u2)β−1e−u1du1

=
1

Γ(α)Γ(β)
uα−12 (1− u2)β−1

∫ ∞
u1=0

uα+β−11 e−u1du1

=
1

Γ(α)Γ(β)
uα−12 (1− u2)β−1 × Γ(α + β) =

Γ(α + β)

Γ(α)Γ(β)
uα−12 (1− u2)β−1.

Summarizing,

fU2(u2) =


Γ(α + β)

Γ(α)Γ(β)
uα−12 (1− u2)β−1, 0 < u2 < 1

0, otherwise.

We recognize this as a beta pdf with parameters α and β. That is, U2 ∼ beta(α, β).
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Note: We make an additional observation in Example 6.16. Note that we can write

fU1,U2(u1, u2) =
1

Γ(α)Γ(β)
uα+β−11 uα−12 (1− u2)β−1e−u1

=
1

Γ(α + β)
uα+β−11 e−u1︸ ︷︷ ︸

fU1
(u1)

× Γ(α + β)

Γ(α)Γ(β)
uα−12 (1− u2)β−1︸ ︷︷ ︸
fU2

(u2)

= fU1(u1)fU2(u2).

Therefore, we have shown that U1 ∼ gamma(α + β, 1), U2 ∼ beta(α, β), and U1 and U2 are
independent.

Example 6.17. Suppose Y1 ∼ exponential(1), Y2 ∼ exponential(1), and Y1 and Y2 are
independent. The joint pdf of Y = (Y1, Y2) is therefore

fY1,Y2(y1, y2) =

{
e−(y1+y2), y1 > 0, y2 > 0

0, otherwise.

In Example 6.5, we used the cdf technique to (rather painstakingly) show

U1 = Y1 + Y2 ∼ gamma(2, 1).

This is much easier to show by using the mgf technique; note that for t < 1, we have

mU1(t) = mY1(t)mY2(t) =
1

1− t
× 1

1− t
=

(
1

1− t

)2

,

which is the gamma(2, 1) mgf.

Q: What is the distribution of U2 = Y1 − Y2?
A: The random variable U2 does have a “named distribution,” but it is much less well known.
One thing we might try to do first is to derive the moment generating function of U2. From
first principles,

mU2(t) = E(etU2) = E[et(Y1−Y2)] = E(etY1e−tY2)
Y1⊥⊥Y2= E(etY1)E(e−tY2)

= mY1(t)mY2(−t) =
1

1− t
× 1

1 + t
=

1

1− t2
.

Note that this mgf is valid for t < 1 and −t < 1 ⇐⇒ −1 < t < 1. This is the mgf of a
double exponential random variable; the pdf of U2 is

fU2(u2) =


1

2
e−|u2|, −∞ < u2 <∞

0, otherwise.

The double exponential distribution is also known as the LaPlace distribution. The pdf
of U2 is shown in Figure 6.12 (see next page).
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Figure 6.12: The standard double exponential (LaPlace) pdf.

Derivation: Starting with the joint pdf

fY1,Y2(y1, y2) =

{
e−(y1+y2), y1 > 0, y2 > 0

0, otherwise,

let’s derive the pdf of U2 = Y1−Y2 by using a bivariate transformation. Of course, we cannot
perform a bivariate transformation with only 1 random variable, so let’s use

U1 = h1(Y1, Y2) = Y1 + Y2

U2 = h2(Y1, Y2) = Y1 − Y2.

Our strategy will be to use a bivariate transformation to derive the joint pdf fU1,U2(u1, u2).
We will then integrate fU1,U2(u1, u2) over u1 to derive the (marginal) pdf of U2.

The bivariate support of Y = (Y1, Y2) is RY1,Y2 = {(y1, y2) : y1 > 0, y2 > 0}, the entire
first quadrant; see Figure 6.13 (left) on the next page. We need to determine the support of
U = (U1, U2). Clearly,

y1 > 0, y2 > 0 =⇒ u1 = y1 + y2 > 0.

In addition,
u2 = y1 − y2 < y1 + y2 = u1 =⇒ u2 < u1.
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y1
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0

0

u1

u 2

0

0
Figure 6.13: Left: The support RY1,Y2 = {(y1, y2) : y1 > 0, y2 > 0} in Example 6.17. Right:
RU1,U2 = {(u1, u2) : u1 > 0, −u1 < u2 < u1}. The upper boundary line is u2 = u1; the lower
is u2 = −u1.

Finally,
u2 = y1 − y2 > −y1 − y2 = −u1 =⇒ − u1 < u2.

Therefore, the support of U = (U1, U2) is

RU1,U2 = {(u1, u2) : u1 > 0, − u1 < u2 < u1}.

This set is shown above in Figure 6.13 (right). The joint pdf fU1,U2(u1, u2), which we are
about to derive, is nonzero over this region.

We next have to verify the transformation defined by

u1 = h1(y1, y2) = y1 + y2

u2 = h2(y1, y2) = y1 − y2

is one-to-one. Note that this is a linear transformation; i.e., we have

u =

(
u1
u2

)
=

(
y1 + y2
y1 − y2

)
=

(
1 1
1 −1

)(
y1
y2

)
= Ay,

where

A =

(
1 1
1 −1

)
and y =

(
y1
y2

)
.

We know this (linear) transformation is one-to-one because A−1 exists; e.g., det(A) 6= 0, the
columns of A are linearly independent, rank(A) = 2; i.e., A is full rank, etc.
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Because the transformation

u1 = h1(y1, y2) = y1 + y2

u2 = h2(y1, y2) = y1 − y2
is one-to-one, we can find the (unique) inverse transformation. Straightforward algebra shows

y1 = h−11 (u1, u2) =
u1 + u2

2

y2 = h−12 (u1, u2) =
u1 − u2

2
.

The Jacobian is

J = det

∣∣∣∣∣∣∣∣
∂h−11 (u1, u2)

∂u1

∂h−11 (u1, u2)

∂u2
∂h−12 (u1, u2)

∂u1

∂h−12 (u1, u2)

∂u2

∣∣∣∣∣∣∣∣ = det

∣∣∣∣ 1
2

1
2

1
2
−1

2

∣∣∣∣ =
1

2

(
−1

2

)
− 1

2

(
1

2

)
= −1

2
.

Therefore, the joint pdf of U = (U1, U2), where nonzero, is

fU1,U2(u1, u2) = fY1,Y2(h
−1
1 (u1, u2), h

−1
2 (u1, u2))|J |

= fY1,Y2

(
u1 + u2

2
,
u1 − u2

2

) ∣∣∣∣−1

2

∣∣∣∣
=

1

2
exp

[
−
(
u1 + u2

2
+
u1 − u2

2

)]
=

1

2
e−u1 .

Summarizing,

fU1,U2(u1, u2) =


1

2
e−u1 , u1 > 0, −u1 < u2 < u1

0, otherwise.

Finally, to derive the fU2(u2), the marginal pdf of U2 = Y2 − Y1, we integrate the joint pdf
fU1,U2(u1, u2) over u1. From Figure 6.13 (right; last page), we should quickly see that how
we integrate over u1 depends on whether u2 < 0 or u2 ≥ 0.

Case 1: u2 < 0. The marginal pdf of U2 is

fU2(u2)
u2<0
=

∫ ∞
u1=−u2

1

2
e−u1du1 =

1

2

(
−e−u1

∣∣∣∣∞
u1=−u2

)
=

1

2
eu2 .

Case 2: u2 ≥ 0. The marginal pdf of U2 is

fU2(u2)
u2>0=

∫ ∞
u1=u2

1

2
e−u1du1 =

1

2

(
−e−u1

∣∣∣∣∞
u1=u2

)
=

1

2
e−u2 .

Combining both cases, we have

fU2(u2) =


1

2
e−|u2|, −∞ < u2 <∞

0, otherwise.

We have shown the difference of two independent exponential(1) random variables follows a
standard double exponential (LaPlace) distribution.
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Q: How could we find the mean and variance of U2?
A: To find E(U2), we could calculate

E(U2) =

∫
R
u2fU2(u2)du2 =

∫ ∞
−∞

u2
2
e−|u2|du2.

We could then calculate

E(U2
2 ) =

∫
R
u22fU2(u2)du2 =

∫ ∞
−∞

u22
2
e−|u2|du2

and get V (U2) using the variance computing formula. Alternatively, we could recall the mgf
of U2 is

mU2(t) =
1

1− t2
, for −1 < t < 1,

and get the moments of U2 from mU2(t). Ultimately, it is easiest to use the Law of the Un-
conscious Statistician. Because Y1 and Y2 are independent exponential(1) random variables,
we have

E(U2) = E(Y1 − Y2) = E(Y1)− E(Y2) = 1− 1 = 0

and
V (U2) = V (Y1 − Y2)

Y1⊥⊥Y2= V (Y1) + V (Y2) = 1 + 1 = 2. �

Remark: We now generalize the exercise of performing bivariate transformations (in two
dimensions) to that of performing transformations in higher dimensions.

Setting: Suppose that Y = (Y1, Y2, ..., Yn) is a continuous random vector with joint pdf
fY(y1, y2, ..., yn), which is nonzero over the support RY ⊂ Rn. Define

U1 = h1(Y1, Y2, ..., Yn)

U2 = h2(Y1, Y2, ..., Yn)
...

Un = hn(Y1, Y2, ..., Yn).

Assume this is a one-to-one transformation from RY to

RU = {(u1, u2, ..., un) : ui = hi(y1, y2, ..., yn), i = 1, 2, ..., n, for (y1, y2, ..., yn) ∈ RY},

the support of U = (U1, U2, ..., Un). Because the transformation is one-to-one, the inverse
transformation exists and is

y1 = h−11 (u1, u2, ..., un)

y2 = h−12 (u1, u2, ..., un)
...

yn = h−1n (u1, u2, ..., un).
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With u = (u1, u2, ..., un), the Jacobian of the inverse transformation is

J = det



∂h−11 (u)

∂u1

∂h−11 (u)

∂u2
· · · ∂h−11 (u)

∂un
∂h−12 (u)

∂u1

∂h−12 (u)

∂u2
· · · ∂h−12 (u)

∂un
...

...
. . .

...
∂h−1n (u)

∂u1

∂h−1n (u)

∂u2
· · · ∂h−1n (u)

∂un


;

i.e., J is the determinant of this n × n matrix of partial derivatives. The pdf of U =
(U1, U2, ..., Un), where nonzero, is given by

fU(u1, u2, ..., un) = fY(h−11 (u1, u2, ..., un), h−12 (u1, u2, ..., un), ..., h−1n (u1, u2, ..., un))|J |.

This result generalizes our discussion on bivariate transformations (in two dimensions).

Example 6.18. Suppose Y = (Y1, Y2, Y3) is a continuous random vector with joint pdf

fY(y1, y2, y3) =

{
48y1y2y3, 0 < y1 < y2 < y3 < 1

0, otherwise.

Define

U1 = h1(Y1, Y2, Y3) =
Y1
Y2

U2 = h2(Y1, Y2, Y3) =
Y2
Y3

U3 = h3(Y1, Y2, Y3) = Y3.

Perform a trivariate transformation to derive the joint pdf of U = (U1, U2, U3).

Solution. Note that the support of Y = (Y1, Y2, Y3) is

RY = {(y1, y2, y3) : 0 < y1 < y2 < y3 < 1},

the upper orthant of the unit cube in R3. The support of U is

RU = {(u1, u2, u3) : 0 < u1 < 1, 0 < u2 < 1, 0 < u3 < 1},

the entire unit cube. It is easy to show the transformation defined by

u1 = h1(y1, y2, y3) =
y1
y2

u2 = h2(y1, y2, y3) =
y2
y3

u3 = h3(y1, y2, y3) = y3

is one-to-one. Suppose hi(y1, y2, y3) = hi(y
∗
1, y
∗
2, y
∗
3), for i = 1, 2, 3. The third equation

implies y3 = y∗3. The second equation implies y2 = y∗2. The first equation implies y1 = y∗1.
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Because the transformation is one-to-one, the inverse transformation exists and is given by

y1 = h−11 (u1, u2, u3) = u1u2u3

y2 = h−12 (u1, u2, u3) = u2u3

y3 = h−13 (u1, u2, u3) = u3.

With u = (u1, u2, u3), the Jacobian of the inverse transformation is

J = det


∂h−11 (u)

∂u1

∂h−11 (u)

∂u2

∂h−11 (u)

∂u3
∂h−12 (u)

∂u1

∂h−12 (u)

∂u2

∂h−12 (u)

∂u3
∂h−13 (u)

∂u1

∂h−13 (u)

∂u2

∂h−13 (u)

∂u3

 = det

 u2u3 u1u3 u1u2
0 u3 u2
0 0 1

 = u2u
2
3.

Therefore, the joint pdf of U = (U1, U2, U3), where nonzero, is given by

fU(u1, u2, u3) = fY(h−11 (u1, u2, u3), h
−1
2 (u1, u2, u3), h

−1
3 (u1, u2, u3))|J |

= 48(u1u2u3)(u2u3)(u3)× u2u23
= 48u1u

3
2u

5
3.

Summarizing,

fU(u1, u2, u3) =

{
48u1u

3
2u

5
3, 0 < u1 < 1, 0 < u2 < 1, 0 < u3 < 1

0, otherwise.

Note: We are done performing the trivariate transformation. We started with the joint pdf
of Y = (Y1, Y2, Y3), and now we have the joint pdf of U = (U1, U2, U3).

Note: We make additional observations in Example 6.18. Note that we can write

fU1,U2,U3(u1, u2, u3) = 48u1u
3
2u

5
3

= 2u1 × 4u32 × 6u53 = fU1(u1)fU2(u2)fU3(u3),

where the marginal pdfs are

fU1(u1) =

{
2u1, 0 < u1 < 1

0, otherwise,
fU2(u2) =

{
4u32, 0 < u2 < 1

0, otherwise,

and

fU3(u3) =

{
6u53, 0 < u3 < 1

0, otherwise.

Therefore, U1 ∼ beta(2, 1), U2 ∼ beta(4, 1), U3 ∼ beta(6, 1), and U1, U2, and U3 are mutually
independent. �
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6.6 Order statistics

Remark: We encounter order statistics on a daily basis. Phrases like “minimum temper-
ature,” “maximum tolerable dose,” “highest test score,” “lowest barometric pressure,” and
“median salary” all refer to order statistics. Mathematically, order statistics are the ordered
values of random variables.

Terminology: Suppose Y1, Y2, ..., Yn are random variables. The order statistics are the
ordered values of Y1, Y2, ..., Yn; i.e.,

Y(1) = min{Y1, Y2, ..., Yn}
Y(2) = second smallest of Y1, Y2, ..., Yn

...

Y(n) = max{Y1, Y2, ..., Yn}.

Therefore, order statistics satisfy Y(1) ≤ Y(2) ≤ · · · ≤ Y(n).

Example 6.19. Non-small cell lung cancer (NSCLC) is the most common type of lung
cancer in humans (roughly 85% of all cases). A recent study in Japanese Journal of Clinical
Oncology examined a small group of NSCLC patients who had been treated with both
gefitinib and erlotinib (two cancer drugs). Here were the times until treatment failure (TTF,
in months) for n = 14 patients:

0.8 7.5 13.4 1.4 0.5 68.9 16.1 20.4 15.6 4.2 2.4 8.2 5.3 14.0

The authors described how “treatment failure” could mean disease progression to a higher
stage, withdrawal from treatment due to adverse reaction, or death. Here are the order
statistics:

0.5 0.8 1.4 2.4 4.2 5.3 7.5 8.2 13.4 14.0 15.6 16.1 20.4 68.9

In this example, we see y1 = 0.8 = y(2), y2 = 7.5 = y(7), and so on. The minimum and
maximum order statistics are

y(1) = 0.5 and y(14) = 68.9,

respectively. Many other familiar quantities are either order statistics themselves or functions
of order statistics. For example, the median of these observations is

m =
y(7) + y(8)

2
=

7.5 + 8.2

2
= 7.85.

The range is r = y(14) − y(1) = 68.9 − 0.5 = 68.4 and the interquartile range is IQR =
y(11) − y(4) = 15.6− 2.4 = 13.2. �
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Setting: Suppose Y1, Y2, ..., Yn are mutually independent continuous random variables, with
common cdf FY (y) and pdf fY (y). Our goal is to derive the distributions of the order
statistics Y(1), Y(2), ..., Y(n).

Preview: Most of the time, but certainly not always, we will be interested in minimums and
maximums. We will show the pdf of the minimum order statistic Y(1), where nonzero, is

fY(1)(y) = nfY (y)[1− FY (y)]n−1.

We will also show the pdf of the maximum order statistic Y(n), where nonzero, is

fY(n)(y) = nfY (y)[FY (y)]n−1.

These formulas are important and should be committed to memory. In general, the pdf of
the kth order statistic Y(k), where nonzero, is

fY(k)(y) =
n!

(k − 1)!(n− k)!
[FY (y)]k−1fY (y)[1− FY (y)]n−k.

Note that when k = 1 (minimum), this formula reduces to the one for fY(1)(y). Similarly,
when k = n (maximum), this formula reduces to the one for fY(n)(y).

Remark: It is important to discuss the assumptions stated above. We are assuming the
random variables Y1, Y2, ..., Yn

• are continuous

• are mutually independent

• all have the same probability distribution described by FY (y) and fY (y).

It makes perfect sense to think about order statistics when Y1, Y2, ..., Yn are discrete; however,
allowing for the possibility of “ties” among the observations makes the mathematics more
difficult. Note that when Y1, Y2, ..., Yn are truly continuous, then, theoretically, ties are not
possible; i.e.,

Y(1) < Y(2) < · · · < Y(n)

with probability one. The second and third assumptions also simplify the mathematics,
enabling us to get the closed-form expressions above.

Important: Going forward, when random variables Y1, Y2, ..., Yn are (a) mutually indepen-
dent and (b) have the same or “identical” distribution, we will streamline this by saying

“Y1, Y2, ..., Yn are independent and identically distributed.”

This can be streamlined further by saying “Y1, Y2, ..., Yn are iid.” We usually describe the
common distribution of Y1, Y2, ..., Yn by referencing the pdf fY (y), the cdf FY (y), or even the
mgf mY (t).
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Derivations: Suppose Y1, Y2, ..., Yn are iid with cdf FY (y) and pdf fY (y). The cdf of the
minimum order statistic Y(1) is

FY(1)(y) = P (Y(1) ≤ y) = 1− P (Y(1) > y)

= 1− P (Y1 > y, Y2 > y, ..., Yn > y)

= 1− P (Y1 > y)P (Y2 > y) · · ·P (Yn > y)

= 1− [P (Y > y)]n

= 1− [1− P (Y ≤ y)]n

= 1− [1− FY (y)]n.

Therefore, the pdf of Y(1), where nonzero, is given by

fY(1)(y) =
d

dy
FY(1)(y)

=
d

dy
{1− [1− FY (y)]n}

= −n[1− FY (y)]n−1[−fY (y)] = nfY (y)[1− FY (y)]n−1.

This is our closed-form expression for the pdf of the minimum order statistic. Now, the
maximum. The cdf of the maximum order statistic Y(n) is

FY(n)(y) = P (Y(n) ≤ y) = P (Y1 ≤ y, Y2 ≤ y, ..., Yn ≤ y)

= P (Y1 ≤ y)P (Y2 ≤ y) · · ·P (Yn ≤ y)

= [P (Y ≤ y)]n

= [FY (y)]n.

Therefore, the pdf of Y(n), where nonzero, is given by

fY(n)(y) =
d

dy
FY(n)(y)

=
d

dy
{[FY (y)]n} = nfY (y)[FY (y)]n−1.

This is our closed-form expression for the pdf of the maximum order statistic.

Example 6.20. Suppose Y1, Y2, ..., Yn are iid exponential with mean β > 0. Recall the
exponential(β) pdf is given by

fY (y) =


1

β
e−y/β, y > 0

0, otherwise

and the exponential(β) cdf is

FY (y) =

{
0, y ≤ 0

1− e−y/β, y > 0.

In this example, we will find the pdf of Y(1), the minimum order statistic, and the pdf of
Y(n), the maximum order statistic.
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Figure 6.14: Exponential pdf with mean β = 12.

Solutions. The pdf of Y(1), for y > 0, is given by

fY(1)(y) = nfY (y)[1− FY (y)]n−1 = n

(
1

β
e−y/β

)
[1− (1− e−y/β)]n−1

=
n

β
e−y/β(e−y/β)n−1

=
n

β
(e−y/β)n =

n

β
e−ny/β.

Summarizing,

fY(1)(y) =


n

β
e−ny/β, y > 0

0, otherwise.

Note that the nonzero part of this pdf can be written as

n

β
e−ny/β =

1(
β
n

)e−y/( βn),

which we recognize as an exponential pdf with mean β/n. Therefore,

Y1, Y2, ..., Yn ∼ iid exponential(β) =⇒ Y(1) ∼ exponential(β/n).
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Figure 6.15: Left: Pdf of the minimum order statistic Y(1) in Example 6.19 assuming an
exponential distribution for TTF with mean β = 12 months. Right: Pdf of Y(14), the
maximum order statistic. Note that the horizontal axes are different in the two figures.

The pdf of Y(n), for y > 0, is given by

fY(n)(y) = nfY (y)[FY (y)]n−1 = n

(
1

β
e−y/β

)
(1− e−y/β)n−1 =

n

β
e−y/β(1− e−y/β)n−1.

Summarizing,

fY(n)(y) =


n

β
e−y/β(1− e−y/β)n−1, y > 0

0, otherwise.

This pdf is not one of a “named” distribution, but it is a valid pdf nonetheless.

Application: Suppose the time until treatment failure (TTF) for the n = 14 cancer patients
in Example 6.19 follows an exponential distribution with mean β = 12 months. This pdf is
shown in Figure 6.14 (see previous page). Under this assumption, the pdf of the minimum
and maximum order statistics are given by

fY(1)(y) =


14

12
e−14y/12, y > 0

0, otherwise

and

fY(14)(y) =


14

12
e−y/12(1− e−y/12)13, y > 0

0, otherwise,

respectively. These pdfs are shown in Figure 6.15 above. �
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Derivation: Suppose Y1, Y2, ..., Yn are iid with cdf FY (y) and pdf fY (y). We now argue the
pdf of the kth order statistic Y(k), where nonzero, is

fY(k)(y) =
n!

(k − 1)!(n− k)!
[FY (y)]k−1fY (y)[1− FY (y)]n−k.

Our argument is heuristic. Think of each of Y1, Y2, ..., Yn as a “trial,” and consider the
trinomial distribution with the following categories:

Category Description Probability # Observations
1 Less than y p1 = P (Y < y) = FY (y) k − 1
2 Equal to y p2 = P (Y = y) = “fY (y)” 1
3 Greater than y p3 = P (Y > y) = 1− FY (y) n− k

Now, utilize the trinomial pmf with these category probabilities and counts (# observations)
to get

n!

(k − 1)! 1! (n− k)!
pk−11 p12 p

n−k
3 =

n!

(k − 1)!(n− k)!
[FY (y)]k−1fY (y)[1− FY (y)]n−k.

Example 6.21. Suppose Y1, Y2, ..., Yn are iid U(0, 1); i.e., a uniform distribution from 0 to
1. Recall the U(0, 1) pdf is given by

fY (y) =

{
1, 0 < y < 1

0, otherwise

and the U(0, 1) cdf is

FY (y) =


0, y ≤ 0

y, 0 < y < 1

1, y ≥ 1.

Find the pdf of Y(k), the kth order statistic.

Solution. The pdf of Y(k), for 0 < y < 1, is given by

fY(k)(y) =
n!

(k − 1)!(n− k)!
[FY (y)]k−1fY (y)[1− FY (y)]n−k

=
n!

(k − 1)!(n− k)!
yk−1 (1) (1− y)n−k.

Writing n! = Γ(n+ 1), (k − 1)! = Γ(k) and (n− k)! = Γ(n− k + 1), note that

fY(k)(y) =
Γ(n+ 1)

Γ(k)Γ(n− k + 1)
yk−1(1− y)(n−k+1)−1,

for 0 < y < 1. We recognize this as a beta pdf with parameters α = k and β = n − k + 1.
Therefore, Y(k) ∼ beta(k, n− k + 1). See Figure 6.16 (next page). �
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Figure 6.16: Upper left: U(0, 1) pdf in Example 6.21. All order statistic distributions in the
remaining figures are based on n = 25 observations from the U(0, 1) distribution. Upper
right: Pdf of the minimum order statistic Y(1) ∼ beta(1, 25). Lower left: Pdf of the median
Y(13) ∼ beta(13, 13). Lower right: Pdf of the maximum order statistic Y(25) ∼ beta(25, 1).
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Note: Many common statistics are functions of two order statistics; e.g., the range, the
interquartile range, etc. We now describe the joint pdf of any two order statistics.

Result: Suppose Y1, Y2, ..., Yn are iid with cdf FY (y) and pdf fY (y). The joint pdf of Y(j)
and Y(k), 1 ≤ j < k ≤ n, where nonzero, is given by

fY(j),Y(k)(yj, yk) =
n!

(j − 1)!(k − 1− j)!(n− k)!
[FY (yj)]

j−1fY (yj)[FY (yk)− FY (yj)]
k−1−j

× fY (yk)[1− FY (yk)]
n−k.

Analogous to before (when finding the marginal pdf of Y(k)), we can see where this formula
comes from by appealing to the multinomial distribution with the following categories and
probabilities:

Category Description Probability # Observations
1 Less than yj p1 = FY (yj) j − 1
2 Equal to yj p2 = “fY (yj)” 1
3 Between yj and yk p3 = FY (yk)− FY (yj) k − 1− j
4 Equal to yk p4 = “fY (yk)” 1
5 Greater than yk p5 = 1− FY (yk) n− k

Note that the multinomial coefficient

n!

(j − 1)! 1! (k − 1− j)! 1! (n− k)!
=

n!

(j − 1)!(k − 1− j)!(n− k)!

counts the number of ways the n observations Y1, Y2, ..., Yn (“trials”) can fall into these 5
categories.

Special case: The formula for fY(j),Y(k)(yj, yk) above simplifies substantially when j = 1
(minimum) and k = n (maximum). The joint pdf of the minimum and maximum order
statistics, Y(1) and Y(n), where nonzero, is

fY(1),Y(n)(y1, yn) = n(n− 1)fY (y1)[FY (yn)− FY (y1)]
n−2fY (yn).

Example 6.22. Suppose Y1, Y2, ..., Yn are iid U(0, 1). Recall the U(0, 1) pdf is given by

fY (y) =

{
1, 0 < y < 1

0, otherwise

and the U(0, 1) cdf is

FY (y) =


0, y ≤ 0

y, 0 < y < 1

1, y ≥ 1.

(a) Find the joint pdf of Y(1) and Y(n).
(b) Find the pdf of the range Y(n) − Y(1).
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Figure 6.17: Left: The support RY(1),Y(n) = {(y1, yn) : 0 < y1 < yn < 1} in Example 6.22.
Right: RU1,U2 = {(u1, u2) : 0 < u1 < u2 < 1}.

Solutions. (a) Note that the support of (Y(1), Y(n)) is RY(1),Y(n) = {(y1, yn) : 0 < y1 < yn < 1},
which makes sense because the minimum Y(1) cannot be greater than the maximum Y(n).
Therefore, for 0 < y1 < yn < 1, the joint pdf of Y(1) and Y(n) is

fY(1),Y(n)(y1, yn) = n(n− 1)fY (y1)[FY (yn)− FY (y1)]
n−2fY (yn)

= n(n− 1)(yn − y1)n−2.

Summarizing,

fY(1),Y(n)(y1, yn) =

{
n(n− 1)(yn − y1)n−2, 0 < y1 < yn < 1

0, otherwise.

The support of (Y(1), Y(n)) is shown in Figure 6.17 above (left). The joint pdf fY(1),Y(n)(y1, yn)

is a three-dimensional function which takes the value n(n − 1)(yn − y1)n−2 over this region
(and equals zero, otherwise).

(b) To find the pdf of the range, let’s use a bivariate transformation with

U1 = h1(Y(1), Y(n)) = Y(n) − Y(1)
U2 = h2(Y(1), Y(n)) = Y(n).

The formula for the joint pdf fY(1),Y(n)(y1, yn) is above. We will perform the bivariate trans-
formation to derive fU1,U2(u1, u2), the joint pdf of U = (U1, U2). We will then integrate
fU1,U2(u1, u2) over u2 to obtain the (marginal) pdf of U1 = Y(n) − Y(1).
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Let’s first determine the support of U = (U1, U2). Note that

0 < y(1) < y(n) < 1 =⇒ u1 = y(n) − y(1) ∈ (0, 1).

Also, u2 = y(n) > y(n) − y(1) = u1. Therefore, the support of U = (U1, U2) is RU1,U2 =
{(u1, u2) : 0 < u1 < u2 < 1}; see Figure 6.17 (previous page; right). We next have to verify
the transformation defined by

u1 = h1(y(1), y(n)) = y(n) − y(1)
u2 = h2(y(1), y(n)) = y(n).

is one-to-one. Note that this is a linear transformation; i.e., we have

u =

(
u1
u2

)
=

(
y(n) − y(1)

y(n)

)
=

(
−1 1

0 1

)(
y(1)
y(n)

)
= A

(
y(1)
y(n)

)
,

where

A =

(
−1 1

0 1

)
.

We know this (linear) transformation is one-to-one because A−1 exists. Therefore, the inverse
transformation exists and is given by

y(1) = h−11 (u1, u2) = u2 − u1
y(n) = h−12 (u1, u2) = u2.

The Jacobian of the (inverse) transformation is

J = det

∣∣∣∣∣∣∣∣
∂h−11 (u1, u2)

∂u1

h−11 (u1, u2)

∂u2
∂h−12 (u1, u2)

∂u1

∂h−12 (u1, u2)

∂u2

∣∣∣∣∣∣∣∣ = det

∣∣∣∣ −1 1
0 1

∣∣∣∣ = −1.

Therefore, the joint pdf of U = (U1, U2) is

fU1,U2(u1, u2) = fY(1),Y(n)(h
−1
1 (u1, u2), h

−1
2 (u1, u2))|J |

= n(n− 1)[u2 − (u2 − u1)]n−2 = n(n− 1)un−21 ,

for 0 < u1 < u2 < 1; see Figure 6.17 (last page; right). Therefore, the (marginal) pdf of
U1 = Y(n) − Y(1), for 0 < u1 < 1, is

fU1(u1) =

∫
R
fU1,U2(u1, u2)du2 =

∫ 1

u2=u1

n(n− 1)un−21 du2

= n(n− 1)un−21 (1− u1)

=
Γ(n+ 1)

Γ(n− 1)Γ(2)
u
(n−1)−1
1 (1− u1)2−1,

a beta pdf with parameters α = n− 1 and β = 2; i.e., U1 = Y(n) − Y(1) ∼ beta(n− 1, 2). �
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7 Sampling Distributions and the Central Limit The-

orem

7.1 Introduction

Preview: Suppose Y1, Y2, ..., Yn are random variables. In most of the problems we encounter
going forward, Y1, Y2, ..., Yn will be regarded as “iid” random variables from some common
probability distribution. We will denote this probability distribution by pY (y) or fY (y),
depending on whether the random variables are discrete or continuous, respectively. Re-
call that the acronym “iid” means “independent and identically distributed.” That is, the
random variables Y1, Y2, ..., Yn

• are mutually independent

• all have the same (or identical) probability distribution described by pY (y) or fY (y).

Important: In statistical applications, one often envisions Y1, Y2, ..., Yn as being observations
on n individuals which have been sampled from a large population of individuals. Under
this conceptualization, the common probability distribution pY (y) or fY (y) is called the
population distribution. The population distribution describes the distribution of the
random variable Y for each individual in the population. In other words, pY (y) or fY (y)
serve as probability models for a population.

Terminology: A random sample Y1, Y2, ..., Yn measures the value of Y for a sample of
n individuals drawn from the population and is viewed as n iid replicates of the random
variable Y . We call n the sample size. For our purposes, the phrase “random sample” and
“iid sample” will mean the same thing.

Examples:

1. The body mass index Y is measured for n = 328 fourth-grade children. Suppose the
measurements Y1, Y2, ..., Y328 are iid from a gamma(α, β) population distribution.

2. The number of days spent in a neonatal intensive care unit Y is observed for n = 127
premature infants. Suppose the number of days Y1, Y2, ..., Y127 are iid from a Poisson(λ)
population distribution.

3. The claim amount Y is recorded for a sample of n = 111 car accidents. Suppose the
amounts Y1, Y2, ..., Y111 are iid from a lognormal(µ, σ2) population distribution.

4. The disease status Y (diseased/not) is observed for n = 42 USC students who visit
the Student Health Center in a given week. Suppose the statuses Y1, Y2, ..., Y42 are iid
from a Bernoulli(p) population distribution.

Remark: A common format for a first sequence in mathematical statistics (like STAT
511-512-513) is to accept a given parametric family of distributions (e.g., normal, Pois-
son, gamma, etc.) as being appropriate for the population and then proceed to develop
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what is exclusively model-dependent, parametric statistical inference. This is in contrast to
nonparametric inference, which may make few or no assumptions about the underlying
population distribution.

Terminology: Suppose Y1, Y2, ..., Yn is a random sample (iid sample) from a population
distribution described by pY (y) or fY (y). In mathematical terms, a statistic T is a function
of Y1, Y2, ..., Yn, that is,

T = T (Y) = T (Y1, Y2, ..., Yn).

In other words, a statistic is a function of the sample Y1, Y2, ..., Yn.

Examples: Here are some common statistics:

1. Sample sum:

T (Y) =
n∑
i=1

Yi

2. Sample mean:

T (Y) = Y =
1

n

n∑
i=1

Yi

3. Sample variance:

T (Y) = S2 =
1

n− 1

n∑
i=1

(Yi − Y )2

4. Minimum order statistic: T (Y) = Y(1) = min{Y1, Y2, ..., Yn}

5. Sample range: T (Y) = Y(n) − Y(1).

Remark: The definition of a statistic is very broad. For example, even something highly
nonstandard like

T (Y) = ln(S2 + 5)− 12.08e− tan(
∑n
i=1 |Y 3

i |) + 9.44

satisfies the definition. It is a function of the sample Y1, Y2, ..., Yn.

Restriction: There is one important restriction in the definition. A statistic T = T (Y)
cannot depend on any population-level parameters that are unknown. For example, if the
population mean E(Y ) = µ and the population variance V (Y ) = σ2 are unknown, then

• Y is a statistic, but Y − µ is not.

• S2 is a statistic, but S2/σ2 is not.

In other words, we have to be able to calculate the value of T once the random variables’
values Y1 = y1, Y2 = y2, ..., Yn = yn have been observed. We cannot calculate T if it depends
on (population-level) quantities that are not known.
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Terminology: Suppose Y1, Y2, ..., Yn is a random sample (iid sample) from a population
distribution described by pY (y) or fY (y). Suppose T = T (Y) is a statistic. The probability
distribution of T is called its sampling distribution.

Revelation: Because T = T (Y), a function of Y1, Y2, ..., Yn, a statistic T is itself a random
variable. Therefore, T has its own probability distribution! This distribution is called the
sampling distribution of T . In notation,

Y1, Y2, ..., Yn ∼ pY (y), fY (y) ←− population distribution

T = T (Y) = T (Y1, Y2, ..., Yn) ∼ pT (t), fT (t) ←− sampling distribution of T .

Common goals: For a statistic T = T (Y), we may want to find its pmf pT (t) or pdf
fT (t), its cdf FT (t), or perhaps its mgf mT (t). These functions identify the (sampling)
distribution of T . We might also want to calculate E(T ) or V (T ). These quantities describe
characteristics of T ’s (sampling) distribution.

Importance: In mathematical statistics, being able to derive sampling distributions (or
characteristics of them) is critical; this enables us to understand the underlying mathematical
characteristics of inference procedures that are common in statistical practice. This includes
confidence intervals and hypothesis tests that are used with single populations, multiple
populations (e.g., ANOVA, etc.), regression analysis, time-to-event (survival) analysis, and
elsewhere.

7.2 Sample sums and averages

Preview: Sums and averages are common statistics. We start by examining characteristics
of well known statistics and then present an important result (involving mgfs) that makes
obtaining sampling distributions of sums and averages fairly routine.

Result: Suppose Y1, Y2, ..., Yn is a random sample (iid sample) from a population distribution
with mean E(Y ) = µ and variance V (Y ) = σ2. Then

(a) E(Y ) = µ

(b) V (Y ) = σ2/n

(c) E(S2) = σ2.

Remark: We already proved parts (a) and (b) in STAT 511; see Example 5.22 (notes, pp
157-158). Recall that

E(Y ) = E

(
1

n

n∑
i=1

Yi

)
=

1

n
E

(
n∑
i=1

Yi

)
=

1

n

n∑
i=1

E(Yi) =
1

n

n∑
i=1

µ =
nµ

n
= µ.

In addition,

V (Y ) = V

(
1

n

n∑
i=1

Yi

)
=

1

n2
V

(
n∑
i=1

Yi

)
=

1

n2

n∑
i=1

V (Yi) =
1

n2

n∑
i=1

σ2 =
nσ2

n2
=
σ2

n
.
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To prove part (c), first note that

n∑
i=1

(Yi − Y )2 =
n∑
i=1

Y 2
i − nY

2
.

Therefore,

E(S2) = E

[
1

n− 1

n∑
i=1

(Yi − Y )2

]
=

1

n− 1
E

(
n∑
i=1

Y 2
i − nY

2

)
=

1

n− 1

[
E

(
n∑
i=1

Y 2
i

)
− nE(Y

2
)

]
.

Now,

E

(
n∑
i=1

Y 2
i

)
=

n∑
i=1

E(Y 2
i ) =

n∑
i=1

{V (Yi) + [E(Yi)]
2} =

n∑
i=1

(σ2 + µ2) = n(σ2 + µ2).

In addition,

E(Y
2
) = V (Y ) + [E(Y )]2 =

σ2

n
+ µ2.

Combining the last two calculations, we have

E(S2) =
1

n− 1

[
n(σ2 + µ2)− n

(
σ2

n
+ µ2

)]
= σ2. �

Important: These results hold for any population distribution (e.g., normal, Poisson,
Weibull, etc.). The only restriction is that E(Y ) = µ <∞ for part (a) and V (Y ) = σ2 <∞
for parts (b) and (c).

Curiosity: How would we find V (S2)? This in general is a much harder calculation.

Result: Suppose Y1, Y2, ..., Yn is a random sample (iid sample) from a population distribution
with moment generating function (mgf) mY (t). Let

T =
n∑
i=1

Yi and Y =
1

n

n∑
i=1

Yi

denote the sample sum and the sample mean, respectively. The mgf of the sample sum T is

mT (t) = [mY (t)]n.

The mgf of the sample mean Y is

mY (t) = [mY (t/n)]n.

Remark: These results can be helpful in determining the sampling distribution of sums of
averages. Recall that mgf are unique; i.e., they uniquely identify a probability distribution.
Therefore, if we calculate mT (t) or mY (t) and recognize it as one that we know (e.g., nor-
mal, Poisson, gamma, etc.), then we know T or Y , respectively, must have that sampling

PAGE 48



STAT 512: CHAPTER 7 JOSHUA M. TEBBS

distribution. Obviously, for this result to be useful, we must know the population-level mgf
mY (t) or be able to derive it.

Proof. The mgf of T =
∑n

i=1 Yi is given by

mT (t) = E(etT ) = E[et(Y1+Y2+···+Yn)] = E(etY1+tY2+···+tYn)

= E(etY1etY2 · · · etYn)
(∗)
= E(etY1)E(etY2) · · ·E(etYn)
(∗∗)
= mY (t)mY (t) · · ·mY (t) = [mY (t)]n.

The equality (∗) is true because Y1, Y2, ..., Yn are mutually independent. The equality (∗∗) is
true because Y1, Y2, ..., Yn are identically distributed; i.e., each Yi has the same population-
level mgf mY (t). The mgf of the sample mean Y = 1

n

∑n
i=1 Yi is given by

mY (t) = E(etY ) = E[e(t/n)T ] = mT (t/n) = [mY (t/n)]n. �

Example 7.1. Suppose Y1, Y2, ..., Yn is a random sample (iid sample) from a Poisson(λ)
population distribution. Find the sampling distribution of T =

∑n
i=1 Yi.

Solution. Recall the Poisson(λ) mgf is

mY (t) = eλ(e
t−1).

Therefore, the mgf of T =
∑n

i=1 Yi is

mT (t) = [mY (t)]n = [eλ(e
t−1)]n = enλ(e

t−1).

We recognize this as the mgf of a Poisson random variable with mean nλ. Because mgfs are
unique, it follows that

T ∼ Poisson(nλ). �

Example 7.2. Suppose Y1, Y2, ..., Yn is a random sample (iid sample) from an exponential(β)
population distribution. Find the sampling distribution of the sample sum T =

∑n
i=1 Yi and

the sample mean Y .

Solution. Recall the exponential(β) mgf is

mY (t) =
1

1− βt
, for t <

1

β
.

Therefore, the mgf of T =
∑n

i=1 Yi is

mT (t) = [mY (t)]n =

(
1

1− βt

)n
,

for t < 1/β. We recognize this as the mgf of a gamma random variable with shape parameter
α = n and scale parameter β. Because mgfs are unique, it follows that

T ∼ gamma(n, β).
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The mgf of Y is

mY (t) = [mY (t/n)]n =

[
1

1− β
(
t
n

)]n =

[
1

1−
(
β
n

)
t

]n
,

for t < n/β. We recognize this as the mgf of a gamma random variable with shape parameter
α = n and scale parameter β/n. Because mgfs are unique, it follows that

Y ∼ gamma(n, β/n). �

Remark: As we have just seen, there are problems for which deriving the sampling distri-
bution of T =

∑n
i=1 Yi or Y is very easy by using mgfs. However, there are also problems

where using mgfs is not helpful. For example, suppose Y1, Y2, ..., Yn is a random sample from
a U(0, 1) population distribution; recall the U(0, 1) mgf is given by

mY (t) =


et − 1

t
, t 6= 0

1, t = 0.

The mgf of T =
∑n

i=1 Yi is therefore

mT (t) = [mY (t)]n =


(
et − 1

t

)n
, t 6= 0

1, t = 0.

This is the mgf of T , but we do not recognize this mgf as one that we know. Therefore, we
cannot use it to determine the sampling distribution of T .

7.3 Sampling distributions arising from the normal distribution

Preview: The N (µ, σ2) distribution is the most commonly assumed population distribution
in statistical applications. This section is dedicated to deriving sampling distribution results
that arise when Y1, Y2, ..., Yn are iid from a N (µ, σ2) population distribution.

Result 1: Suppose Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2) population distribution.
The sampling distribution of the sample sum

T =
n∑
i=1

Yi ∼ N (nµ, nσ2).

The sampling distribution of the sample mean is

Y ∼ N
(
µ,
σ2

n

)
and therefore

Z =
Y − µ
σ/
√
n
∼ N (0, 1).
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Proof. Recall the mgf of Y ∼ N (µ, σ2) is given by

mY (t) = exp

(
µt+

σ2t2

2

)
.

Therefore, the mgf of the sample sum T =
∑n

i=1 Yi is

mT (t) = [mY (t)]n =

[
exp

(
µt+

σ2t2

2

)]n
= exp

(
nµt+

nσ2t2

2

)
.

We recognize this as the mgf of a normal random variable with mean nµ and variance nσ2.
Because mgfs are unique, it follows that

T =
n∑
i=1

Yi ∼ N (nµ, nσ2).

The mgf of the sample mean Y is

mY (t) = [mY (t/n)]n =

{
exp

[
µ

(
t

n

)
+
σ2(t/n)2

2

]}n
= exp

[
nµ

(
t

n

)
+
nσ2(t/n)2

2

]
= exp

[
µt+

(σ2/n)t2

2

]
.

We recognize this as the mgf of a normal random variable with mean µ and variance σ2/n.
Because mgfs are unique, it follows that

Y ∼ N
(
µ,
σ2

n

)
.

Finally, we can calculate the mgf of

Z =
Y − µ
σ/
√
n

directly. Note that

mZ(t) = E[exp(tZ)] = E

{
exp

[
t

(
Y − µ
σ/
√
n

)]}
= E

[
exp

(
−µt
σ/
√
n

)
exp

(
tY

σ/
√
n

)]
= exp

(
−µt
σ/
√
n

)
mY

(
t

σ/
√
n

)
.

Note that

mY

(
t

σ/
√
n

)
= exp

µ( t

σ/
√
n

)
+

(σ2/n)
(

t
σ/
√
n

)2
2

 = exp

(
µt

σ/
√
n

)
et

2/2.
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Therefore,

mZ(t) = exp

(
−µt
σ/
√
n

)
exp

(
µt

σ/
√
n

)
et

2/2 = et
2/2.

We recognize this as the mgf of a standard normal random variable. Because mgfs are
unique, it follows that

Z =
Y − µ
σ/
√
n
∼ N (0, 1). �

Result 2: Suppose Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2) population distribution.
Then

1

σ2

n∑
i=1

(Yi − µ)2 =
n∑
i=1

(
Yi − µ
σ

)2

∼ χ2(n).

Proof. This is a special case of Example 6.15 (pp 23, notes). �

Result 3: Suppose Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2) population distribution.
Then the sample mean

Y =
1

n

n∑
i=1

Yi

and the sample variance

S2 =
1

n− 1

n∑
i=1

(Yi − Y )2

are independent statistics; i.e., Y ⊥⊥ S2.

Remark: There are many ways to prove this result, but unfortunately they all require more
advanced mathematical statistics. Note that the authors of your textbook prove Y ⊥⊥ S2 in
the n = 2 case; see WMS (pp 358).

Result 4: Suppose Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2) population distribution.
Then

1

σ2

n∑
i=1

(Yi − Y )2 =
(n− 1)S2

σ2
∼ χ2(n− 1).

Remark: It is interesting to compare this result with Result 2 above; in particular, noting
the effect of replacing the population mean µ in Result 2 with the sample mean Y in Result
4. A degree of freedom is “lost” when making this replacement; i.e., χ2(n) versus χ2(n− 1).

Proof. Write

W1 =
n∑
i=1

(
Yi − µ
σ

)2

=
n∑
i=1

(
Yi − Y + Y − µ

σ

)2

=
n∑
i=1

(
Yi − Y
σ

)2

+ 2
n∑
i=1

(
Yi − Y
σ

)(
Y − µ
σ

)
︸ ︷︷ ︸

= 0

+
n∑
i=1

(
Y − µ
σ

)2

.
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It is easy to show the cross product term is zero because

n∑
i=1

(Yi − Y ) = 0.

Therefore, we have

W1 =
n∑
i=1

(
Yi − µ
σ

)2

=
n∑
i=1

(
Yi − Y
σ

)2

︸ ︷︷ ︸
= W2

+n

(
Y − µ
σ

)2

︸ ︷︷ ︸
= W3

= W2 +W3.

From Result 2, we know W1 ∼ χ2(n). From Result 1, we know

W3 = n

(
Y − µ
σ

)2

=

(
Y − µ
σ/
√
n

)2

∼ χ2(1).

Also note that

W2 =
n∑
i=1

(
Yi − Y
σ

)2

=
1

σ2

n∑
i=1

(Yi − Y )2 =
(n− 1)S2

σ2
.

Furthermore, we know that W2 ⊥⊥ W3 because Y ⊥⊥ S2 and functions of independent random
variables are independent. The mgf of W1 ∼ χ2(n) is, for t < 1/2,(

1

1− 2t

)n/2
= mW1(t) = E(etW1) = E[et(W2+W3)]

= E(etW2etW3)
W2⊥⊥W3= E(etW2)E(etW3)

= mW2(t)mW3(t) = mW2(t)

(
1

1− 2t

)1/2

,

because W3 ∼ χ2(1). This shows

mW2(t) =

(
1

1− 2t

)n/2
(

1

1− 2t

)1/2
=

(
1

1− 2t

)(n−1)/2

,

which, for t < 1/2, we recognize as the mgf of a χ2(n − 1) random variable. Because mgfs
are unique,

W2 =
(n− 1)S2

σ2
∼ χ2(n− 1). �

Note: This sampling distribution result is critical in deriving inference procedures (i.e.,
confidence intervals and hypothesis tests) for a normal mean and variance. It is important
to emphasize this result depends on the underlying population distribution being normal.
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Result 5: Suppose Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2) population distribution.
From Result 4 (and recalling the mean and variance of a χ2 random variable), we get the
following “for free:”

E

[
(n− 1)S2

σ2

]
= n− 1

V

[
(n− 1)S2

σ2

]
= 2(n− 1).

From the first equation above, note that

n− 1

σ2
E(S2) = n− 1 =⇒ E(S2) = σ2.

Of course, this is nothing new. We proved E(S2) = σ2 in general; i.e., for any population
distribution with finite variance. The second equation above implies

(n− 1)2

σ4
V (S2) = 2(n− 1) =⇒ V (S2) =

2σ4

n− 1
.

This is a new result. However, it only applies when the underlying population distribution
is normal.

Q: Is there a general formula for V (S2) that applies for any population distribution?
A: Yes, when Y1, Y2, ..., Yn are iid with E(Y 4) < ∞; i.e., the fourth population moment is
finite, then

V (S2) =
1

n

[
µ4 −

(
n− 3

n− 1

)
σ4

]
,

where
µ4 = E[(Y − µ)4].

This result is hard to derive in general. As an exercise, show this expression for V (S2)
reduces to 2σ4/(n− 1) in the normal case.

Result 6: Suppose Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2) population distribution.
The sampling distribution of the sample variance S2 is

S2 ∼ gamma

(
n− 1

2
,

2σ2

n− 1

)
.

Proof. Apply the result from Example 6.9 (pp 18, notes) with c = σ2/(n− 1). We know

(n− 1)S2

σ2
∼ χ2(n− 1)

d
= gamma

(
n− 1

2
, 2

)
.

Therefore,

S2 =
σ2

n− 1

[
(n− 1)S2

σ2

]
∼ gamma

(
n− 1

2
,

2σ2

n− 1

)
. �
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7.4 t and F distributions

Preview: In this section, we introduce two additional distributions that often arise in
statistical inference: the t and F distributions. We will derive the t pdf and examine certain
functions of t and F random variables.

Student’s t distribution: Suppose Z ∼ N (0, 1), W ∼ χ2(ν), and Z ⊥⊥ W . The random
variable

T =
Z√
W/ν

∼ t(ν),

a t distribution with ν degrees of freedom. The pdf of T is given by

fT (t) =


Γ(ν+1

2
)

√
νπ Γ(ν

2
)

1

(1 + t2

ν
)(ν+1)/2

, −∞ < t <∞

0, otherwise.

Note: Before we derive the pdf of T (given above), we make the following observations:

• The t(ν) pdf is continuous and symmetric about zero; see Figure 7.1 (next page).

• When compared to the N (0, 1) pdf, the t(ν) pdf is less peaked in the center and has
more probability in the tails (i.e., leptokurtic).

• As ν increases, the t(ν) pdf looks more and more like the N (0, 1) pdf. In fact, the
sequence of t(ν) pdfs (in ν) converges pointwise to the N (0, 1) pdf as ν →∞.

• The t(ν) cdf does not exist in closed form for general ν; probabilities and quantiles asso-
ciated with the t(ν) distribution can be calculated in R using the pt and qt functions,
respectively.

Application: Suppose Y1, Y2, ..., Yn is an iid sample from aN (µ, σ2) population distribution.
We already know

Z =
Y − µ
σ/
√
n
∼ N (0, 1).

If we replace the population standard deviation σ above with the sample standard deviation
S =
√
S2, then the new quantity

T =
Y − µ
S/
√
n
∼ t(n− 1).

To see why this is true, note that

T =
Y − µ
S/
√
n

=
σ

S

(
Y − µ
σ/
√
n

)
=

Y − µ
σ/
√
n√

(n− 1)S2

σ2

/
(n− 1)

∼ “N (0, 1)”√
“χ2(n− 1)”

n− 1

.
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Figure 7.1: t pdfs with ν = 3 and ν = 10 degrees of freedom. The N (0, 1) pdf is also shown.

Because Y ⊥⊥ S2 under a normal population distribution assumption,

Z =
Y − µ
σ/
√
n

and W =
(n− 1)S2

σ2

are also independent. Therefore,

T =
Y − µ
S/
√
n
∼ t(n− 1).

This sampling distribution result is critical to derive one-sample statistical inference proce-
dures for a normal mean µ (e.g., confidence intervals and hypothesis tests). �

Derivation: Suppose Z ∼ N (0, 1), W ∼ χ2(ν), and Z ⊥⊥ W . Therefore, the joint pdf of
(Z,W ) is

fZ,W (z, w) = fZ(z)fW (w) =
1√
2π
e−z

2/2︸ ︷︷ ︸
N (0,1) pdf

1

Γ(ν
2
)2ν/2

w
ν
2
−1e−w/2︸ ︷︷ ︸

χ2(ν) pdf

,

for −∞ < z <∞ and w > 0. That is, the support of (Z,W ) is

RZ,W = {(z, w) : −∞ < z <∞, w > 0}.
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Consider the bivariate transformation

T = h1(Z,W ) =
Z√
W/ν

U = h2(Z,W ) = W.

Our strategy will be to use a bivariate transformation to derive the joint pdf fT,U(t, u). We
will then integrate fT,U(t, u) over u to derive the (marginal) pdf of T . The transformation
defined above is one-to-one from RZ,W to

RT,U = {(t, u) : −∞ < t <∞, u > 0}.

Therefore, the inverse transformation exists and is given by

z = h−11 (t, u) = t
√
u/ν

w = h−12 (t, u) = u.

The Jacobian of the (inverse) transformation is

J = det

∣∣∣∣∣∣∣
∂h−11 (t, u)

∂t

∂h−11 (t, u)

∂u
∂h−12 (t, u)

∂t

∂h−12 (t, u)

∂u

∣∣∣∣∣∣∣ = det

∣∣∣∣∣∣
√
u/ν

t√
ν

1

2
√
u

0 1

∣∣∣∣∣∣ =

√
u

ν
.

Therefore, for −∞ < t <∞ and u > 0, the joint pdf of (T, U) is

fT,U(t, u) = fZ,W (h−11 (t, u), h−12 (t, u))|J |

=
1√
2π
e−(t
√
u/ν)2/2 1

Γ(ν
2
)2ν/2

u
ν
2
−1e−u/2

∣∣∣∣√u

ν

∣∣∣∣
=

1√
2π

1√
ν
e−(t
√
u/ν)2/2 1

Γ(ν
2
)2ν/2

u
ν+1
2
−1e−u/2

=
1√
2π

1√
ν

1

Γ(ν
2
)2ν/2

u
ν+1
2
−1e−u(1+

t2

ν
)/2.

Therefore, the marginal pdf of T , for −∞ < t <∞, is

fT (t) =

∫ ∞
u=0

fT,U(t, u)du =
1√
2π

1√
ν

1

Γ(ν
2
)2ν/2

∫ ∞
u=0

u
ν+1
2
−1e−u(1+

t2

ν
)/2du.

Note that the integrand in ∫ ∞
u=0

u
ν+1
2
−1e−u(1+

t2

ν
)/2du

is a gamma(a, b) kernel with a = (ν + 1)/2 and b = 2
(

1 + t2

ν

)−1
. Therefore, the last integral

equals

Γ(a)ba = Γ

(
ν + 1

2

)[
2

(
1 +

t2

ν

)−1](ν+1)/2

.
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Therefore, for −∞ < t <∞, the pdf of T is

fT (t) =
1√
2π

1√
ν

1

Γ(ν
2
)2ν/2

Γ

(
ν + 1

2

)[
2

(
1 +

t2

ν

)−1](ν+1)/2

=
Γ(ν+1

2
)

√
νπ Γ(ν

2
)

1

(1 + t2

ν
)(ν+1)/2

,

as claimed. �

Mean/Variance: If T ∼ t(ν), then E(T ) = 0, provided that ν > 1. In addition,

V (T ) =
ν

ν − 2
,

provided that ν > 2. If these conditions on ν are not satisfied, then the corresponding
quantities do not exist. For example, if ν = 1, then

fT (t) =
Γ(1+1

2
)

√
π Γ(1

2
)

1

(1 + t2)(1+1)/2
=

1

π(1 + t2)
,

which we recognize as a standard Cauchy pdf; see Example 6.7 (notes, pp 13-14). In other
words, when ν = 1, the t pdf reduces to the standard Cauchy. We know E(T ) does not exist
when T has this pdf.

Derivation: To show E(T ) = 0 when ν > 1, we use the definition of a t random variable,
namely,

T =
Z√
W/ν

,

where Z ∼ N (0, 1), W ∼ χ2(ν), and Z ⊥⊥ W . Write

E(T ) = E

(
Z√
W/ν

)
Z⊥⊥W

= E(Z)E

(
1√
W/ν

)
.

Because E(Z) = 0, this last expression equals 0 provided the second expectation is finite.
Therefore, let’s investigate the second expectation, and we will see why the ν > 1 condition

is needed. Recall that W ∼ χ2(ν)
d
= gamma(ν

2
, 2). Therefore,

E

(
1√
W/ν

)
=
√
νE

(
1√
W

)
=
√
ν

∫ ∞
0

1√
w

1

Γ(ν
2
)2ν/2

w
ν
2
−1e−w/2dw

=

√
ν

Γ(ν
2
)2ν/2

∫ ∞
0

w
ν−1
2
−1e−w/2dw.

In the last integral, we recognize

w
ν−1
2
−1e−w/2

as a gamma kernel with shape parameter a = (ν − 1)/2 and scale parameter b = 2. The last
integral is finite as long as

ν − 1

2
> 0 ⇐⇒ ν > 1.
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Showing V (T ) = ν/(ν − 2) when ν > 2 is done similarly. Because E(T ) = 0, we have

V (T ) = E(T 2)− [E(T )]2 = E(T 2).

We can calculate the second moment of T as follows:

E(T 2) = E

( Z√
W/ν

)2
 = E

(
Z2

W/ν

)
Z⊥⊥W

= E(Z2)E

(
1

W/ν

)
= νE

(
1

W

)
,

because E(Z2) = 1. It therefore suffices to show

E

(
1

W

)
=

1

ν − 2
,

provided that ν > 2, which I will leave as an exercise. �

Snedecor’s F distribution: Suppose W1 ∼ χ2(ν1), W2 ∼ χ2(ν2), and W1 ⊥⊥ W2. The
random variable

F =
W1/ν1
W2/ν2

∼ F (ν1, ν2),

an F distribution with (numerator) ν1 and (denominator) ν2 degrees of freedom. If U ∼
F (ν1, ν2), then the pdf of U is

fU(u) =


Γ(ν1+ν2

2
)

Γ(ν1
2

)Γ(ν2
2

)

(
ν1
ν2

)ν1/2 u
ν1
2
−1

[1 + (ν1
ν2

)u](ν1+ν2)/2
, u > 0

0, otherwise.

Note: We make the following observations:

• The F (ν1, ν2) pdf is continuous and skewed to the right; see Figure 7.2 (next page).

• The F (ν1, ν2) pdf can be derived in the same way as the t pdf was derived. Start with
W1 ∼ χ2(ν1), W2 ∼ χ2(ν2), and W1 ⊥⊥ W2. Define

U1 = h1(W1,W2) =
W1/ν1
W2/ν2

U2 = h2(W1,W2) = W1.

Perform a bivariate transformation to find fU1,U2(u1, u2) and then integrate over u2.

• The F (ν1, ν2) cdf does not exist in closed form; probabilities and quantiles associated
with the F (ν1, ν2) distribution can be calculated in R using the pf and qf functions,
respectively.

Mean/Variance: If F ∼ F (ν1, ν2), then

E(F ) =
ν2

ν2 − 2
, if ν2 > 2

V (F ) = 2

(
ν2

ν2 − 2

)2
ν1 + ν2 − 2

ν1(ν2 − 4)
, if ν2 > 4.
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Figure 7.2: F (ν1, ν2) pdfs for different combinations of ν1 and ν2.

Application: Suppose we have two independent random samples:

• Y11, Y12, ..., Y1n1 is an iid sample from a N (µ1, σ
2
1) population distribution

• Y21, Y22, ..., Y2n2 is an iid sample from a N (µ2, σ
2
2) population distribution.

Define the sample means

Y 1+ =
1

n1

n1∑
j=1

Y1j and Y 2+ =
1

n2

n2∑
j=1

Y2j

and the sample variances

S2
1 =

1

n1 − 1

n1∑
j=1

(Y1j − Y 1+)2 and S2
2 =

1

n2 − 1

n2∑
j=1

(Y2j − Y 2+)2.

We know
(n1 − 1)S2

1

σ2
1

∼ χ2(n1 − 1) and
(n2 − 1)S2

2

σ2
2

∼ χ2(n2 − 1).
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Furthermore,
(n1 − 1)S2

1

σ2
1

⊥⊥ (n2 − 1)S2
2

σ2
2

because the two samples are independent. Therefore,

F =
S2
1/σ

2
1

S2
2/σ

2
2

=

(n1 − 1)S2
1

σ2
1

/
(n1 − 1)

(n2 − 1)S2
2

σ2
2

/
(n2 − 1)

∼ “χ2(n1 − 1)”/(n1 − 1)

“χ2(n2 − 1)”/(n2 − 1)
∼ F (n1 − 1, n2 − 1).

This sampling distribution result is critical to derive statistical inference procedures which
compare the variances of two normal populations. Note further that if the two populations
have the same variance; i.e., if σ2

1 = σ2
2 = σ2, then

F =
S2
1

S2
2

∼ F (n1 − 1, n2 − 1). �

Note: We have the following results concerning functions of t and F random variables.

• If Y ∼ F (ν1, ν2), then

U =
1

Y
∼ F (ν2, ν1).

• If Y ∼ t(ν), then
U = Y 2 ∼ F (1, ν).

• If Y ∼ F (ν1, ν2), then

U =
(ν1/ν2)Y

1 + (ν1/ν2)Y
∼ beta

(ν1
2
,
ν2
2

)
.

Each of these results can be proven by performing a univariate transformation.

7.5 Central Limit Theorem

Preview: The Central Limit Theorem (CLT) is one of the most important results in statis-
tics. It describes the approximate sampling distribution of sample means (or sums). Under
very mild conditions, these approximate distributions turn out to be normal.

Recall: To set our ideas, recall Result 1 on pp 50 (notes). Suppose Y1, Y2, ..., Yn is an iid
sample from a N (µ, σ2) population distribution. The sampling distribution of the sum

T =
n∑
i=1

Yi ∼ N (nµ, nσ2).

The sampling distribution of the sample mean

Y ∼ N
(
µ,
σ2

n

)
.

In other words, when the population distribution is normal, the sampling distribution of
both T and Y is also normal.
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Q: What happens when the population distribution is not normal? For example, what if
Y1, Y2, ..., Yn are iid Poisson? iid uniform? iid Bernoulli? iid exponential?
A: Regardless of what the population distribution is (for the most part), the sampling
distribution of T and Y is still approximately normal, that is,

T =
n∑
i=1

Yi ∼ AN (nµ, nσ2)

and

Y ∼ AN
(
µ,
σ2

n

)
,

where µ and σ2 are the population mean and population variance, respectively. The symbol
AN is read “approximately normal.”

Remark: The approximate sampling distributions above represent what is conferred by the
CLT. The quality of the approximation depends primarily on these two factors:

• sample size−the larger the sample size n, the better the approximation

• symmetry/skewness of the population distribution−the more symmetric the population
distribution, the better the approximation.

Terminology: The skewness of a random variable Y is given by

ξ =
E[(Y − µ)3]

σ3
,

where µ = E(Y ) and σ2 = V (Y ). Note that

• ξ = 0 =⇒ the population distribution pY (y) or fY (y) is symmetric about µ

• ξ > 0 =⇒ the population distribution pY (y) or fY (y) is skewed right

• ξ < 0 =⇒ the population distribution pY (y) or fY (y) is skewed left.

Example 7.3. An insurance company issues 250 vision care insurance policies. The number
of claims filed by a policyholder under a vision care insurance policy during one year is a
Poisson random variable Y with mean 2. Assume the numbers of claims filed by different
policyholders are mutually independent.

Q: What is the probability there is a total of between 475 and 550 claims during a one-year
period?

Solution. Denote the n = 250 claim counts by Y1, Y2, ..., Y250 and assume Y1, Y2, ..., Y250 are
iid from a Poisson(λ = 2) population distribution; see Figure 7.3 (next page, left). Let T =∑250

i=1 Yi denote the total number of claims filed. We want to calculate P (475 ≤ T ≤ 550).
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Figure 7.3: Left: Population distribution of Y ∼ Poisson(λ = 2) in Example 7.3. Right:
Exact sampling distribution of T =

∑250
i=1 Yi ∼ Poisson(500). The smooth red curve is the

N (500, 500) pdf, which represents the approximate sampling distribution of T conferred by
the CLT. Solid dark circles are shown at t = 475 and t = 550.

Exact calculation: From Example 7.1, we know the (exact) sampling distribution of T
is T ∼ Poisson(500). This sampling distribution is shown in Figure 7.3 (above, right).
Therefore,

P (475 ≤ T ≤ 550) =
550∑
t=475

500te−500

t!
≈ 0.8605.

> sum(dpois(475:550,500))

[1] 0.8605368

CLT approximation: The population distribution is Poisson(λ = 2), so µ = 2 and σ2 = 2.
From the CLT, the approximate sampling distribution of T is T ∼ AN (500, 500). This
approximate sampling distribution is shown in Figure 7.3 (above, right). Therefore,

P (475 ≤ T ≤ 550) ≈
∫ 550

475

1√
2π
√

500
e−(t−500)

2/2(500)dt ≈ 0.8556.

> pnorm(550,500,sqrt(500))-pnorm(475,500,sqrt(500))

[1] 0.8555501

As we can see, approximating the sampling distribution of T =
∑250

i=1 Yi by using the CLT
is very accurate, despite the population distribution of Y being discrete and also skewed to
the right. The reason for the high accuracy is the large sample size (n = 250). �
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Figure 7.4: Population distribution of Y ∼ exponential(β = 20) in Example 7.4.

Example 7.4. The time Y (in days) to recruit patients for a clinical trial follows an
exponential distribution with mean β = 20. What is the probability the average of n = 10
patients’ recruiting times will exceed 30 days? Assume the times of different patients are
mutually independent.

Solution. Denote the n = 10 times by Y1, Y2, ..., Y10 and assume Y1, Y2, ..., Y10 are iid from
an exponential(β = 20) population distribution. This population distribution is shown in
Figure 7.4 above. Let Y denote the sample mean time among the 10 patients. We want to
calculate P (Y > 30).

Exact calculation: From Example 7.2, we know the (exact) sampling distribution of Y
is Y ∼ gamma(10, 2). This sampling distribution is shown in Figure 7.5 (next page, left).
Therefore,

P (Y > 30) =

∫ ∞
30

1

Γ(10)210
y10−1e−y/2dy ≈ 0.0699.

> 1-pgamma(30,10,1/2)

[1] 0.06985366
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Figure 7.5: Left: Exact sampling distribution of Y ∼ gamma(10, 2) in Example 7.4. Right:
Approximate sampling distribution of Y ∼ AN (20, 40) conferred by the CLT. In both figures,
the probability P (Y > 30) is shown shaded.

CLT approximation: The population distribution is exponential(β = 20), so µ = 20 and
σ2 = 400. From the CLT, the approximate sampling distribution of Y is Y ∼ AN (20, 40).
This approximate sampling distribution is shown in Figure 7.5 (above, right). Therefore,

P (Y > 30) ≈
∫ ∞
30

1√
2π
√

40
e−(y−20)

2/2(40)dy ≈ 0.0569.

> 1-pnorm(30,20,sqrt(40))

[1] 0.05692315

The approximation is not terrible, but there are notable discrepancies between the exact
sampling distribution of Y and the approximation conferred by the CLT. This is because the
exponential(β = 20) population distribution is highly skewed and the sample size n = 10 is
small. �

Q: Why rely on the CLT to approximate the sampling distribution of the sum T =
∑n

i=1 Yi
or the sample mean Y if we can just work with the exact sampling distributions (like in
Example 7.3 and Example 7.4)?
A: Because in many problems, the exact sampling distribution of T or Y may not be known
or it may be impossible to derive in closed form. In this situation, using a CLT approximation
may be our only option. This is illustrated in the next example.
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Figure 7.6: Population pdf of Y in Example 7.5.

Example 7.5. The amount of gravel (in 1000s of tons) sold by a construction company in
a given week is a continuous random variable Y with the population pdf

fY (y) =


3

2
(1− y2), 0 < y < 1

0, otherwise.

Assuming weekly sales are mutually independent, find the probability the total sales for a
given year exceeds 22,500 tons.

Solution. Denote the n = 52 weekly sales amounts by Y1, Y2, ..., Y52 and assume Y1, Y2, ..., Y52
are iid from a population described by fY (y). This population distribution is shown in Figure
7.6 above. Let T =

∑52
i=1 Yi denote the total sales for the year. We want to find P (T > 22.5).

Remark: It is not clear how one would go about deriving the exact sampling distribution
of T =

∑52
i=1 Yi in this example. Without this distribution, we cannot calculate P (T > 22.5)

exactly. However, we can approximate P (T > 22.5) by using the CLT. To do this, we need
to find the population mean E(Y ) = µ and the population variance V (Y ) = σ2. The CLT
approximation to the sampling distribution of T requires only these values.
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The population mean is

µ = E(Y ) =

∫
R
yfY (y)dy =

3

2

∫ 1

0

y(1− y2) =
3

2

(
y2

2
− y4

4

)∣∣∣∣1
0

=
3

8
.

The population second moment is

E(Y 2) =

∫
R
y2fY (y)dy =

3

2

∫ 1

0

y2(1− y2) =
3

2

(
y3

3
− y5

5

)∣∣∣∣1
0

=
1

5
.

Therefore, the population variance is

σ2 = V (Y ) = E(Y 2)− [E(Y )]2 =
1

5
−
(

3

8

)2

=
19

320
.

Applying the CLT, the sampling distribution of T =
∑52

i=1 Yi is approximately normal with
mean

nµ = 52

(
3

8

)
= 19.5

and variance

nσ2 = 52

(
19

320

)
= 3.0875;

i.e., T ∼ AN (19.5, 3.0875). This approximate sampling distribution is shown in Figure 7.7
(next page). Therefore,

P (T > 22.5) ≈
∫ ∞
22.5

1√
2π
√

3.0875
e−(t−19.5)

2/2(3.0875)dt ≈ 0.0439. �

> 1-pnorm(22.5,19.5,sqrt(3.0875))

[1] 0.04388026

Theory: We would like to officially state the CLT and prove it rigorously. To do so, we
need this theoretical result. Suppose Z1, Z2, Z3, ... is a sequence of random variables, where
Zn has mgf mZn(t). Suppose that mZn(t) → mZ(t), as n → ∞ for all t ∈ (−h, h) ∃h > 0;
i.e., the sequence of functions mZn(t) converges pointwise for all t in an open neighborhood
about t = 0. Then

1. There exists a unique cdf FZ(z) whose moments are determined by mZ(t).

2. The sequence of cdfs
FZn(z)→ FZ(z),

as n→∞, for all z ∈ CFZ , the set of points z ∈ R where FZ(·) is continuous.

In other words, convergence of mgfs implies convergence of cdfs. We write Zn
d−→ Z, as

n→∞, and say that “Zn converges in distribution to Z.”
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Figure 7.7: Approximate sampling distribution of T =
∑52

i=1 Yi ∼ AN (19.5, 3.0875) in
Example 7.5. The probability P (T > 22.5) ≈ 0.0439 is shown shaded.

Central Limit Theorem: Suppose Y1, Y2, ..., Yn is an iid sample from a population distri-
bution with mean E(Yi) = µ and variance V (Yi) = σ2 <∞. Define

Zn =
Y − µ
σ/
√
n

=

∑n
i=1 Yi − nµ√

nσ
.

Then

P (Zn ≤ z) = FZn(z)→
∫ z

−∞

1√
2π
e−u

2/2du = FZ(z) = P (Z ≤ z),

as n→∞. That is, the sequence of cdfs FZn(z) converges pointwise to the cdf of a standard

normal random variable FZ(z). We write Zn
d−→ N (0, 1).

Discussion: Before we prove the CLT, we make the following remarks:

• It is important to appreciate how modest the assumptions are for the CLT to “work.”
All we need is (a) Y1, Y2, ..., Yn is an iid sample and (b) the population variance σ2 <∞.
Of course, although the finite variance assumption covers most population distribu-
tions, it does not cover all of them; e.g., Cauchy, etc.
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• Convergence in distribution is a mathematical concept that investigates the stochastic
behavior of a sequence of random variables, here,

Zn =
Y − µ
σ/
√
n

=

∑n
i=1 Yi − nµ√

nσ

when n→∞. In practical terms, this notion is somewhat fanciful because the sample
size n is always finite and may also be small (e.g., n = 10). This is why we use the
phrase “approximately normal” in applications. We will interpret the statement

Zn =

∑n
i=1 Yi − nµ√

nσ

d−→ N (0, 1) to mean
n∑
i=1

Yi ∼ AN (nµ, nσ2) for n large.

Similarly, we will interpret the statement

Zn =
Y − µ
σ/
√
n

d−→ N (0, 1) to mean Y ∼ AN
(
µ,
σ2

n

)
for n large.

The “n large” approximate sampling distributions above are what we have been using
all along; see Examples 7.3-7.5.

Proof. Suppose Y1, Y2, ..., Yn is an iid sample from a population distribution with mean
E(Yi) = µ and variance V (Yi) = σ2 <∞. Define

Zn =
Y − µ
σ/
√
n
.

It suffices to show mZn(t), the mgf of Zn, converges pointwise to mZ(t) = et
2/2, the mgf of

Z ∼ N (0, 1). Define

Ui =
Yi − µ
σ

,

for i = 1, 2, ..., n. Note that

E(Ui) = E

(
Yi − µ
σ

)
=

1

σ
E(Yi − µ) =

1

σ
(µ− µ) = 0

and

V (Ui) = V

(
Yi − µ
σ

)
=

1

σ2
V (Yi) =

σ2

σ2
= 1.

That is, by construction, U1, U2, ..., Un are iid random variables with mean 0 and variance 1.
Let mU(t) denote the common mgf of U1, U2, ..., Un. Simple algebra yields

Zn =
Y − µ
σ/
√
n

=
1
n

∑n
i=1 Yi − µ
σ/
√
n

=

∑n
i=1 Yi − nµ√

nσ
=

1√
n

n∑
i=1

(
Yi − µ
σ

)
=

1√
n

n∑
i=1

Ui.
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Therefore, the mgf of Zn is given by

mZn(t) = E(etZn) = E
[
e

t√
n
(U1+U2+···+Un)]

= E
(
e

t√
n
U1e

t√
n
U2 · · · e

t√
n
Un
)

= E
(
e

t√
n
U1
)
E
(
e

t√
n
U2
)
· · ·E

(
e

t√
n
Un
)

= [E
(
e

t√
n
U)

]n =
[
mU(t/

√
n)
]n
.

Now write mU(t/
√
n) in its McLaurin series expansion:

mU(t/
√
n) =

∞∑
k=0

m
(k)
U (0)

(
t√
n
− 0
)k

k!
,

where

m
(k)
U (0) =

dk

dtk
mU(t)

∣∣∣∣
t=0

.

Note that

m
(0)
U (0) = mU(0) = 1

m
(1)
U (0) = E(U) = 0

m
(2)
U (0) = E(U2) = 1.

Therefore, the expansion above becomes

mU(t/
√
n) = 1 +

(t/
√
n)2

2!
+ rU(t/

√
n),

where the remainder term

rU(t/
√
n) =

∞∑
k=3

m
(k)
U (0)

(t/
√
n)k

k!
.

To summarize, we have written

mZn(t) =
[
mU(t/

√
n)
]n

=

[
1 +

t2/2

n
+ rU(t/

√
n)

]n
.

It therefore suffices to argue
lim
n→∞

nrU(t/
√
n) = 0

for all t ∈ R. If we can do this, then

lim
n→∞

mZn(t) = lim
n→∞

[
1 +

t2/2

n
+ rU(t/

√
n)

]n
= lim

n→∞

(
1 +

t2/2

n

)n
= et

2/2,

and we will be done. However, note that

nrU(t/
√
n) = n

∞∑
k=3

m
(k)
U (0)

(t/
√
n)k

k!

= m
(3)
U (0)

t3

3!

1√
n

+m
(4)
U (0)

t4

4!

1

n
+m

(5)
U (0)

t5

5!

1

n
√
n

+m
(6)
U (0)

t6

6!

1

n2
+ · · · .

For any t ∈ R, each term on the RHS above converges to 0 as n → ∞. Therefore,
limn→∞ nrU(t/

√
n) = 0. �
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Remark: One of the most important applications of the CLT arises when the population
distribution of Y is Bernoulli(p). Recall the Bernoulli(p) pmf is given by

pY (y) =

{
py(1− p)1−y, y = 0, 1

0, otherwise.

The Bernoulli population distribution is applicable when we measure “success/failure” (1/0)
outcomes on each individual in the population; e.g., diseased/not, respond to treatment/not,
defective/not, etc. The parameter p satisfies 0 < p < 1 and is called “the probability
of success” for any individual in the population. Recall the mean and variance of Y ∼
Bernoulli(p) are given by

E(Y ) = p

V (Y ) = p(1− p).

Application: Suppose Y1, Y2, ..., Yn is an iid sample from a Bernoulli(p) population dis-
tribution. Because the population variance V (Y ) = p(1 − p) < ∞, the CLT applies and
therefore

T =
n∑
i=1

Yi ∼ AN (np, np(1− p))

and

p̂ = Y ∼ AN
(
p,

p(1− p)
n

)
for n large. The symbol p̂ is used to denote the proportion of “1’s” in the sample; i.e., the
sample proportion.

Note: From Example 6.13 (notes, pp 21), we know the exact sampling distribution of
T =

∑n
i=1 Yi ∼ b(n, p). Recall that

mT (t) = [mY (t)]n = (q + pet)n,

where q = 1 − p. We recognize the mgf of T as the mgf of a b(n, p) random variable.
Therefore, from the CLT, it must be true that the b(n, p) pmf can be approximated by a
normal pdf with mean np and variance np(1 − p). Recall the approximation is best when
the sample size n is large and the skewness in the population distribution is close to zero.
The skewness of Y ∼ Bernoulli(p) is given by

ξ =
E[(Y − µ)3]

σ3
=
E[(Y − p)3]
[p(1− p)]3/2

=
1− 2p√
p(1− p)

.

This means the CLT approximation will be best when n is large and p is close to 0.5. See
Figure 7.8 (next page).

Example 7.6. PRAMS, the Pregnancy Risk Assessment Monitoring System, is a surveil-
lance project of the Centers for Disease Control and Prevention and state health departments.
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Figure 7.8: b(n, p) pmfs with N (np, np(1 − p)) pdfs overlaid. Left: n = 100 and p = 0.5.
Right: n = 40 and p = 0.1.

In a recent PRAMS survey, n = 999 women who had recently given birth were asked about
their smoking habits. Investigators observed

Yi =

{
1, ith woman smoked during last 3 months of pregnancy

0, otherwise.

Assuming Y1, Y2, ..., Y999 are iid from a Bernoulli(p = 0.1) population distribution, calculate
the probability at least 125 women smoked during the last 3 months of pregnancy.

Exact calculation: We know T =
∑999

i=1 Yi ∼ b(n = 999, p = 0.1), so

P (T ≥ 125) =
999∑
t=125

(
999

t

)
(0.1)t(0.9)999−t ≈ 0.0058.

> 1-pbinom(124,999,0.10)

[1] 0.005833989

CLT approximation: From the CLT, the approximate sampling distribution of T is T ∼
AN (99.9, 89.91). Therefore,

P (T ≥ 125) ≈
∫ ∞
125

1√
2π
√

89.91
e−(t−99.9)

2/2(89.91)dt ≈ 0.0041.

> 1-pnorm(125,99.9,sqrt(89.91))

[1] 0.004059313
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8 Estimation

8.1 Introduction

Preview: In this chapter, we transition to one of the most important concepts in statistics,
namely, how to estimate population-level parameters by using a sample of observations
drawn from the population. Intuitively, if Y1, Y2, ..., Yn is a sample from a population dis-
tribution described by pY (y) or fY (y), then the observations Y1, Y2, ..., Yn contain valuable
information about characteristics of the population distribution; e.g., the population mean
µ = E(Y ), the population variance σ2 = V (Y ), and so on.

Importance: The reason the estimation question emerges as relevant is that parameters
associated with a population distribution (or distributions) are usually unknown. For
example, suppose an epidemiologist observes a random sample of n = 10 USC undergraduate
students and records

Y = the number of sexual partners within the last six months

on each student. As a population-level model, he decides to use Y ∼ Poisson(λ), where
λ = E(Y ), the mean of the population. Now, there are over 26,000 undergraduate students
at USC. Therefore, the only way the epidemiologist can determine the value of λ is to observe
all 26,000+ students. Because it is generally not possible to “sample the entire population”
in real life evaluations (especially in larger populations which may number in the millions or
billions), we turn to the problem of parameter estimation.

Problem: Suppose Y1, Y2, ..., Yn is an iid sample from a population distribution described
by pY (y) or fY (y), and let θ ∈ R denote a population-level parameter that is unknown.

• The use of a generic symbol like θ for a population-level parameter allows us to gener-
alize our discussion.

• In the last example, we could write Y ∼ Poisson(θ), where θ = E(Y ).

• The population-level parameter θ is unknown but also fixed; i.e., it is not random.
Note: When we are introduced to the Bayesian paradigm later, this assumption will
no longer be true. Bayesians treat population-level parameters as random and assign
them their own probability distributions.

Q: How should we use the sample Y1, Y2, ..., Yn to estimate θ?

Terminology: A point estimator of θ is any statistic; i.e.,

θ̂ = T (Y1, Y2, ..., Yn),

that estimates θ. Because a point estimator θ̂ is a statistic, it is random and has its own
(sampling) distribution.
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Illustration: What point estimator should we use in the USC student example? Suppose
Y1, Y2, ..., Y10 is regarded as an iid sample from a Poisson distribution with mean θ > 0. One
obvious point estimator of θ is the sample mean

θ̂ = Y =
1

10

10∑
i=1

Yi ←− function of Y1, Y2, ..., Y10.

We proved in the last chapter that E(Y ) = µ = θ, so at least on average (i.e., across many
samples) the value of Y will correctly pin down the true value of the population mean.
Another candidate point estimator, interestingly, is the sample variance; i.e.,

θ̂ = S2 =
1

10− 1

10∑
i=1

(Yi − Y )2 ←− function of Y1, Y2, ..., Y10.

Recall that in the Poisson distribution, the population mean and population variance are
the same; i.e., µ = σ2 = θ. In the last chapter, we proved the sample variance S2 satisfies
E(S2) = σ2, which is θ under the Poisson assumption. Therefore, on average (i.e., across
many samples), the value of S2 will also correctly pin down the true value of θ.

Questions: Which point estimator should we use: Y or S2? Maybe another point estimator
is “better,” say, the sample median

θ̂ =
Y(5) + Y(6)

2
.

The point is that in any estimation problem, there may be many point estimators to consider.
Therefore, we should have a way to evaluate the quality of a point estimator so that we can
judge whether or not it does a good job at estimation. This leads us to the next section,
where we quantify how accurate and how precise a point estimator θ̂ is.

Aside: A point estimator θ̂ = T (Y1, Y2, ..., Yn) is random because its value depends on
Y1, Y2, ..., Yn which are random themselves. However, after the values Y1 = y1, Y2 = y2, ...,
Yn = yn have been observed, we can calculate the value of the point estimate

θ̂ = T (y1, y2, ..., yn).

This is a numerical value because it is based on the observed values y1, y2, ..., yn; i.e., “the
observed data.” To illustrate, in the USC example, a point estimator of θ based on the n = 10
students is

Y =
1

10

10∑
i=1

Yi,

the sample mean. If the observed data are

y1 = 4, y2 = 2, y3 = 1, y4 = 3, y5 = 2, y6 = 5, y7 = 0, y8 = 1, y9 = 0, y10 = 0,

then the point estimate is the realized value of the point estimator; i.e.,

y =
1

10

10∑
i=1

yi = 1.8.

Note that a point estimate is no longer random (i.e., it’s a fixed number).
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8.2 Bias and mean-squared error

Terminology: Suppose θ̂ = T (Y1, Y2, ..., Yn) is a point estimator for the population-level

parameter θ. We call θ̂ an unbiased estimator of θ if

E(θ̂) = θ.

In other words, the mean of the sampling distribution of θ̂ is equal to θ; see Figure 8.1 below
(left). If

E(θ̂) 6= θ,

then we say that θ̂ is biased. The sampling distribution in Figure 8.1 (right) describes a

point estimator θ̂ that is biased. The bias of a point estimator θ̂ is

B(θ̂) = E(θ̂)− θ.

Note that if θ̂ is an unbiased estimator, then B(θ̂) = 0.

Note: Bias deals with accuracy ; i.e., how accurate a point estimator is at estimating the
population-level parameter θ. Unbiased estimators are perfectly accurate.

θ θ̂ θ θ̂

Figure 8.1: Sampling distribution of the point estimator θ̂. Left: θ̂ is an unbiased estimator
because E(θ̂) = θ. Right: θ̂ is biased because E(θ̂) > θ.

Example 8.1. Suppose Y1, Y2, ..., Yn is an iid sample from a U(0, θ) population distribution,
where θ > 0 is unknown. Consider the two point estimators

θ̂1 = 2Y

θ̂2 = Y(n).

Determine whether these point estimators are unbiased.
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Figure 8.2: Population pdf of Y ∼ U(0, θ) in Example 8.1.

Solution. The population pdf of Y ∼ U(0, θ) is shown in Figure 8.2 above. Consider the first

point estimator θ̂1 = 2Y . Note that

E(θ̂1) = E(2Y ) = 2E(Y ) = 2

(
θ

2

)
= θ.

Therefore, θ̂1 = 2Y is an unbiased estimator of θ.

Note: In the last calculation, we used the fact that E(Y ) = µ, the population mean. The
population mean of Y ∼ U(0, θ) is µ = E(Y ) = θ/2.

To find E(θ̂2) = E(Y(n)), we need to first find the pdf of Y(n), the maximum order statistic.
Recall that in general,

fY(n)(y) = nfY (y)[FY (y)]n−1.

The population pdf of Y ∼ U(0, θ) is

fY (y) =


1

θ
, 0 < y < θ

0, otherwise
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and the population cdf is

FY (y) =


0, y ≤ 0
y

θ
, 0 < y < θ

1, y ≥ θ.

Therefore, for 0 < y < θ, the pdf of Y(n) is

fY(n)(y) = nfY (y)[FY (y)]n−1 = n

(
1

θ

)(y
θ

)n−1
=
nyn−1

θn
.

Summarizing,

fY(n)(y) =


nyn−1

θn
, 0 < y < θ

0, otherwise.

This is called the power family pdf; see Exercise 6.17 (pp 309-310, WMS). We can now

calculate E(θ̂2) = E(Y(n)); note that

E(Y(n)) =

∫
R
yfY(n)(y)dy =

∫ θ

0

y
nyn−1

θn
dy

=
n

θn

∫ θ

0

yndy =
n

θn

(
yn+1

n+ 1

)∣∣∣∣θ
0

=
n

θn

(
θn+1

n+ 1

)
=

(
n

n+ 1

)
θ.

Therefore, θ̂2 = Y(n) is a biased estimator of θ. It underestimates θ on average because
n/(n+ 1) < 1. �

Exercise: Use the n = 10 observed values below to calculate the value of both point
estimates:

> round(runif(10,0,10),2)

[1] 0.48 0.07 5.32 5.77 4.52 7.45 7.23 0.31 3.42 4.85

The point estimates are

θ̂1 = 2y = 2(3.94) = 7.88 and θ̂2 = y(10) = 7.45.

Q: Suppose we have two point estimators θ̂1 and θ̂2? Which one should we use? How should
we compare them?
A: If both point estimators are unbiased; i.e., if E(θ̂1) = E(θ̂2) = θ, then we would prefer
the estimator with the smaller variance.

Note: Whereas bias deals with accuracy, the variance of a point estimator describes its
precision. Small variance means high precision; see Figure 8.3 (next page).
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θ θ̂1 θ θ̂2

Figure 8.3: Sampling distributions of two unbiased point estimators θ̂1 and θ̂2. The second
point estimator (right) has smaller variance (i.e., is more precise).

Example 8.2. Suppose Y1, Y2, ..., Yn is an iid sample from an exponential(θ) population
distribution, where θ > 0 is unknown. Consider the two point estimators

θ̂1 = Y

θ̂2 = nY(1).

Show that both point estimators are unbiased and determine which one has the smaller
variance.

Solution. We know that θ̂1 = Y is an unbiased estimator of the population mean, which is
µ = E(Y ) = θ under the exponential(θ) model. Therefore, θ̂1 is an unbiased estimator of θ;
i.e.,

E(θ̂1) = E(Y ) = θ.

To show that θ̂2 is unbiased, recall that in Example 6.20 (notes, pp 37-39), we showed

Y1, Y2, ..., Yn ∼ iid exponential(θ) =⇒ Y(1) ∼ exponential(θ/n).

Therefore,

E(θ̂2) = E(nY(1)) = nE(Y(1)) = n

(
θ

n

)
= θ.

This shows θ̂2 is also an unbiased estimator of θ.

Note: Because both point estimators are unbiased, we prefer to use the one with the smaller
variance. The variance of θ̂1 = Y is given by

V (θ̂1) = V (Y ) =
θ2

n
.
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Recall: In general, if Y1, Y2, ..., Yn is an iid sample from a population distribution with
variance σ2, then

V (Y ) =
σ2

n
;

we proved this in the last chapter. The population variance of Y ∼ exponential(θ) is σ2 = θ2.

Finally, because Y(1) ∼ exponential(θ/n), the variance of θ̂2 = nY(1) is

V (θ̂2) = V (nY(1)) = n2V (Y(1)) = n2

(
θ

n

)2

= θ2.

Therefore, for all n > 1,
θ2

n
= V (θ̂1) < V (θ̂2) = θ2.

This shows θ̂1 = Y is a more precise point estimator than θ̂2 = nY(1). �

Q: How should we compare point estimators θ̂1 and θ̂2 if one of them is biased (or perhaps
both are biased)?
A: We would prefer the estimator with the smaller mean-squared error.

Terminology: Suppose θ̂ = T (Y1, Y2, ..., Yn) is a point estimator for the population-level

parameter θ. The mean-squared error (MSE) of θ̂ is

MSE(θ̂) = E[(θ̂ − θ)2] = V (θ̂) + [B(θ̂)]2,

where B(θ̂) = E(θ̂) − θ is the bias of θ̂ as an estimator of θ. Note that if θ̂ is an unbiased

estimator of θ, then B(θ̂) = 0 and

MSE(θ̂) = V (θ̂).

Note: In general, the MSE incorporates two components:

• V (θ̂); this measures precision

• B(θ̂); this measures accuracy.

Obviously, we prefer estimators with small MSE because these estimators have small bias
(i.e., high accuracy) and small variance (i.e., high precision).

Example 8.3. Suppose Y1, Y2, ..., Yn are iid Bernoulli observations with mean p, and let
X =

∑n
i=1 Yi, the sum of the observations; i.e., “the number of successes.” Consider the two

point estimators of p:

p̂1 =
X

n
and p̂2 =

X + 2

n+ 4
.

The point estimator p̂1 is the usual “sample proportion.” The second point estimator arises
from “adding two successes and two failures.” Compare the estimators on the basis of MSE.
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Figure 8.4: Graph of MSE(p̂1) and MSE(p̂2) in Example 8.3 when n = 25.

Solution. We know X ∼ b(n, p) so E(X) = np and V (X) = np(1 − p). The first point
estimator p̂1 is unbiased; note that

E(p̂1) = E

(
X

n

)
=

1

n
E(X) =

np

n
= p.

Therefore, B(p̂1) = 0 and the MSE of p̂1 is equal to the variance of p̂1; i.e.,

MSE(p̂1) = V (p̂1) = V

(
X

n

)
=

1

n2
V (X) =

np(1− p)
n2

=
p(1− p)

n
.

The second point estimator p̂2 is biased; note that

E(p̂2) = E

(
X + 2

n+ 4

)
=

1

n+ 4
[E(X) + 2] =

np+ 2

n+ 4

and therefore the bias of p̂2 is

B(p̂2) = E(p̂2)− p =
np+ 2

n+ 4
− p.
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The variance of p̂2 is

V (p̂2) = V

(
X + 2

n+ 4

)
=

1

(n+ 4)2
V (X + 2) =

1

(n+ 4)2
V (X) =

np(1− p)
(n+ 4)2

.

Therefore,

MSE(p̂2) = V (p̂2) + [B(p̂2)]
2 =

np(1− p)
(n+ 4)2

+

(
np+ 2

n+ 4
− p
)2

.

Plots of MSE versus p when n = 25 are given in Figure 8.4 (last page); note that p̂2 is a
“better” point estimator when p closer to 0.5. If p is near the extremes (i.e., closer to 0 or
1), then the usual sample proportion p̂1 is a better point estimator on the basis of MSE. �

Example 8.4. Suppose Y1, Y2, ..., Yn is an iid N (µ, σ2) sample, where both µ and σ2 are
unknown. Consider the two point estimators of σ2:

S2 =
1

n− 1

n∑
i=1

(Yi − Y )2 and S2
b =

1

n

n∑
i=1

(Yi − Y )2.

Compare the estimators on the basis of MSE.

Solution. From Chapter 7, we know that S2 is an unbiased estimator of the population
variance σ2 in any population distribution (provided that σ2 < ∞). From Result 5 in
Chapter 7 (pp 54), we know

V (S2) =
2σ4

n− 1
.

Therefore,

MSE(S2) = V (S2) =
2σ4

n− 1
.

The estimator S2
b is biased; note that

S2
b =

(
n− 1

n

)
S2 =⇒ E(S2

b ) = E

[(
n− 1

n

)
S2

]
=

(
n− 1

n

)
E(S2) =

(
n− 1

n

)
σ2.

The bias of S2
b is

B(S2
b ) = E(S2

b )− σ2 =

(
n− 1

n

)
σ2 − σ2 = −σ

2

n
.

The variance of S2
b is

V (S2
b ) = V

[(
n− 1

n

)
S2

]
=

(
n− 1

n

)2

V (S2) =

(
n− 1

n

)2
2σ4

n− 1
=

2(n− 1)σ4

n2
.

Therefore, the MSE of S2
b is

MSE(S2
b ) = V (S2

b ) + [B(S2
b )]

2 =
2(n− 1)σ4

n2
+

(
−σ

2

n

)2

=

(
2n− 1

n2

)
σ4.
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Therefore, to compare MSE(S2) with MSE(S2
b ), we are left to compare the constants

2

n− 1
and

2n− 1

n2
.

Note that the ratio
2n− 1

n2

2

n− 1

=
2n2 − 3n+ 1

2n2
< 1,

for all n ≥ 2. Therefore,
MSE(S2

b ) < MSE(S2),

showing that S2
b is a “better” estimator of σ2 on the basis of MSE. �

Exercise: In Example 8.4, consider point estimators of σ2 of the form

σ̂2 = c
n∑
i=1

(Yi − Y )2,

where c > 0. Find the value of c that minimizes MSE(σ̂2). Ans: c = 1/(n+ 1).

Remark: In some problems, we want to estimate a function of a population-level parameter
θ, say τ(θ). The next two examples illustrate this.

Example 8.5. The number of weekly breakdowns Y at a manufacturing plant follows a
Poisson distribution with mean θ > 0. Suppose a random sample of Y1, Y2, ..., Yn of weekly
data are available; i.e., Y1, Y2, ..., Yn are iid Poisson(θ). The weekly cost associated with
repairing these breakdowns is C = 3Y + Y 2 which has expected value

E(C) = E(3Y + Y 2) = 3E(Y ) + E(Y 2)

= 3E(Y ) + {V (Y ) + [E(Y )]2} = 3θ + θ + θ2 = 4θ + θ2.

Find an unbiased estimator of E(C) using the observations Y1, Y2, ..., Yn.

Solution. We know E(Y ) = θ, so it is natural to first try using 4Y + Y
2
. However, although

E(4Y ) = 4E(Y ) = 4θ,

unfortunately Y
2

is not unbiased for θ2. Note that

E(Y
2
) = V (Y ) + [E(Y )]2 =

θ

n
+ θ2.

Therefore, use Y as an unbiased estimator of θ and write

E

(
Y

2 − Y

n

)
= E(Y

2
)− E

(
Y

n

)
=
θ

n
+ θ2 − θ

n
= θ2.

Finally,

E

(
4Y + Y

2 − Y

n

)
= E(4Y ) + E

(
Y

2 − Y

n

)
= 4θ + θ2.

This shows 4Y + Y
2 − Y /n is an unbiased estimator of E(C). �
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Example 8.6. Suppose Y1, Y2, ..., Yn is an iid sample from

fY (y) =


1

θ2
ye−y/θ, y > 0

0, otherwise.

(a) Find an unbiased estimator of θ.
(b) Find an unbiased estimator of τ(θ) = 1/θ.

Solutions. (a) We recognize fY (y) as a gamma pdf with shape parameter α = 2 and scale
parameter θ; i.e., the population distribution is Y ∼ gamma(2, θ) so that µ = E(Y ) = 2θ.
Therefore,

E(Y ) = 2θ =⇒ E

(
Y

2

)
=

2θ

2
= θ.

This shows Y /2 is an unbiased estimator of θ.
(b) Because Y /2 is an unbiased estimator of θ, it is natural to try using 2/Y as an estimator
for 1/θ. Note that

E

(
2

Y

)
= E

(
2∑n

i=1 Yi/n

)
= 2nE

(
1

T

)
,

where T =
∑n

i=1 Yi. Now recall T ∼ gamma(2n, θ); to see why, note that the mgf of T is

mT (t) = [mY (t)]n =

[(
1

1− θt

)2
]n

=

(
1

1− θt

)2n

,

for t < 1/θ. We recognize mT (t) as the mgf of T ∼ gamma(2n, θ). Therefore, the first
inverse moment of T is

E

(
1

T

)
=

∫
R

1

t
fT (t)dt =

∫ ∞
0

1

t

1

Γ(2n)θ2n
t2n−1e−t/θ︸ ︷︷ ︸

gamma(2n, θ) pdf

dt

=
1

Γ(2n)θ2n

∫ ∞
0

t(2n−1)−1e−t/θdt

=
1

Γ(2n)θ2n
Γ(2n− 1)θ2n−1 =

Γ(2n− 1)θ2n−1

(2n− 1)Γ(2n− 1)θ2n
=

1

(2n− 1)θ
.

Therefore,

E

(
2

Y

)
= 2nE

(
1

T

)
=

(
2n

2n− 1

)
1

θ
,

showing that 2/Y is biased. However, note that

E

(
2

Y

)
=

(
2n

2n− 1

)
1

θ
=⇒ E

[(
2n− 1

2n

)
2

Y

]
=

(
2n− 1

2n

)(
2n

2n− 1

)
1

θ
=

1

θ
.

This shows (
2n− 1

2n

)
2

Y
=

2n− 1

nY
=

2n− 1

T

is an unbiased estimator of τ(θ) = 1/θ. �
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8.3 Common point estimators and their standard errors

Preview: We examine four settings where the goal to estimate population means and
population proportions. We consider one and two populations. In each setting, the resulting
point estimators are averages, so we will also be able to describe the approximate (large-
sample) sampling distributions of each by using the Central Limit Theorem.

Terminology: Suppose θ̂ is a point estimator for the population-level parameter θ. The
standard error of θ̂ is the standard deviation of θ̂. We denote the standard error of θ̂ by

σθ̂ =

√
V (θ̂).

The standard error is a measure of variability. It describes numerically how variable the
point estimator θ̂ is in its attempt to estimate θ.

Note: Every point estimator has a standard error. Although we consider simple point
estimators in this section, the notion of standard error is important in all statistical analy-
ses, including regression, ANOVA, survival analysis, and others (i.e., basically, anytime we
estimate a population-level model).

8.3.1 One population mean

Setting: Suppose Y1, Y2, ..., Yn is an iid sample from a population distribution with mean µ
and variance σ2 <∞. An unbiased point estimator of µ is

µ̂ = Y .

The variance of Y is

V (Y ) =
σ2

n
=⇒ σY =

√
σ2

n
=

σ√
n︸ ︷︷ ︸

standard error of Y

.

Recall from the Central Limit Theorem (CLT) that when the sample size n is large,

Y ∼ AN
(
µ,
σ2

n

)
=⇒ Z =

Y − µ
σ/
√
n
∼ AN (0, 1).

From the Empirical Rule (68-95-99.7% Rule), we know

P (−2 < Z < 2) = P

(
−2 <

Y − µ
σ/
√
n
< 2

)
= P

(
−2

σ√
n
< Y − µ < 2

σ√
n

)
≈ 0.95.

Implication: Suppose the sample size n is large enough for the CLT to apply. When we
use Y as a point estimator for the population mean µ, it is very likely (i.e., probability
approximately 0.95) that the error in estimation

ε = Y − µ

will be within 2 standard errors; see Figure 8.5 (next page).
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µ y

0.95

Figure 8.5: (Approximate) sampling distribution of Y conferred by the CLT. The middle
95% of the sampling distribution (i.e., ±2σ/

√
n) is unshaded.

Limitation: The previous result

P

(
−2

σ√
n
< Y − µ < 2

σ√
n

)
≈ 0.95

is interesting. Unfortunately, if the population standard deviation σ is unknown, then this
result is not helpful because we can’t calculate the upper and lower bounds

±2σY = ±2
σ√
n

on the error in estimation. This illustrates a common problem in point estimation, namely,
that the standard error of a point estimator (like Y ) depends on population-level parameters
that are unknown.

Work-around: If the population standard deviation σ is unknown, then we can not calcu-
late the standard error of the sample mean Y ; i.e.,

σY =
σ√
n
.

However, we can estimate it by using

σ̂Y =
S√
n
,
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where

S =
√
S2 =

√√√√ 1

n− 1

n∑
i=1

(Yi − Y )2

is the sample standard deviation. We call σ̂Y = S/
√
n the estimated standard error of

the sample mean Y . In general, the estimated standard error is a point estimator of the
standard error of a point estimator.

8.3.2 One population proportion

Setting: Suppose Y1, Y2, ..., Yn is an iid sample from a Bernoulli(p) population; i.e., the
population pmf of Y is

pY (y) =

{
py(1− p)1−y, y = 0, 1

0, otherwise.

From Example 8.3, an unbiased point estimator of p is the sample proportion

θ̂ = p̂ =
1

n

n∑
i=1

Yi =
X

n
,

where X =
∑n

i=1 Yi ∼ b(n, p). The variance of p̂ is

V (p̂) =
p(1− p)

n
=⇒ σp̂ =

√
p(1− p)

n︸ ︷︷ ︸
standard error of p̂

.

Furthermore, from the CLT, we know

p̂ ∼ AN
(
p,

p(1− p)
n

)
=⇒ Z =

p̂− p√
p(1− p)

n

∼ AN (0, 1).

for large n. From the Empirical Rule, we have

P (−2 < Z < 2) = P

−2 <
p̂− p√
p(1−p)
n

< 2


= P

(
−2

√
p(1− p)

n
< p̂− p < 2

√
p(1− p)

n

)
≈ 0.95.

Implication: Suppose the sample size n is large enough for the CLT to apply. When we
use p̂ as a point estimator for the population proportion p, it is very likely (i.e., probability
approximately 0.95) that the error in estimation

ε = p̂− p

will be within 2 standard errors; see Figure 8.6 (next page).
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p p̂

0.95

Figure 8.6: (Approximate) sampling distribution of p̂ conferred by the CLT. The middle
95% of the sampling distribution (i.e., ±2

√
p(1− p)/n) is unshaded.

Note: We encounter the same problem with the standard error as we did in the one popu-
lation mean problem. The standard error of p̂ is

σp̂ =

√
p(1− p)

n
,

which is unknown because it depends on the population-level parameter p. The estimated
standard error of p̂ as an estimator of p is

σ̂p̂ =

√
p̂(1− p̂)

n
.

8.3.3 Difference of two population means (independent samples)

Setting: Suppose we have two independent random samples:

• Y11, Y12, ..., Y1n1 is an iid sample from a population with mean µ1 and variance σ2
1

• Y21, Y22, ..., Y2n2 is an iid sample from a population with mean µ2 and variance σ2
2.

The goal is to estimate the parameter θ = µ1 − µ2, the difference of the population means.

PAGE 87



STAT 512: CHAPTER 8 JOSHUA M. TEBBS

Define the sample means

Y 1+ =
1

n1

n1∑
j=1

Y1j and Y 2+ =
1

n2

n2∑
j=1

Y2j

and the sample variances

S2
1 =

1

n1 − 1

n1∑
j=1

(Y1j − Y 1+)2 and S2
2 =

1

n2 − 1

n2∑
j=1

(Y2j − Y 2+)2.

An unbiased point estimator of θ = µ1 − µ2 is

θ̂ = Y 1+ − Y 2+,

the difference of the sample means. The variance of θ̂ is

V (θ̂) = V (Y 1+ − Y 2+) = V (Y 1+) + V (Y 2+)− 2 Cov(Y 1+, Y 2+)︸ ︷︷ ︸
= 0

=
σ2
1

n1

+
σ2
2

n2

=⇒ σY 1+−Y 2+
=

√
σ2
1

n1

+
σ2
2

n2︸ ︷︷ ︸
standard error of Y 1+ − Y 2+

.

To estimate the standard error, we use

σ̂Y 1+−Y 2+
=

√
S2
1

n1

+
S2
2

n2

.

This estimated standard error uses the sample variances S2
1 and S2

2 as (unbiased) point
estimators of the population variances σ2

1 and σ2
2, respectively.

8.3.4 Difference of two population proportions (independent samples)

Setting: Suppose we have two independent random samples:

• Y11, Y12, ..., Y1n1 is an iid sample from a Bernoulli(p1) population

• Y21, Y22, ..., Y2n2 is an iid sample from a Bernoulli(p2) population.

The goal is to estimate the parameter θ = p1−p2, the difference of the population proportions.
Define

X1 =

n1∑
j=1

Y1j and X2 =

n2∑
j=1

Y2j

so that X1 ∼ b(n1, p1), X2 ∼ b(n2, p2), and X1 ⊥⊥ X2 (because the samples are independent).
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An unbiased point estimator of θ = p1 − p2 is

θ̂ = p̂1 − p̂2 =
X1

n1

− X2

n2

,

the difference of the sample proportions. The variance of θ̂ is

V (θ̂) = V (p̂1 − p̂2) = V (p̂1) + V (p̂2)− 2 Cov(p̂1, p̂2)︸ ︷︷ ︸
= 0

=
p1(1− p1)

n1

+
p2(1− p2)

n2

=⇒ σp̂1−p̂2 =

√
p1(1− p1)

n1

+
p2(1− p2)

n2︸ ︷︷ ︸
standard error of p̂1 − p̂2

.

To estimate the standard error, we use

σ̂p̂1−p̂2 =

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

.

This estimated standard error uses the sample proportions p̂1 and p̂2 as (unbiased) point
estimators of the population proportions p1 and p2, respectively.

8.3.5 Summary

Note: Below is a summary of the point estimators θ̂ in this section, their standard errors
σθ̂, and their estimated standard errors σ̂θ̂.

Parameter θ Estimator θ̂ Standard error σθ̂ Estimated standard error σ̂θ̂

µ Y
σ√
n

S√
n

p p̂

√
p(1− p)

n

√
p̂(1− p̂)

n

µ1 − µ2 Y 1+ − Y 2+

√
σ2
1

n1

+
σ2
2

n2

√
S2
1

n1

+
S2
2

n2

p1 − p2 p̂1 − p̂2

√
p1(1− p1)

n1

+
p2(1− p2)

n2

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

Point estimators in this section are “averages” or functions of averages so the CLT applies
when the sample size(s) is (are) large; i.e.,

θ̂ ∼ AN (θ, σ2
θ̂
).

This means the point estimator θ̂ should be within two standard errors (i.e., ±2σθ̂) of the
population parameter θ with probability approximately equal to 0.95. This is conferred by
the Empirical (68-95-99.7%) Rule.
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8.4 Confidence intervals

Recall: A point estimator of the population-level parameter θ is any statistic

θ̂ = T (Y1, Y2, ..., Yn)

that estimates θ. After the values of Y1, Y2, ..., Yn have been observed, the point estimate
θ̂ = T (y1, y2, ..., yn) is a single number; i.e., it is a “one-shot guess” at the true value of θ.

Example 8.7. Cox and others (2015) describe a retrospective study that observed n = 615
newborns who were admitted to the neonatal intensive care unit at Richland County Hospital
in Columbia, SC. The random variable

Y = birth weight (measured in grams)

was observed on each newborn. Suppose Y1, Y2, ..., Y615 are regarded as iid from a population
distribution with mean µ and variance σ2. The observed data y1, y2, ..., y615 are shown in
Figure 8.7 (next page). To estimate the population mean µ with the observed data, we can
use the sample mean

y =
1

615

615∑
i=1

yi ≈ 2137 grams.

To estimate the population variance σ2, we can use the sample variance

s2 =
1

615− 1

615∑
i=1

(yi − y)2 ≈ 981173 (grams)2.

Both of these point estimates can be calculated in R as follows:

> mean(birth.weights)

[1] 2137.237

> var(birth.weights)

[1] 981173

Discussion: Point estimates like y and s2 do not account for variability; their values are
single numbers. Therefore, although these estimates are both unbiased, we do not know how
variable these estimates are. What we would like to know is how “close” these estimates are
to the population-level values µ and σ2, respectively. Unfortunately, without a measure of
variability attached to either estimate, it is impossible to tell.

Interesting: If Y is a continuous random variable, then Y is too and therefore

P (Y = µ) = 0.

This is true because continuous random variables assign zero probability to specific values.
Similarly, P (S2 = σ2) = 0. Mathematically, this illustrates the futility of using only point
estimators in our quest to learn about population-level parameters.
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Figure 8.7: Newborn data. Birth weight (in grams) measured for n = 615 newborns in
Richland County Hospital.

Terminology: A 1−α interval estimator is an interval (θL, θU) that contains a population-
level parameter θ with probability 1− α; i.e.,

P (θL ≤ θ ≤ θU) = 1− α.

A 1−α interval estimator is also called a 100(1−α)% confidence interval. The probability
1− α is called the confidence coefficient associated with the interval.

Remark: It is important to understand that when we write P (θL ≤ θ ≤ θU) = 1 − α in
the definition above, it is the endpoints of θL and θU that are random quantities; not θ. As
usual, we assume the population-level parameter θ is an unknown quantity; however, it is
fixed (not random). We will discuss this point more in the examples.

Terminology: Suppose Y1, Y2, ..., Yn is an iid sample from a population distribution de-
scribed by pY (y) or fY (y), and let θ denote a population-level parameter. We call

Q = Q(Y1, Y2, ..., Yn; θ)

a pivotal quantity (or pivot) if the distribution of Q does not depend on θ (or any other
population-level parameters that are unknown).

PAGE 91



STAT 512: CHAPTER 8 JOSHUA M. TEBBS

Remark: Pivotal quantities are useful when deriving confidence intervals. In the continuous
case, suppose Q = Q(Y1, Y2, ..., Yn; θ) is a pivot whose distribution is described by the pdf
fQ(q), which is free of θ. Define

q1−α/2 = lower α/2 quantile of fQ(q)

qα/2 = upper α/2 quantile of fQ(q).

Because Q ∼ fQ(q), we can first write

P (q1−α/2 ≤ Q ≤ qα/2) = 1− α.

We can then rewrite the event {q1−α/2 ≤ Q ≤ qα/2}, often using straightforward algebra, to
derive a 100(1− α)% confidence interval (θL, θU); i.e., we can write

1− α = P (q1−α/2 ≤ Q ≤ qα/2) = P (θL ≤ θ ≤ θU),

where the endpoints θL and θU will depend on the quantiles q1−α/2 and qα/2 and the sample
Y1, Y2, ..., Yn through well-known statistics. We illustrate this technique using examples.

Example 8.8. Suppose Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2
0) population distri-

bution, where the population variance σ2
0 is known. Our goal is to derive a 100(1 − α)%

confidence interval for the population mean µ. We start with

Q =
Y − µ
σ0/
√
n
∼ N (0, 1).

Note that Q is a pivot because its distribution is free of µ. Define

−zα/2 = lower α/2 quantile of N (0, 1)

zα/2 = upper α/2 quantile of N (0, 1)

and refer to Figure 8.8 (next page). Because Q ∼ N (0, 1), we can write

1− α = P

(
−zα/2 <

Y − µ
σ0/
√
n
< zα/2

)
= P

(
−zα/2

σ0√
n
< Y − µ < zα/2

σ0√
n

)
= P

(
zα/2

σ0√
n
> µ− Y > −zα/2

σ0√
n

)
= P

(
Y + zα/2

σ0√
n
> µ > Y − zα/2

σ0√
n

)
= P

(
Y − zα/2

σ0√
n︸ ︷︷ ︸

µL

< µ < Y + zα/2
σ0√
n︸ ︷︷ ︸

µU

)
.

Therefore, (
Y − zα/2

σ0√
n
, Y + zα/2

σ0√
n

)
is a 100(1− α)% confidence interval for µ. �
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1 − α

α 2 α 2

Figure 8.8: N (0, 1) pdf. The lower α/2 quantile −zα/2 and the upper α/2 quantile zα/2 are
shown by using dark circles.

Example 8.9. Suppose Y1, Y2, ..., Yn is an iid sample from an exponential(β) population
distribution. Our goal is to derive a 100(1− α)% confidence interval for β. We start with

Q =
2T

β
∼ χ2(2n)

where T =
∑n

i=1 Yi is the sample sum. Note that Q is a pivot because its distribution is free
of β. Define

χ2
2n,1−α/2 = lower α/2 quantile of χ2(2n)

χ2
2n,α/2 = upper α/2 quantile of χ2(2n)

and refer to Figure 8.9 (next page). Because Q ∼ χ2(2n), we can write

1− α = P

(
χ2
2n,1−α/2 <

2T

β
< χ2

2n,α/2

)
= P

(
1

χ2
2n,1−α/2

>
β

2T
>

1

χ2
2n,α/2

)

= P

(
2T

χ2
2n,1−α/2

> β >
2T

χ2
2n,α/2

)

= P

(
2T

χ2
2n,α/2︸ ︷︷ ︸
βL

< β <
2T

χ2
2n,1−α/2︸ ︷︷ ︸
βU

)
.
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1 − α

α 2 α 2

Figure 8.9: χ2(2n) pdf. The lower α/2 quantile χ2
2n,1−α/2 and the upper α/2 quantile χ2

2n,α/2

are shown by using dark circles.

Therefore, (
2T

χ2
2n,α/2

,
2T

χ2
2n,1−α/2

)
is a 100(1− α)% confidence interval for β.

Illustration: Recall the TTF data in Example 6.19 (notes, pp 35) for n = 14 patients:

0.8 7.5 13.4 1.4 0.5 68.9 16.1 20.4 15.6 4.2 2.4 8.2 5.3 14.0

Suppose these data are modeled as iid observations from an exponential(β) population dis-
tribution. I calculated a 95% confidence interval for β in R:

> ttf = c(0.8,7.5,13.4,1.4,0.5,68.9,16.1,20.4,15.6,4.2,2.4,8.2,5.3,14.0)

> ci.lower = 2*sum(ttf)/qchisq(0.975,28)

> ci.upper = 2*sum(ttf)/qchisq(0.025,28)

> round(c(ci.lower,ci.upper),1)

[1] 8.0 23.3

Interpretation: We are 95% confident that the population mean TTF β is between 8.0
and 23.3 months. �
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Discussion: In Example 8.9, we derived a 100(1−α)% confidence interval for an exponential
(population) mean β to be (

2T

χ2
2n,α/2

,
2T

χ2
2n,1−α/2

)
from the probability equation

1− α = P

(
2T

χ2
2n,α/2

< β <
2T

χ2
2n,1−α/2

)
,

where T =
∑n

i=1 Yi. The probability above is a bona fide probability because Y1, Y2, ..., Yn
are random variables and hence T is also random. Therefore,{

2T

χ2
2n,α/2

< β <
2T

χ2
2n,1−α/2

}

is a random event, one to which we can assign probability. However, once we used the
realizations y1, y2, ..., y14 in the TTF example to calculate (8.0, 23.3) as a 95% confidence
interval, it is no longer mathematically appropriate to write

0.95 = P (8.0 < β < 23.3).

The population parameter β is regarded as fixed; therefore, the event {8.0 < β < 23.3} is
not random and we do not assign probability to events that are not random.

Q: How do we interpret confidence intervals that are calculated from observed data?
A: We are left with the following relative frequency interpretation:

“Over the long run, that is, provided that we could sample from the popula-
tion distribution over and over again, each time by using the same sample size,
we would expect 100(1 − α)% of the calculated intervals to include the popu-
lation parameter. The observed interval is just one of these many hypothetical
intervals.”

Example 8.10. Suppose Y1, Y2, ..., Yn is an iid sample from a U(0, θ) population distribution,
where θ > 0 is unknown. Our goal is to derive a 100(1 − α)% confidence interval for θ. In
Example 8.1 (notes), we derived the pdf of the maximum order statistic Y(n) to be

fY(n)(y) =


nyn−1

θn
, 0 < y < θ

0, otherwise.

Therefore, Y(n) is not a pivotal quantity because its distribution depends on θ. However,

Q =
Y(n)
θ
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is a pivotal quantity. To see why, let’s first find the cdf of Y(n). For 0 < y < θ, we have

FY(n)(y) = P (Y(n) ≤ y) =

∫ y

0

fY(n)(t)dt =

∫ y

0

ntn−1

θn
dt =

1

θn
(
tn
∣∣y
0

)
=
(y
θ

)n
.

Summarizing,

FY(n)(y) =


0 y ≤ 0(y
θ

)n
, 0 < y < θ

1, y ≥ θ.

We now use the cdf technique to find the distribution of Q. Note that

0 < y(n) < θ ⇐⇒ q = h(y(n)) =
y(n)
θ
∈ (0, 1).

Therefore, the support of Q = h(Y(n)) = Y(n)/θ is

RQ = {q : 0 < q < 1}.

For 0 < q < 1, the cdf of Q is

FQ(q) = P (Q ≤ q) = P

(
Y(n)
θ
≤ q

)
= P (Y(n) ≤ qθ) = FY(n)(qθ) =

(
qθ

θ

)n
= qn.

Summarizing,

FQ(q) =


0 q ≤ 0

qn, 0 < q < 1

1, q ≥ 1.

Therefore, Q is a pivotal quantity because its distribution does not depend on θ. Taking
derivatives, the pdf of Q is

fQ(q) =

{
nqn−1, 0 < q < 1

0, otherwise.

We recognize fQ(q) as a beta pdf with α = n (the sample size) and β = 1. Define

bn,1,1−α/2 = lower α/2 quantile of beta(n, 1)

bn,1,α/2 = upper α/2 quantile of beta(n, 1)

and refer to Figure 8.10 (next page). Because Q ∼ beta(n, 1), we can write

1− α = P

(
bn,1,1−α/2 <

Y(n)
θ

< bn,1,α/2

)
= P

(
1

bn,1,1−α/2
>

θ

Y(n)
>

1

bn,1,α/2

)
= P

(
Y(n)

bn,1,1−α/2
> θ >

Y(n)
bn,1,α/2

)
= P

(
Y(n)
bn,1,α/2︸ ︷︷ ︸

θL

< θ <
Y(n)

bn,1,1−α/2︸ ︷︷ ︸
θU

)
.
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1 − α

α 2 α 2

Figure 8.10: Beta(n, 1) pdf. The lower α/2 quantile bn,1,1−α/2 and the upper α/2 quantile
bn,1,α/2 are shown by using dark circles.

Therefore, (
Y(n)
bn,1,α/2

,
Y(n)

bn,1,1−α/2

)
is a 100(1− α)% confidence interval for θ.

8.5 Large-sample confidence intervals

Note: We now revisit the four settings described in Section 8.3 (notes); i.e., estimating
population means and population proportions for one and two populations. Our goal now is
to write 100(1− α)% confidence intervals for each population parameter:

µ ←− population mean

p ←− population proportion

µ1 − µ2 ←− difference of two population means (independent samples)

p1 − p2 ←− difference of two population proportions (independent samples).

In each setting, we presented an unbiased estimator θ̂ that satisfied

θ̂ ∼ AN (θ, σ2
θ̂
)
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for large sample sizes; this was conferred by the CLT. We can use this result to construct
large-sample 100(1 − α)% confidence intervals. By “large-sample,” we mean intervals
whose confidence coefficient is approximately 1− α when n (or n1 and n2) is (are) large.

Derivation: Suppose θ is a population-level parameter. If the point estimator θ̂ satisfies
θ̂ ∼ AN (θ, σ2

θ̂
), then

Q =
θ̂ − θ
σθ̂
∼ AN (0, 1).

The large-sample distribution of Q is free of θ; therefore, Q is a large-sample pivot. Define

−zα/2 = lower α/2 quantile of N (0, 1)

zα/2 = upper α/2 quantile of N (0, 1)

and refer to Figure 8.8 (notes, pp 93). Because Q ∼ AN (0, 1), we can write

1− α ≈ P

(
−zα/2 <

θ̂ − θ
σθ̂

< zα/2

)
= P

(
−zα/2σθ̂ < θ̂ − θ < zα/2σθ̂

)
= P

(
zα/2σθ̂ > θ − θ̂ > −zα/2σθ̂

)
= P

(
θ̂ + zα/2σθ̂ > θ > θ̂ − zα/2σθ̂

)
= P

(
θ̂ − zα/2σθ̂ < θ < θ̂ + zα/2σθ̂

)
.

This argument shows (
θ̂ − zα/2σθ̂, θ̂ + zα/2σθ̂

)
is a large-sample 100(1− α)% confidence interval for θ.

Problem: Although the preceding interval is a bona fide large-sample interval, the problem
is the endpoints depend on the standard error σθ̂, which depends on unknown population
parameters. Therefore, this interval cannot be calculated. Recall the four settings discussed
in Section 8.3 (notes) and the associated standard errors:

Parameter θ Estimator θ̂ Standard error σθ̂ Estimated standard error σ̂θ̂

µ Y
σ√
n

S√
n

p p̂

√
p(1− p)

n

√
p̂(1− p̂)

n

µ1 − µ2 Y 1+ − Y 2+

√
σ2
1

n1

+
σ2
2

n2

√
S2
1

n1

+
S2
2

n2

p1 − p2 p̂1 − p̂2

√
p1(1− p1)

n1

+
p2(1− p2)

n2

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2
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Work-around: In the confidence interval(
θ̂ − zα/2σθ̂, θ̂ + zα/2σθ̂

)
,

replace the standard error σθ̂ with the estimated standard error σ̂θ̂ and use(
θ̂ − zα/2σ̂θ̂, θ̂ + zα/2σ̂θ̂

)
instead. This “work-around” has theoretical justification, but only when the sample size(s) is
(are) large. We will understand why when we discuss the theoretical notion of consistency
in Chapter 9. Informally, consistency guarantees

σθ̂ ≈ σ̂θ̂,

that is, the standard error and estimated standard error are approximately equal when the
sample size(s) is (are) large. Therefore, the confidence coefficient of (θ̂− zα/2σθ̂, θ̂+ zα/2σθ̂)

and the one of (θ̂ − zα/2σ̂θ̂, θ̂ + zα/2σ̂θ̂) are approximately equal.

Example 8.11. Consider the newborn data in Example 8.7 (notes, pp 90-91). A large-
sample 95% confidence interval for the population mean birth weight µ is

y ± zα/2
s√
n
−→ 2137± 1.96

(
991√
615

)
−→ (2059, 2215).

> mean(birth.weights) # sample mean

[1] 2137.237

> sd(birth.weights) # sample standard deviation

[1] 990.5418

> qnorm(0.975,0,1) # upper 0.025 quantile from N(0,1)

[1] 1.959964

Interpretation: We are (approximately) 95% confident the population mean birth weight
µ is between 2059 and 2215 grams. �

Example 8.12. Consider the PRAMS surveillance project data in Example 7.6 (notes,
pp 71-72) where 125 women (out of n = 999) smoked during the last 3 months of their
pregnancy. A large-sample 95% confidence interval for p, the population proportion of women
who smoked during the last 3 months of their pregnancy, is given by

p̂± zα/2

√
p̂(1− p̂)

n
−→ 125

999
± 1.96

√
125
999

(1− 125
999

)

999
−→ (0.105, 0.146).

Interpretation: We are (approximately) 95% confident the population proportion of women
who smoked during the last 3 months of their pregnancy is between 0.105 and 0.146. �
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8.6 Sample size determination

Remark: We now discuss one of the most basic fundamental questions when designing a
study, namely, how many individuals need to be sampled? We will answer this question in the
context of writing large-sample confidence intervals for population means and proportions.

Setting: Suppose θ is a population-level parameter. If the point estimator θ̂ satisfies θ̂ ∼
AN (θ, σ2

θ̂
), then we showed in the last section

1− α ≈ P
(
θ̂ − zα/2σθ̂ < θ < θ̂ + zα/2σθ̂

)
.

Write the endpoints as
θ̂ ± zα/2σθ̂

and set
B = zα/2σθ̂,

the margin of error of the interval (θ̂ − zα/2σθ̂, θ̂ + zα/2σθ̂). The last equation suggests
that if we

• specify the confidence coefficient 1− α

• specify the margin of error B,

we can determine the sample size n that satisfies B = zα/2σθ̂. Note that for this approach
to work, we will need to elicit “guesses” for any population-level parameters in the standard
error σθ̂. We now illustrate this approach.

Population mean: We set

B = zα/2
σ√
n
.

Solving this equation for n, we get

n =
(zα/2σ

B

)2
.

Note that for this formula to be useful, we must elicit a “guess” of the population-level
standard deviation σ (which, in general, will be unknown).

Example 8.13. In a biomedical experiment, we would like to estimate the population mean
remaining lifetime µ of healthy rats given a high dose of a toxic substance. We would like
to write a 95% confidence interval for µ with a margin of error of B = 2 days. Suppose
the population standard deviation of the remaining lifetime distribution is σ = 8 days. How
many rats should we use for the experiment?

Solution. From the specifications elicited, we have z0.05/2 = z0.025 ≈ 1.96, B = 2, and σ = 8.
These specifications lead to the sample size

n =
(zα/2σ

B

)2
=

(
1.96× 8

2

)2

≈ 61.5.

Therefore, we would need n = 62 rats to achieve these specifications.
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Tighter specifications: 99% confidence → z0.01/2 = z0.005 ≈ 2.58, margin of error B = 1, and
σ = 8. These specifications lead to the sample size

n =
(zα/2σ

B

)2
=

(
2.58× 8

1

)2

≈ 426.0.

We would need n = 426 rats to achieve these specifications.

Weaker specifications: 90% confidence → z0.10/2 = z0.05 ≈ 1.65, margin of error B = 3, and
σ = 8. These specifications lead to the sample size

n =
(zα/2σ

B

)2
=

(
1.65× 8

3

)2

≈ 19.4.

We would need n = 20 rats to achieve these specifications. �

Population proportion: We set

B = zα/2

√
p(1− p)

n
.

Here, we see the margin of error depends on the population proportion p (which is the pa-
rameter we want to write the confidence interval for). Therefore, to determine the necessary
sample size, we must first elicit a “guess” for p, say p0. We then set

B = zα/2

√
p0(1− p0)

n
=⇒ n =

(zα/2
B

)2
p0(1− p0).

Note: If there is no sensible guess for p available, it is best to use p0 = 0.5. The resulting
value for n will be as large as possible because

n = n(p0) =
(zα/2
B

)2
p0(1− p0),

when viewed as a function of p0, is maximized when p0 = 0.5.

Example 8.14. In a Phase II clinical trial, it is estimated the proportion of patients
responding to a drug is p0 = 0.35. Physicians would like to know how many patients they
should recruit for a larger Phase III trial. Their resulting 95% confidence interval for p, the
population proportion of patients responding to the drug, should have a margin of error no
greater than B = 0.03. What sample size do they need for the Phase III trial?

Solution. From the specifications elicited, we have z0.05/2 = z0.025 ≈ 1.96, B = 0.03, and
p0 = 0.35. These specifications lead to the sample size

n =
(zα/2
B

)2
p0(1− p0) =

(
1.96

0.03

)2

(0.35)(1− 0.35) ≈ 971.1.

Therefore, their Phase III trial should recruit n = 972 patients. �
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8.7 Confidence intervals arising from normal populations

Preview: We derive confidence intervals for means and variances when the population
distribution is N (µ, σ2). We consider one and two populations. To derive the intervals, we
use sampling distribution results in Section 7.3 and the t and F distributions in Section 7.4.

8.7.1 Population mean µ

Recall: In Example 8.8 (notes, pp 92), we showed that if Y1, Y2, ..., Yn was an iid sample
from a N (µ, σ2) population distribution (σ2 known), then(

Y − zα/2
σ√
n
, Y + zα/2

σ√
n

)
is a 100(1 − α)% confidence interval for the population mean µ. We derived this interval
from the pivotal quantity

Q =
Y − µ
σ/
√
n
∼ N (0, 1).

When the population variance σ2 is unknown, we use

T =
Y − µ
S/
√
n
∼ t(n− 1)

instead and derive the confidence interval for µ in the analogous way. Define

−tn−1,α/2 = lower α/2 quantile of t(n− 1)

tn−1,α/2 = upper α/2 quantile of t(n− 1)

and refer to Figure 8.11 (next page). Because T ∼ t(n− 1), we can write

1− α = P

(
−tn−1,α/2 <

Y − µ
S/
√
n
< tn−1,α/2

)
= P

(
−tn−1,α/2

S√
n
< Y − µ < tn−1,α/2

S√
n

)
= P

(
tn−1,α/2

S√
n
> µ− Y > −tn−1,α/2

S√
n

)
= P

(
Y + tn−1,α/2

S√
n
> µ > Y − tn−1,α/2

S√
n

)
= P

(
Y − tn−1,α/2

S√
n︸ ︷︷ ︸

µL

< µ < Y + tn−1,α/2
S√
n︸ ︷︷ ︸

µU

)
.

Therefore, (
Y − tn−1,α/2

S√
n
, Y + tn−1,α/2

S√
n

)
is a 100(1− α)% confidence interval for µ. �
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1 − α

α 2 α 2

Figure 8.11: t(n − 1) pdf. The lower α/2 quantile −tn−1,α/2 and the upper α/2 quantile
tn−1,α/2 are shown by using dark circles.

Remark: When Y1, Y2, ..., Yn are iid N (µ, σ2), the confidence intervals(
Y − zα/2

σ√
n
, Y + zα/2

σ√
n

)
(σ2 known)

and (
Y − tn−1,α/2

S√
n
, Y + tn−1,α/2

S√
n

)
(σ2 unknown)

are not large-sample intervals. They are exact. This means the confidence coefficient is
exactly equal to 1−α regardless of the sample size. Of course, this assumes Y1, Y2, ..., Yn are
truly iid and the population distribution N (µ, σ2) is correctly specified.

Remark: It is well-known that the performance of the t confidence interval above is fairly
robust to the underlying N (µ, σ2) population distribution assumption.

• In practice, this means that if the population distribution is mildly non-normal, the t
confidence interval above can generally still be used to estimate µ.

• However, if there is strong evidence that the population distribution is grossly non-
normal, then one should be cautious about using the interval, especially if the sample
size n is small.
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8.7.2 Population variance σ2

Setting: Suppose Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2) population distribution,
where both µ and σ2 are unknown. Our goal is to derive a 100(1− α)% confidence interval
for the population variance σ2. We start with

Q =
(n− 1)S2

σ2
∼ χ2(n− 1)

where S2 is the sample variance. Note that Q is a pivot because its distribution is free of µ
and σ2. Define

χ2
n−1,1−α/2 = lower α/2 quantile of χ2(n− 1)

χ2
n−1,α/2 = upper α/2 quantile of χ2(n− 1)

and refer to Figure 8.12 (next page). Because Q ∼ χ2(n− 1), we can write

1− α = P

(
χ2
n−1,1−α/2 <

(n− 1)S2

σ2
< χ2

n−1,α/2

)
= P

(
1

χ2
n−1,1−α/2

>
σ2

(n− 1)S2
>

1

χ2
n−1,α/2

)

= P

(
(n− 1)S2

χ2
n−1,1−α/2

> σ2 >
(n− 1)S2

χ2
n−1,α/2

)

= P

(
(n− 1)S2

χ2
n−1,α/2︸ ︷︷ ︸
σ2
L

< σ2 <
(n− 1)S2

χ2
n−1,1−α/2︸ ︷︷ ︸

σ2
U

)
.

Therefore, (
(n− 1)S2

χ2
n−1,α/2

,
(n− 1)S2

χ2
n−1,1−α/2

)
is a 100(1− α)% confidence interval for σ2. �

Remark: Note that the following two events are equal:{
(n− 1)S2

χ2
n−1,α/2

< σ2 <
(n− 1)S2

χ2
n−1,1−α/2

}
=

{√
(n− 1)S2

χ2
n−1,α/2

< σ <

√
(n− 1)S2

χ2
n−1,1−α/2

}
.

This is true because the square-root function is increasing and both endpoints are positive.
Therefore, the latter event also has probability 1− α; i.e.,(√

(n− 1)S2

χ2
n−1,α/2

,

√
(n− 1)S2

χ2
n−1,1−α/2

)

is a 100(1− α)% confidence interval for σ.
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1 − α

α 2 α 2

Figure 8.12: χ2(n − 1) pdf. The lower α/2 quantile χ2
n−1,1−α/2 and the upper α/2 quantile

χ2
n−1,α/2 are shown by using dark circles.

8.7.3 Difference of two population means µ1 − µ2 (independent samples)

Setting: Suppose we have two independent random samples:

• Y11, Y12, ..., Y1n1 is an iid sample from a N (µ1, σ
2
1) population distribution

• Y21, Y22, ..., Y2n2 is an iid sample from a N (µ2, σ
2
2) population distribution,

where all population parameters are unknown. Our goal is to derive a 100(1−α)% confidence
interval for µ1 − µ2, the difference of the two population means.

Note: Writing a confidence interval for µ1 − µ2 will allow us to compare the population
means by noting where the interval resides; i.e., does the interval contain values entirely
greater than 0? less than 0? does the interval contain 0?

Derivation: As before, define the sample means

Y 1+ =
1

n1

n1∑
j=1

Y1j and Y 2+ =
1

n2

n2∑
j=1

Y2j

and the sample variances

S2
1 =

1

n1 − 1

n1∑
j=1

(Y1j − Y 1+)2 and S2
2 =

1

n2 − 1

n2∑
j=1

(Y2j − Y 2+)2.
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We know

Y 1+ ∼ N
(
µ1,

σ2
1

n1

)
and Y 2+ ∼ N

(
µ2,

σ2
2

n2

)
.

Because Y 1+ and Y 2+ are both normally distributed, the difference Y 1+ − Y 2+ is too (i.e.,
the difference is a simple linear combination). Therefore, because the two samples are inde-
pendent,

Y 1+ − Y 2+ ∼ N
(
µ1 − µ2,

σ2
1

n1

+
σ2
2

n2

)
.

Standardizing, we get

Z =
(Y 1+ − Y 2+)− (µ1 − µ2)√

σ2
1

n1

+
σ2
2

n2

∼ N (0, 1).

We also know

(n1 − 1)S2
1

σ2
1

∼ χ2(n1 − 1) and
(n2 − 1)S2

2

σ2
2

∼ χ2(n2 − 1).

Therefore, because the two samples are independent,

W =
(n1 − 1)S2

1

σ2
1

+
(n2 − 1)S2

2

σ2
2

∼ χ2(n1 + n2 − 2).

Because Z ⊥⊥ W (why?), we have

T =

(Y 1+ − Y 2+)− (µ1 − µ2)√
σ2
1

n1

+
σ2
2

n2√√√√√ (n1 − 1)S2
1

σ2
1

+
(n2 − 1)S2

2

σ2
2

n1 + n2 − 2

∼ t(n1 + n2 − 2).

Remark: Although T is a pivotal quantity, it is unhelpful because T depends on the popu-
lation variances σ2

1 and σ2
2, which are unknown. In this context, the population variances are

nuisance parameters in the sense they are not the population parameters of interest. We
want to write a confidence interval for µ1−µ2, but how we do so depends on the assumption
we make regarding σ2

1 and σ2
2. We consider two cases:

Case 1: σ2
1 = σ2

2 = σ2; i.e., the population variances are equal. Under this assumption,

T =

(Y 1+ − Y 2+)− (µ1 − µ2)√
σ2

n1

+
σ2

n2√√√√ (n1 − 1)S2
1

σ2
+

(n2 − 1)S2
2

σ2

n1 + n2 − 2

=

(Y 1+ − Y 2+)− (µ1 − µ2)

σ

√
1

n1

+
1

n2

1

σ

√
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

=
(Y 1+ − Y 2+)− (µ1 − µ2)

Sp

√
1

n1

+
1

n2

,
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1 − α

α 2 α 2

Figure 8.13: t(n1 + n2 − 2) pdf. The lower α/2 quantile −tn1+n2−2,α/2 and the upper α/2
quantile tn1+n2−2,α/2 are shown by using dark circles.

where

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

is the pooled sample variance estimator of the common population variance σ2.

Note: Under our modeling assumptions, the pooled sample variance estimator S2
p is an

unbiased estimator of the common population variance σ2; i.e.,

E(S2
p) = σ2.

Proof. Exercise.

Define

−tn1+n2−2,α/2 = lower α/2 quantile of t(n1 + n2 − 2)

tn1+n2−2,α/2 = upper α/2 quantile of t(n1 + n2 − 2)

and refer to Figure 8.13 (above). Because

T =
(Y 1+ − Y 2+)− (µ1 − µ2)

Sp

√
1

n1

+
1

n2

∼ t(n1 + n2 − 2),
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we can write

1− α = P

−tn1+n2−2,α/2 <
(Y 1+ − Y 2+)− (µ1 − µ2)

Sp

√
1

n1

+
1

n2

< tn1+n2−2,α/2

 .

After performing the usual algebra; i.e., to isolate µ1− µ2 in the center of the inequality, we
conclude

(Y 1+ − Y 2+)± tn1+n2−2,α/2Sp

√
1

n1

+
1

n2

is a 100(1− α)% confidence interval for µ1 − µ2. �

Case 2: σ2
1 6= σ2

2; i.e., the population variances are unequal. Under this assumption, we
have few options. The reason is that there is no easy-to-use pivotal quantity that arises
under this case. An approximate 100(1− α)% confidence interval for µ1 − µ2 is given by

(Y 1+ − Y 2+)± tν,α/2

√
S2
1

n1

+
S2
2

n2

,

where the degrees of freedom ν is calculated as

ν =

(
S2
1

n1

+
S2
2

n2

)2

S4
1

n2
1(n1 − 1)

+
S4
2

n2
2(n2 − 1)

.

This is called Satterthwaite’s formula.

Remark: We have formulated two confidence intervals for µ1 − µ2 under the normal inde-
pendent sample assumption: one that assumes equal population variances σ2

1 = σ2
2 and one

that does not.

• If there is doubt on which assumption is more reasonable, my advice is to use the
unequal variance interval. The penalty for using it when σ2

1 = σ2
2 is much smaller than

the penalty for using the equal variance interval when σ2
1 6= σ2

2.

• I usually calculate both intervals (easy to do quickly with R) and then determine
whether the intervals lead to drastically different conclusions.

Example 8.15. In a study conducted in the Department of Zoology at Virginia Tech
University, data were collected on density measurements (i.e., the number of organisms per
m2) at two different locations; see Table 8.1 (next page). Let µ1 and µ2 denote the population
mean density measurements at location 1 and location 2, respectively. Estimate µ1−µ2 with
a 95% confidence interval.
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Location 1 Location 2
5030 4980 2800 2810

13700 11910 4670 1330
10730 8130 6890 3320
11400 26850 7720 1230

860 17660 7030 2130
2200 22800 7330 2190
4250 1130

15040 1690

Table 8.1: Example 8.15. Density measurements at two locations.

Solution. We can calculate both the equal and unequal variance confidence intervals for
µ1 − µ2 (on the preceding page) by using R:

> t.test(loc.1,loc.2,conf.level=0.95,var.equal=TRUE)$conf.int

[1] 914.0939 10639.2394

> t.test(loc.1,loc.2,conf.level=0.95,var.equal=FALSE)$conf.int

[1] 1389.003 10164.331

Both intervals support the conjecture (hypothesis) that µ1−µ2 > 0; i.e., the population mean
density measurement at location 1 is larger than the population mean density measurement
at location 2. �

Remark: Like the one-sample t confidence interval for one population mean µ, the two-
sample t confidence intervals are robust to mild departures from normality. This means
we can feel reasonably comfortable using the intervals even if the underlying population
distributions are not perfectly normal.

8.7.4 Ratio of two population variances σ2
2/σ

2
1 (independent samples)

Setting: Suppose we have two independent random samples:

• Y11, Y12, ..., Y1n1 is an iid sample from a N (µ1, σ
2
1) population distribution

• Y21, Y22, ..., Y2n2 is an iid sample from a N (µ2, σ
2
2) population distribution,

where all population parameters are unknown. Our goal is to derive a 100(1−α)% confidence
interval for σ2

2/σ
2
1, the ratio of the two population variances.

Derivation: We know

(n1 − 1)S2
1

σ2
1

∼ χ2(n1 − 1) and
(n2 − 1)S2

2

σ2
2

∼ χ2(n2 − 1).
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1 − α

α 2 α 2

Figure 8.14: F (n1 − 1, n2 − 1) pdf. The lower α/2 quantile Fn1−1,n2−1,1−α/2 and the upper
α/2 quantile Fn1−1,n2−1,α/2 are shown by using dark circles.

Therefore, because the two samples are independent,

F =

(n1 − 1)S2
1

σ2
1

/
(n1 − 1)

(n2 − 1)S2
2

σ2
2

/
(n2 − 1)

=

(
S2
1

S2
2

)
σ2
2

σ2
1

∼ F (n1 − 1, n2 − 1).

Note that F is a pivot because its distribution is free of all unknown population parameters.
Define

Fn1−1,n2−1,1−α/2 = lower α/2 quantile of F (n1 − 1, n2 − 1)

Fn1−1,n2−1,α/2 = upper α/2 quantile of F (n1 − 1, n2 − 1)

and refer to Figure 8.14 (above). Because F ∼ F (n1 − 1, n2 − 1), we can write

1− α = P

(
Fn1−1,n2−1,1−α/2 <

S2
1

S2
2

σ2
2

σ2
1

< Fn1−1,n2−1,α/2

)
= P

(
S2
2

S2
1

Fn1−1,n2−1,1−α/2 <
σ2
2

σ2
1

<
S2
2

S2
1

Fn1−1,n2−1,α/2

)
.

Therefore, (
S2
2

S2
1

Fn1−1,n2−1,1−α/2,
S2
2

S2
1

Fn1−1,n2−1,α/2

)
is a 100(1− α)% confidence interval for σ2

2/σ
2
1. �
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9 Properties of Point Estimators and Methods of Es-

timation

9.1 Introduction

Preview: This chapter presents additional concepts related to point estimation. In partic-
ular, we discuss

• sufficiency and its role in determining “best” point estimators

• mathematical methods of point estimation (e.g., method of moments, maximum like-
lihood, etc.)

• asymptotic concepts which enable us to describe large-sample distributions of point
estimators (critical for statistical inference).

We begin by revisiting our discussion from the last chapter on comparing two unbiased
estimators. We then generalize this discussion to find the “best” unbiased estimator.

9.2 Relative efficiency

Recall: In the last chapter, we posed this question:

Q: Suppose we have two point estimators θ̂1 and θ̂2 for the population-level parameter θ.
Which one should we use? How should we compare them?
A: If both point estimators are unbiased; i.e., if E(θ̂1) = E(θ̂2) = θ, then we would prefer
the estimator with the smaller variance.

Terminology: Suppose θ̂1 and θ̂2 are two unbiased point estimators of the population-level
parameter θ. The relative efficiency of θ̂1 to θ̂2 is given by

eff(θ̂1 to θ̂2) =
V (θ̂2)

V (θ̂1)
.

We interpret eff(θ̂1 to θ̂2) as follows:

• if eff(θ̂1 to θ̂2) < 1, then θ̂2 is more efficient (i.e., smaller variance) than θ̂1

• if eff(θ̂1 to θ̂2) > 1, then θ̂2 is less efficient (i.e., larger variance) than θ̂1

• if eff(θ̂1 to θ̂2) = 1, then θ̂1 and θ̂2 are equally efficient.

This measure should only used if both point estimators θ̂1 and θ̂2 are unbiased (or at least
asymptotically unbiased; see Example 9.3).
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Remark: The definition of relative efficiency is somewhat unexciting; after all, we have
already compared the variances of unbiased estimators in the last chapter. However, by
taking the ratio of the variances, we can statements about the efficiency of one unbiased
estimator to another. For example, if

eff(θ̂1 to θ̂2) =
V (θ̂2)

V (θ̂1)
= 1.25,

then we would say “θ̂1 is 25% more efficient than θ̂2.” In other words, using θ̂2, one would
have to collect 25% more observations to get the same efficiency as one would obtain by
using θ̂1.

Example 9.1. Suppose Y1, Y2, .., Yn is an iid sample from a Poisson(θ) population distribu-
tion, where θ > 0 is unknown. Consider the two point estimators of θ:

θ̂1 = Y

θ̂2 = S2.

We know that both estimators are unbiased because E(Y ) = µ = θ and E(S2) = σ2 = θ;
i.e., the population mean and population variance are both equal to θ. Let’s calculate

eff(θ̂1 to θ̂2) =
V (θ̂2)

V (θ̂1)
=
V (S2)

V (Y )
.

Recall that

V (Y ) =
σ2

n
=
θ

n
.

Calculating V (S2) is harder. Recall that, in general, if Y1, Y2, ..., Yn are iid with E(Y 4) <∞;
i.e., the fourth population moment is finite, then

V (S2) =
1

n

[
µ4 −

(
n− 3

n− 1

)
σ4

]
,

where
µ4 = E[(Y − µ)4]

is the fourth central moment. For Y ∼ Poisson(θ), we can show

µ4 = θ(1 + 3θ) =⇒ V (S2) =
1

n

[
θ(1 + 3θ)−

(
n− 3

n− 1

)
θ2
]

=
θ

n
+

2θ2

n− 1
.

Therefore, the relative efficiency of θ̂1 to θ̂2 is

eff(θ̂1 to θ̂2) =
V (θ̂2)

V (θ̂1)
=
V (S2)

V (Y )
=

θ

n
+

2θ2

n− 1
θ

n

= 1 +

(
2n

n− 1

)
θ.

Note that eff(θ̂1 to θ̂2) > 1 whenever n ≥ 2, establishing that Y is more efficient than S2 as
a point estimator of θ. �
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Example 9.2. Suppose Y1, Y2, ..., Yn is an iid sample from a U(0, θ) population distribution,
where θ > 0 is unknown. In Example 8.1 (notes, pp 75-77), we showed

E(θ̂1) = E(2Y ) = θ,

that is, θ̂1 = 2Y is an unbiased estimator of θ. We also showed

E(Y(n)) =

(
n

n+ 1

)
θ =⇒ E

[(
n+ 1

n

)
Y(n)

]
=

(
n+ 1

n

)(
n

n+ 1

)
θ = θ,

that is,

θ̂2 =

(
n+ 1

n

)
Y(n)

is also an unbiased estimator of θ. Let’s calculate

eff(θ̂1 to θ̂2) =
V (θ̂2)

V (θ̂1)
.

First, recall that V (Y ) = σ2 = θ2/12; i.e., this is the population variance of Y ∼ U(0, θ).
Therefore,

V (θ̂1) = V (2Y ) = 4V (Y ) = 4

(
σ2

n

)
= 4

(
θ2/12

n

)
=
θ2

3n
.

Second, note that

V

((
n+ 1

n

)
Y(n)

)
=

(
n+ 1

n

)2

V (Y(n)),

where, by the variance computing formula,

V (Y(n)) = E(Y 2
(n))− [E(Y(n))]

2.

Therefore, we need to calculate the second moment E(Y 2
(n)). Recall the pdf of Y(n) is

fY(n)(y) =


nyn−1

θn
, 0 < y < θ

0, otherwise,

which we derived in Example 8.1. Therefore,

E(Y 2
(n)) =

∫
R
y2fY(n)(y)dy =

∫ θ

0

y2
nyn−1

θn
dy

=
n

θn

∫ θ

0

yn+1dy =
n

θn

(
yn+2

n+ 2

)∣∣∣∣θ
0

=
n

θn

(
θn+2

n+ 2

)
=

(
n

n+ 2

)
θ2

and

V (Y(n)) = E(Y 2
(n))− [E(Y(n))]

2

=

(
n

n+ 2

)
θ2 −

[(
n

n+ 1

)
θ

]2
=

[
n

n+ 2
−
(

n

n+ 1

)2
]
θ2.
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Therefore,

V (θ̂2) = V

((
n+ 1

n

)
Y(n)

)
=

(
n+ 1

n

)2

V (Y(n))

=

(
n+ 1

n

)2
[

n

n+ 2
−
(

n

n+ 1

)2
]
θ2 =

θ2

n(n+ 2)
.

Finally, the relative efficiency of θ̂1 to θ̂2 is

eff(θ̂1 to θ̂2) =
V (θ̂2)

V (θ̂1)
=

V

((
n+ 1

n

)
Y(n)

)
V (2Y )

=

θ2

n(n+ 2)

θ2

3n

=
3

n+ 2
< 1,

for n ≥ 2. For example, if n = 10, then

eff(θ̂1 to θ̂2) = 0.25;

i.e., θ̂1 is only 25 percent as efficient as θ̂2. �

Example 9.3. Suppose Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2) population distribu-
tion, where both parameters µ and σ2 are unknown. Consider the two estimators of the
population mean µ:

µ̂1 = Y

µ̂2 = φ̂0.5,

where

φ̂0.5 =

{
Y((n+1)/2), if n is odd

(Y(n/2) + Y(n/2+1)/2, if n is even;

i.e., φ̂0.5 is the sample median. Let’s calculate

eff(µ̂1 to µ̂2) =
V (µ̂2)

V (µ̂1)
=
V (φ̂0.5)

V (Y )
.

We know

Y ∼ N
(
µ,
σ2

n

)
=⇒ V (Y ) =

σ2

n
.

Whenever I teach STAT 823, I use asymptotic results for sample quantiles to prove

φ̂0.5 ∼ AN
(
µ,
π

2

σ2

n

)
=⇒ V (φ̂0.5) ≈

π

2

σ2

n
,

for large n. Therefore, the relative efficiency of µ̂1 to µ̂2 is

eff(µ̂1 to µ̂2) =
V (µ̂2)

V (µ̂1)
=
V (φ̂0.5)

V (Y )
≈

π

2

σ2

n
σ2

n

=
π

2
≈ 1.57.

Therefore, when estimating the population mean µ, the sample mean µ̂1 = Y is about 57%
more efficient than the sample median µ̂2 = φ̂0.5. �
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9.3 Sufficient statistics

Remark: Suppose Y1, Y2, ..., Yn is a random sample from a population distribution, denoted
by pY (y) or fY (y). Intuitively, the sample Y1, Y2, ..., Yn contains valuable information about
a population-level parameter θ, and we have already discussed different criteria on how to
evaluate the statistic T = T (Y1, Y2, ..., Yn) as a point estimator of θ (e.g., bias, variance,
MSE, etc.). More generally, statistical inference deals with using the information in the
sample to make a statement about population-level parameters. In practice, this is done by
using confidence intervals to estimate parameters or by performing hypothesis tests about
these parameters.

Remark: Sufficiency plays an important role in statistical inference. Informally, sufficiency
is a mathematical concept dealing with data reduction and addresses this question when
attempting to estimate a population-level parameter θ:

“Instead of keeping track of the entire sample, can we reduce the sample to a small
number of statistics that contain the same information as the entire sample?”

If we can find statistics that accomplish this (i.e., retain all the information about θ), then
there is no harm in restricting our attention to these statistics when performing statistical
inference.

Definition: Suppose Y1, Y2, ..., Yn is a sample from a population distribution with unknown
parameter θ. The statistic T = T (Y1, Y2, ..., Yn) is sufficient for θ if the conditional distri-
bution of the sample Y = (Y1, Y2, ..., Yn), given T , does not depend on θ.

Informally: If the process of conditioning the sample on T removes all information about
θ, then T must contain the same information about θ that the entire sample has.

Implementation: Showing T = T (Y1, Y2, ..., Yn) is sufficient by using the definition above
involves showing the following. In the discrete case, we show

pY|T (y|t) =
pY(y)

pT (t)
is free of θ.

In the continuous case, we show

fY|T (y|t) =
fY(y)

fT (t)
is free of θ.

Example 9.4. Suppose Y1, Y2, ..., Yn is an iid sample from a Poisson(θ) population distri-
bution, where θ > 0 is unknown. Recall the Poisson(θ) pmf is given by

pY (y) =


θye−θ

y!
, y = 0, 1, 2, ...

0, otherwise.

Show T =
∑n

i=1 Yi is a sufficient statistic for θ.
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Solution. The joint pmf of the sample Y = (Y1, Y2, ..., Yn) is

pY(y) = pY (y1)× pY (y2)× · · · × pY (yn)

=
θy1e−θ

y1!
× θy2e−θ

y2!
× · · · × θyne−θ

yn!
=

θ
∑n
i=1 yie−nθ

y1!y2! · · · yn!
=
θ
∑n
i=1 yie−nθ∏n
i=1 yi!

.

What is the (sampling) distribution of T =
∑n

i=1 Yi? In case you have forgotten, we can
derive it quickly. The mgf of T is

mT (t) = [mY (t)]n = [eθ(e
t−1)]n = enθ(e

t−1).

This is the mgf of a Poisson random variable with mean nθ. Because mgfs are unique, it
must be true that T ∼ Poisson(nθ). Therefore, for t = 0, 1, 2, ..., the pmf of T is

pT (t) =
(nθ)te−nθ

t!
,

where t =
∑n

i=1 yi. Therefore, the conditional pmf of the sample Y = (Y1, Y2, ..., Yn), given
T = t, is

pY|T (y|t) =
pY(y)

pT (t)
=

θ
∑n
i=1 yie−nθ∏n
i=1 yi!

(nθ)te−nθ

t!

=
t!

nt
∏n

i=1 yi!
,

which does not depend on θ. Therefore, T =
∑n

i=1 Yi is a sufficient statistic for θ. �

Analogy: Suppose two researchers have collected observations on n individuals which are
modeled as iid Poisson(θ) counts; e.g., number of sexual partners, number of claims made,
number of missed classes, etc.

• Researcher 1 has the entire sample of observations Y1, Y2, ..., Yn

• Researcher 2 has lost the sample but s/he has the value of T =
∑n

i=1 Yi.

If the goal is to perform statistical inference for the population-level parameter θ (i.e., the
mean of the population), then Researcher 1 and Researcher 2 have the same information! In
other words, Researcher 2 has lost nothing by reducing the entire sample to the sample sum
T =

∑n
i=1 Yi.

Example 9.5. Suppose Y1, Y2, ..., Yn is an iid sample from a Rayleigh(θ) population distri-
bution, where θ > 0 is unknown. Recall the Rayleigh pdf is given by

fY (y) =


2y

θ
e−y

2/θ, y > 0

0, otherwise.

Show that T =
∑n

i=1 Y
2
i is a sufficient statistic for θ.
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Solution. The joint pdf of the sample Y = (Y1, Y2, ..., Yn) is

fY(y) = fY (y1)× fY (y2)× · · · × fY (yn)

=
2y1
θ
e−y

2
1/θ × 2y2

θ
e−y

2
2/θ × · · · × 2yn

θ
e−y

2
n/θ =

(
2

θ

)n( n∏
i=1

yi

)
e−

∑n
i=1 y

2
i /θ.

What is the (sampling) distribution of T =
∑n

i=1 Y
2
i ? In Exercise 6.34 (WMS, pp 318), we

showed
Y ∼ Rayleigh(θ) =⇒ U = Y 2 ∼ exponential(θ).

Therefore,

T =
n∑
i=1

Y 2
i =

n∑
i=1

Ui ∼ gamma(n, θ).

This is true because U1, U2, ..., Un are iid exponential(θ) and

mT (t) = [mU(t)]n =

(
1

1− θt

)n
,

which we recognize as the gamma(n, θ) mgf. Therefore, the pdf of T , for t > 0, is

fT (t) =
1

Γ(n)θn
tn−1e−t/θ.

Therefore, the conditional pdf of the sample Y1, Y2, ..., Yn, given T = t, is given by

fY|T (y|t) =
fY(y)

fT (t)
=

(
2

θ

)n n∏
i=1

yi e
−

∑n
i=1 y

2
i /θ

1

Γ(n)θn
tn−1e−t/θ

=
2nΓ(n)

∏n
i=1 yi

tn−1
,

which does not depend on θ. Therefore, T =
∑n

i=1 Y
2
i is a sufficient statistic for θ. �

Remark: The approach we have outlined to show a statistic T is sufficient appeals to the
definition of sufficiency. That is, we show directly the conditional distribution of the sample
Y = (Y1, Y2, ..., Yn), given T , does not depend on θ.

• If I ask you to show that T is sufficient by “using the definition,” then this is the
approach I want you to take.

• What if we don’t know which statistic is sufficient? Then the approach we have just
outlined is not practical to implement. For example, imagine trying different statistics
T and for each one attempting to show that pY|T (y|t) or fY|T (y|t) is free of θ. This
might involve a large amount of trial and error and you would have to derive the
sampling distribution of T each time.

• The Factorization Theorem (to be discussed shortly) makes getting sufficient statistics
easy. To prepare for this theorem, we first introduce the likelihood function.
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Terminology: Suppose Y1, Y2, ..., Yn is an iid sample from a population distribution denoted
by pY (y|θ) or fY (y|θ), where θ is an unknown population parameter.

• Note: Going forward, we now write pY (y|θ) in place of pY (y) to emphasize the popu-
lation pmf depends on θ. Similarly, we write fY (y|θ) in place of fY (y).

The likelihood function, which is denoted by L(θ|y) = L(θ|y1, y2, ..., yn), is determined as
follows:

• In the discrete case,

L(θ|y) = pY(y|θ) = pY (y1|θ)× pY (y2|θ)× · · · × pY (yn|θ) =
n∏
i=1

pY (yi|θ).

• In the continuous case,

L(θ|y) = fY(y|θ) = fY (y1|θ)× fY (y2|θ)× · · · × fY (yn|θ) =
n∏
i=1

fY (yi|θ).

Note: Mathematically, the likelihood function L(θ|y) is the same function as the joint pmf
pY(y|θ) in the discrete case and the joint pdf fY(y|θ) in the continuous case. The only
difference is in how we interpret each function.

• The joint distributions pY(y|θ) or fY(y|θ) describe the random behavior of the sample
Y = (Y1, Y2, ..., Yn) when θ is fixed.

• The likelihood function L(θ|y) is viewed as a function of θ with the sample data
y = (y1, y2, ..., yn) held fixed.

Example 9.4 (continued). Suppose Y1, Y2, ..., Yn is an iid sample from a Poisson(θ) popula-
tion distribution, where θ > 0 is unknown. Recall the Poisson(θ) pmf is given by

pY (y|θ) =


θye−θ

y!
, y = 0, 1, 2, ...

0, otherwise.

The likelihood function is given by

L(θ|y) =
n∏
i=1

pY (yi|θ) = pY (y1|θ)× pY (y2|θ)× · · · × pY (yn|θ)

=
θy1e−θ

y1!
× θy2e−θ

y2!
× · · · × θyne−θ

yn!
=

θ
∑n
i=1 yie−nθ

y1!y2! · · · yn!
=
θ
∑n
i=1 yie−nθ∏n
i=1 yi!

.

Application: Suppose actuaries have an iid sample of n = 84 policies and on each one they
observe

Y = the number of accidents in a given year.

The observed data (in tabular form) are given on the next page:
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Figure 9.1: Accident data. Poisson likelihood function L(θ|y) in Example 9.4.

Number of accidents Number of policies
0 32
1 26
2 12
3 7
4 4
5 2
6 1

Suppose the observations Y1, Y2, ..., Y84 are modeled as iid Poisson counts with mean θ > 0.
We calculate

84∑
i=1

yi = 103 and
84∏
i=1

yi! = 3944197523094110208000.

Therefore, the likelihood function based on these observations is given by

L(θ|y) =
θ
∑84
i=1 yie−84θ∏84
i=1 yi!

=

(
1

3944197523094110208000

)
θ103e−84θ ∝ θ103e−84θ.

This function is shown in Figure 9.1 above. �
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Example 9.5 (continued). Suppose Y1, Y2, ..., Yn is an iid sample from a Rayleigh(θ) popu-
lation distribution, where θ > 0 is unknown. Recall the Rayleigh pdf is given by

fY (y|θ) =


2y

θ
e−y

2/θ, y > 0

0, otherwise.

The likelihood function is given by

L(θ|y) =
n∏
i=1

fY (yi|θ) = fY (y1|θ)× fY (y2|θ)× · · · × fY (yn|θ)

=
2y1
θ
e−y

2
1/θ × 2y2

θ
e−y

2
2/θ × · · · × 2yn

θ
e−y

2
n/θ

=

(
2

θ

)n( n∏
i=1

yi

)
e−

∑n
i=1 y

2
i /θ.

Application: A light bulb company manufactures filaments that are not expected to wear
out during an extended period of “intense use.” With the goal of guaranteeing bulb reliability
in these conditions, engineers sample n = 30 bulbs, simulate their long term use, and record

Y = time until failure (in 100s hours)

for each bulb. Here are the lifetimes:

4.43 5.93 3.74 5.82 5.90 2.90 2.64 6.49 5.31 8.49
1.01 1.07 1.41 3.42 1.22 4.01 0.57 1.47 2.81 8.52
0.52 4.77 0.85 2.21 6.85 3.43 1.87 5.15 2.02 10.58

Suppose the observations Y1, Y2, ..., Y30 are modeled as iid Rayleigh(θ), where θ > 0. We
calculate

30∑
i=1

y2i = 645.0 and
30∏
i=1

yi = 87086335417057.6.

Therefore, the likelihood function based on these observations is given by

L(θ|y) =

(
2

θ

)30
(

30∏
i=1

yi

)
e−

∑30
i=1 y

2
i /θ =

(
230 × 87086335417057.6

) e−645.0/θ
θ30

∝ e−645.0/θ

θ30
.

This function is shown in Figure 9.2 (next page). �

Remark: In a sense, constructing the likelihood function L(θ|y) is a form of data re-
duction, that is, we are reducing the sample Y = (Y1, Y2, ..., Yn) to a function of the
population-level parameter θ. With the notion of a likelihood function in hand, we now
return to sufficiency and the Factorization Theorem.
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Figure 9.2: Light bulb data. Rayleigh likelihood function L(θ|y) in Example 9.5.

Factorization Theorem: Suppose Y1, Y2, ..., Yn is an iid sample from a population distri-
bution denoted by pY (y|θ) or fY (y|θ), where θ is an unknown population parameter. The
statistic T = T (Y1, Y2, ..., Yn) is a sufficient statistic if and only if we can write the likelihood
function as follows:

L(θ|y) = L(θ|y1, y2, ..., yn) = g(t, θ)h(y1, y2, ..., yn),

where g and h are nonnegative functions and

• g(t, θ) is a function of t = t(y1, y2, ..., yn) and θ only

• h(y1, y2, ..., yn) is a function of y1, y2, ..., yn only; i.e., the function h(y1, y2, ..., yn) cannot
depend on θ.

Remark: The Factorization Theorem makes getting sufficient statistics easy!

• There is no need to appeal to the definition of sufficiency to demonstrate a particular
statistic is sufficient; all we have to do is work with the likelihood function directly.

• In most cases, a sufficient statistic presents itself immediately.
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Example 9.4 (continued). Suppose Y1, Y2, ..., Yn is an iid sample from a Poisson(θ) popula-
tion distribution, where θ > 0 is unknown. Recall the Poisson(θ) pmf is given by

pY (y|θ) =


θye−θ

y!
, y = 0, 1, 2, ...

0, otherwise.

Note that we can write the likelihood function as

L(θ|y) =
θ
∑n
i=1 yie−nθ∏n
i=1 yi!

= θ
∑n
i=1 yie−nθ︸ ︷︷ ︸
g(t,θ)

× 1∏n
i=1 yi!︸ ︷︷ ︸

h(y1,y2,...,yn)

,

where t =
∑n

i=1 yi. By the Factorization Theorem, it follows that T =
∑n

i=1 Yi is a sufficient
statistic for θ. �

Example 9.5 (continued). Suppose Y1, Y2, ..., Yn is an iid sample from a Rayleigh(θ) popu-
lation distribution, where θ > 0 is unknown. Recall the Rayleigh pdf is given by

fY (y|θ) =


2y

θ
e−y

2/θ, y > 0

0, otherwise.

Note that we can write the likelihood function as

L(θ|y) =

(
2

θ

)n( n∏
i=1

yi

)
e−

∑n
i=1 y

2
i /θ =

e−
∑n
i=1 y

2
i /θ

θn︸ ︷︷ ︸
g(t,θ)

× 2n
n∏
i=1

yi︸ ︷︷ ︸
h(y1,y2,...,yn)

,

where t =
∑n

i=1 y
2
i . By the Factorization Theorem, it follows that T =

∑n
i=1 Y

2
i is a sufficient

statistic for θ. �

Example 9.6. Suppose Y1, Y2, ..., Yn is an iid sample from a beta(θ, 1) population distribu-
tion, where θ > 0 is unknown. Recall the beta(θ, 1) pdf is given by

fY (y|θ) =

{
θyθ−1, 0 < y < 1

0, otherwise.

The likelihood function is given by

L(θ|y) =
n∏
i=1

fY (yi|θ) = fY (y1|θ)× fY (y2|θ)× · · · × fY (yn|θ)

= θyθ−11 × θyθ−12 × · · · × θyθ−1n = θn

(
n∏
i=1

yi

)θ−1

.
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Note that we can write the likelihood function as

L(θ|y) = θn

(
n∏
i=1

yi

)θ−1

= θn

(
n∏
i=1

yi

)θ

︸ ︷︷ ︸
g(t,θ)

× 1∏n
i=1 yi︸ ︷︷ ︸

h(y1,y2,...,yn)

,

where t =
∏n

i=1 yi. By the Factorization Theorem, it follows that T =
∏n

i=1 Yi is a sufficient
statistic for θ. �

Example 9.7. Suppose Y1, Y2, ..., Yn is an iid sample from a U(0, θ) population distribution,
where θ > 0 is unknown. Recall the U(0, θ) pdf is given by

fY (y|θ) =


1

θ
, 0 < y < θ

0, otherwise.

Important: In this example, unlike Examples 9.4-9.6, it is important to note that the
support of the random variable Y depends on the unknown parameter θ. When this is the
case, we need to be careful in how we apply the Factorization Theorem. Because the U(0, θ)
pdf is nonzero only when 0 < y < θ, let’s write

fY (y|θ) =
1

θ
I(0 < y < θ),

where I(·) is the indicator function; i.e.,

I(0 < y < θ) =

{
1, 0 < y < θ

0, otherwise.

The likelihood function is given by

L(θ|y) =
n∏
i=1

fY (yi|θ) = fY (y1|θ)× fY (y2|θ)× · · · × fY (yn|θ)

=
1

θ
I(0 < y1 < θ)× 1

θ
I(0 < y2 < θ)× · · · × 1

θ
I(0 < yn < θ)

=
1

θn

n∏
i=1

I(0 < yi < θ).

A sufficient statistic is “hiding” in the

n∏
i=1

I(0 < yi < θ)

term. To see why, note that

n∏
i=1

I(0 < yi < θ) = 1 ⇐⇒ I(0 < y(n) < θ) = 1.
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y

P
D

F

0 θ

Figure 9.3: Shifted exponential pdf in Example 9.8.

Therefore, we can write the likelihood function as

L(θ|y) =
1

θn
I(0 < y(n) < θ) =

1

θn
I(0 < y(n) < θ)︸ ︷︷ ︸

g(t,θ)

× 1︸ ︷︷ ︸
h(y1,y2,...,yn)

,

where t = y(n). By the Factorization Theorem, it follows that T = Y(n) is a sufficient statistic
for θ. �

Remark: Whenever the population pmf/pdf has support that depends on the parameter θ,
a sufficient statistic will usually be an order statistic (or a collection of order statistics).

Example 9.8. Suppose Y1, Y2, ..., Yn is an iid sample from

fY (y|θ) =

{
e−(y−θ), y > θ

0, otherwise.

This is the (population) pdf of a shifted exponential random variable; i.e., an exponential(1)
pdf shifted to the right by θ units; see Figure 9.3 above. In this model, θ represents the
smallest value Y can be.
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The likelihood function is given by

L(θ|y) =
n∏
i=1

fY (yi|θ) = fY (y1|θ)× fY (y2|θ)× · · · × fY (yn|θ)

= e−(y1−θ)I(y1 > θ)× e−(y2−θ)I(y2 > θ)× · · · × e−(yn−θ)I(yn > θ)

= e−
∑n
i=1(yi−θ)

n∏
i=1

I(yi > θ).

Note that
n∏
i=1

I(yi > θ) = 1 ⇐⇒ I(y(1) > θ) = 1.

Therefore, we can write the likelihood function as

L(θ|y) = e−
∑n
i=1(yi−θ)I(y(1) > θ) = enθ I(y(1) > θ)︸ ︷︷ ︸

g(t,θ)

× e−
∑n
i=1 yi︸ ︷︷ ︸

h(y1,y2,...,yn)

,

where t = y(1). By the Factorization Theorem, it follows that T = Y(1) is a sufficient statistic
for θ. �

Important: If T = T (Y1, Y2, ..., Yn) is a sufficient statistic for θ, then any 1:1 function of T
is also a sufficient statistic. The function need only be 1:1 over the parameter space; i.e.,
over the possible values of θ.

Example 9.9. Suppose Y1, Y2, ..., Yn is an iid sample from an exponential(θ) population
distribution, where θ > 0 is unknown. Recall the exponential(θ) pdf is given by

fY (y|θ) =


1

θ
e−y/θ, y > 0

0, otherwise.

The likelihood function is given by

L(θ|y) =
n∏
i=1

fY (yi|θ) = fY (y1|θ)× fY (y2|θ)× · · · × fY (yn|θ)

=
1

θ
e−y1/θ × 1

θ
e−y2/θ × · · · × 1

θ
e−yn/θ =

1

θn
e−

∑n
i=1 yi/θ.

Note that we can write the likelihood function as

L(θ|y) =
1

θn
e−

∑n
i=1 yi/θ =

1

θn
e−

∑n
i=1 yi/θ︸ ︷︷ ︸

g(t,θ)

× 1︸ ︷︷ ︸
h(y1,y2,...,yn)

,

where t =
∑n

i=1 yi. By the Factorization Theorem, it follows that T =
∑n

i=1 Yi is a sufficient
statistic for θ. �

PAGE 125



STAT 512: CHAPTER 9 JOSHUA M. TEBBS

Note: In Example 9.9, the parameter space is {θ : θ > 0}. Therefore, any 1:1 function of
T =

∑n
i=1 Yi over (0,∞) is also a sufficient statistic; for example,

Y =
1

n

n∑
i=1

Yi ←− 1:1 function of T over (0,∞)

exp

(
n∑
i=1

Yi

)
←− 1:1 function of T over (0,∞)(

n∑
i=1

Yi

)2

←− 1:1 function of T over (0,∞).

Remark: The Factorization Theorem can also be applied in population models with more
than one parameter.

Factorization Theorem (Extension): Suppose Y1, Y2, ..., Yn is an iid sample from a popu-
lation distribution denoted by pY (y|θ) or fY (y|θ), where θ = (θ1, θ2, ..., θd) is an unknown
population parameter. The statistic

T = T(Y1, Y2, ..., Yn) =


T1(Y1, Y2, ..., Yn)
T2(Y1, Y2, ..., Yn)

...
Tk(Y1, Y2, ..., Yn)


is a sufficient statistic if and only if we can write the likelihood function as follows:

L(θ|y) = L(θ|y1, y2, ..., yn) = g(t1, t2, ..., tk,θ)h(y1, y2, ..., yn),

where g and h are nonnegative functions and

• g(t1, t2, ..., tk,θ) is a function of t1 = t1(y1, y2, ..., yn), t2 = t2(y1, y2, ..., yn), ..., tk =
tk(y1, y2, ..., yn) and θ only

• h(y1, y2, ..., yn) is a function of y1, y2, ..., yn only.

Example 9.10. Suppose Y1, Y2, ..., Yn is an iid sample from a gamma(α, β) population
distribution, where α > 0 and β > 0 are unknown. Recall the gamma(α, β) pdf is given by

fY (y|θ) =


1

Γ(α)βα
yα−1e−y/β, y > 0

0, otherwise.

Note that the population-level parameter θ = (α, β) is two-dimensional; i.e., d = 2. Find a
sufficient statistic for θ.
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Solution. The likelihood function is given by

L(θ|y) =
n∏
i=1

fY (yi|θ) = fY (y1|θ)× fY (y2|θ)× · · · × fY (yn|θ)

=
1

Γ(α)βα
yα−11 e−y1/β × 1

Γ(α)βα
yα−12 e−y2/β × · · · × 1

Γ(α)βα
yα−1n e−yn/β

=

[
1

Γ(α)βα

]n( n∏
i=1

yi

)α−1

e−
∑n
i=1 yi/β.

Note that we can write the likelihood function as

L(θ|y) =

[
1

Γ(α)βα

]n( n∏
i=1

yi

)α

e−
∑n
i=1 yi/β︸ ︷︷ ︸

g(t1,t2,θ)

× 1∏n
i=1 yi︸ ︷︷ ︸

h(y1,y2,...,yn)

,

where t = (t1, t2) = (
∏n

i=1 yi,
∑n

i=1 yi). By the Factorization Theorem, it follows that

T =


n∏
i=1

Yi

n∑
i=1

Yi


is a sufficient statistic for θ = (α, β). �

Remark: The Factorization Theorem can also be applied in population models where the
observations Y1, Y2, ..., Yn are not iid.

Example 9.11. Consider the simple linear regression model

Yi = β0 + β1xi + εi,

for i = 1, 2, ..., n, where εi ∼ iid N (0, σ2) and the xi’s are fixed constants (i.e., not random).
In this model, it is easy to show

Yi ∼ N (β0 + β1xi, σ
2).

Therefore, the pdf of Yi is

fYi(yi|θ) =


1√
2πσ

e−
1

2σ2
(yi−β0−β1xi)2 , −∞ < yi <∞

0, otherwise.

Note: The random variables Y1, Y2, ..., Yn are mutually independent (functions of the inde-
pendent εi’s are independent). However, Y1, Y2, ..., Yn are not identically distributed because
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E(Yi) = β0 + β1xi changes as i does. The parameter θ = (β0, β1, σ
2) is three-dimensional;

i.e., d = 3. The likelihood function is given by

L(θ|y) =
n∏
i=1

fYi(yi|θ) = fY1(y1|θ)× fY2(y2|θ)× · · · × fYn(yn|θ)

=
n∏
i=1

1√
2πσ

exp

{
− 1

2σ2
(yi − β0 − β1xi)2

}

=

(
1

2πσ2

)n/2
exp

{
− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)2
}
.

It is easy to show that

n∑
i=1

(yi − β0 − β1xi)2 =
n∑
i=1

y2i − 2β0

n∑
i=1

yi − 2β1

n∑
i=1

xiyi + nβ2
0 + 2β0β1

n∑
i=1

xi + β2
1

n∑
i=1

x2i︸ ︷︷ ︸
= g∗(t1,t2,t3,β0,β1)

,

where t = (t1, t2, t3) = (
∑n

i=1 yi,
∑n

i=1 y
2
i ,
∑n

i=1 xiyi). Because we can write

L(θ|y) =

(
1

2πσ2

)n/2
exp

{
− 1

2σ2
g∗(t1, t2, t3, β0, β1)

}
︸ ︷︷ ︸

g(t1,t2,t3,θ)

× 1︸ ︷︷ ︸
h(y1,y2,...,yn)

,

it follows from the Factorization Theorem that

T =

(
n∑
i=1

Yi,
n∑
i=1

Y 2
i ,

n∑
i=1

xiYi

)

is a sufficient statistic for θ = (β0, β1, σ
2). �

9.4 Minimum variance unbiased estimators (MVUEs)

Problem: Suppose Y1, Y2, ..., Yn is an iid sample from a population distribution with un-
known parameter θ ∈ R. In this subsection, we describe how to find the best point estimator
θ̂ for θ. Of course, it is important to define what “best” means. Consider the class of point
estimators

C = {θ̂ : E(θ̂) = θ}.

That is, C is the collection of all unbiased point estimators of θ. Our goal is to find the
(unbiased) point estimator θ̂ ∈ C that has the smallest variance. We call this point estimator
the minimum variance unbiased estimator (MVUE) of θ.

Remark: On the surface, finding the best estimator seems insurmountable because C is
a large collection. For example, suppose Y1, Y2, ..., Yn is an iid sample from a Poisson(θ)
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distribution, where θ > 0 is unknown. From Example 9.1 (notes, pp 112), we know

E(Y ) = θ

E(S2) = θ,

that is, both θ̂1 = Y and θ̂2 = S2 are unbiased estimators of θ. Therefore, both θ̂1 ∈ C and
θ̂2 ∈ C. How many other (unbiased) point estimators are in C? Note that

θ̂a = aY + (1− a)S2 ∈ C

for any a ∈ (0, 1) because

E(θ̂a) = E[aY + (1− a)S2] = aE(Y ) + (1− a)E(S2) = aθ + (1− a)θ = θ.

Therefore, we are faced with the task of finding the unbiased point estimator with the
smallest variance from an (uncountably) infinite collection of point estimators!

Remark: To make this problem tractable (i.e., finding the unbiased point estimator with
the smallest variance), we introduce helpful theory that will allow us to solve it. We will
soon learn the critical role sufficiency plays in solving the problem.

Rao-Blackwell Theorem: Suppose θ̂ is an unbiased estimator of θ; i.e.,

E(θ̂) = θ,

and suppose T = T (Y1, Y2, ..., Yn) is a sufficient statistic for θ. Define

θ̂∗ = E(θ̂|T ),

the conditional expectation of θ̂ given T . Then,

E(θ̂∗) = θ

V (θ̂∗) ≤ V (θ̂).

Discussion: The Rao-Blackwell Theorem says one thing: we can always improve an unbi-
ased point estimator θ̂ by conditioning it on a sufficient statistic T . By “improve,” we mean
that we can reduce the variance of θ̂ (or, at least, not increase it). Now, what is θ̂∗ = E(θ̂|T )
exactly? Recall that conditional expectations (STAT 511, CH 5) are always functions of the
random variable on which you are conditioning, here, T , a sufficient statistic. Therefore,
whatever θ̂∗ = E(θ̂|T ) is, we know it is a function of a sufficient statistic.

Remark: To use the Rao-Blackwell Theorem (towards finding the MVUE), some students
think they have to

1. Find an unbiased estimator θ̂.

2. Find a sufficient statistic T .
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3. Derive the conditional distribution θ̂ given T .

4. Find the mean E(θ̂|T ) of this conditional distribution.

This is not the case at all! Because θ̂∗ = E(θ̂|T ) is a function of a sufficient statistic T ,
the Rao-Blackwell Theorem simply convinces us that in our search for the MVUE, we can
restrict attention to those point estimators that are functions of a sufficient statistic.

Proof. Suppose θ̂ is an unbiased estimator of θ, and suppose T = T (Y1, Y2, ..., Yn) is a

sufficient statistic. We first point out that θ̂∗ = E(θ̂|T ) is a point estimator and it does not

depend on θ. Because T is sufficient, we know the conditional distribution of θ̂, given T ,
does not depend on θ. Therefore, the conditional mean E(θ̂|T ) does not depend on θ either.
Using our iterated rule for expectations (STAT 511, CH5), we have

E(θ̂∗) = E[E(θ̂|T )] = E(θ̂) = θ,

because θ̂ is an unbiased estimator by assumption. Using our iterated rule for variances
(“Adam’s Rule,” STAT 511, CH5), we have

V (θ̂) = E[V (θ̂|T )] + V [E(θ̂|T )] = E[V (θ̂|T )]︸ ︷︷ ︸
≥ 0

+V (θ̂∗).

Because variances are nonnegative, V (θ̂|T ) is a nonnegative random variable. The mean of

a nonnegative random variable is nonnegative so E[V (θ̂|T )] ≥ 0. This shows V (θ̂) ≥ V (θ̂∗)
so we are done. �

Recipe for finding MVUEs: Suppose we want to find the MVUE for θ.

1. Start by finding a sufficient statistic T = T (Y1, Y2, ..., Yn). The Rao-Blackwell Theorem
guarantees us that the MVUE must depend on T .

2. Find a function of T that is an unbiased estimator of θ. This is usually accomplished
by calculating E(T ) directly and then adjusting T to “make it unbiased.”

We now illustrate this recipe by using numerous examples. Before we do, we have to make
two important remarks.

Remark: For this recipe to work, we need a sufficient statistic T to possess one additional
theoretical characteristic, namely, we need T to satisfy the following condition:

Completeness: E[φ(T )] = 0 for all θ =⇒ φ(T ) = 0 for all θ, with probability
1; i.e., the only function φ(T ) that is an unbiased estimator of 0 is φ(T ) = 0.

The completeness requirement is technical, but it is crucial in ensuring our recipe for finding
MVUEs is valid. The authors of your textbook make virtually no mention of this require-
ment because it is viewed as too advanced for an undergraduate sequence in mathematical
statistics. For this reason, numerous reviewers of WMS (and those of us that teach from
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it) have criticized the authors for leaving out this crucial requirement. Personally, I tend
to side with the authors’ approach because all of the distributions and sufficient statistics
presented in the text enjoy the completeness property. However, you should know there are
distributions which give rise to sufficient statistics that are not complete, in which case the
recipe we have just presented does not work.

Remark: We also need to know the following result:

Uniqueness: If a MVUE exists, then it is unique.

The uniqueness property of MVUEs guarantees that once we have found an unbiased esti-
mator of θ that is a function of a sufficient statistic T , then this unbiased estimator is the
MVUE. There cannot be more than one function of T which estimates θ unbiasedly, and,
of course, Rao-Blackwell guarantees that no estimator that does not depend on a sufficient
statistic can be MVUE.

Example 9.4 (continued). Suppose Y1, Y2, ..., Yn is an iid sample from a Poisson(θ) pop-
ulation distribution, where θ > 0 is unknown. We have already shown T =

∑n
i=1 Yi is a

sufficient statistic for θ. Therefore, the MVUE must be a function of T . Note that

E(T ) = E

(
n∑
i=1

Yi

)
=

n∑
i=1

E(Yi) =
n∑
i=1

θ = nθ.

Therefore,

E(Y ) = E

(
T

n

)
=
nθ

n
= θ.

This shows θ̂ = Y is the MVUE of θ. It is a function of a sufficient statistic T =
∑n

i=1 Yi
and is unbiased. �

Example 9.5 (continued). Suppose Y1, Y2, ..., Yn is an iid sample from a Rayleigh(θ) popu-
lation distribution, where θ > 0 is unknown. Recall the Rayleigh pdf is given by

fY (y|θ) =


2y

θ
e−y

2/θ, y > 0

0, otherwise.

We have already shown T =
∑n

i=1 Y
2
i is a sufficient statistic for θ. Therefore, the MVUE

must be a function of T . Note that

E(T ) = E

(
n∑
i=1

Y 2
i

)
=

n∑
i=1

E(Y 2
i ) =

n∑
i=1

θ = nθ,

because Ui = Y 2
i ∼ exponential(θ). Therefore,

E

(
1

n

n∑
i=1

Y 2
i

)
= E

(
T

n

)
=
nθ

n
= θ.
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This shows

θ̂ =
1

n

n∑
i=1

Y 2
i

is the MVUE of θ. It is a function of a sufficient statistic T =
∑n

i=1 Y
2
i and is unbiased. �

Example 9.6 (continued). Suppose Y1, Y2, ..., Yn is an iid sample from a beta(θ, 1) popula-
tion distribution, where θ > 0 is unknown. Recall the beta(θ, 1) pdf is given by

fY (y) =

{
θyθ−1, 0 < y < 1

0, otherwise.

We have already shown T =
∏n

i=1 Yi is a sufficient statistic for θ. Therefore, the MVUE
must be a function of T . Consider the function

− lnT = − ln
n∏
i=1

Yi =
n∑
i=1

− lnYi =
n∑
i=1

Ui,

where Ui = − lnYi, for i = 1, 2, ..., n.

Result: Y ∼ beta(θ, 1) =⇒ U = − lnY ∼ exponential(1/θ).

Proof. We use the transformation method. Note that h(y) = − ln y is strictly decreasing
and hence one-to-one over RY = {y : 0 < y < 1}. To find the support of U , note that

0 < y < 1 ⇐⇒ u = − ln y > 0.

Therefore, RU = {u : u > 0}. We now find the inverse transformation:

u = h(y) = − ln y =⇒ y = h−1(u) = e−u.

The derivative of the inverse transformation is

d

du
h−1(u) =

d

du
e−u = −e−u.

Therefore, for u > 0, the pdf of U is

fU(u) = fY (h−1(u))

∣∣∣∣ dduh−1(u)

∣∣∣∣
= θ(e−u)θ−1 × | − e−u| = θ(e−u)θ = θe−θu.

Summarizing, the pdf of U = h(Y ) = − lnY is

fU(u) =

{
θe−θu, u > 0

0, otherwise.

We recognize this as an exponential pdf with mean 1/θ. This establishes the result. �
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Returning to the problem at hand, U1, U2, ..., Un are iid exponential with mean 1/θ. There-
fore,

− lnT =
n∑
i=1

Ui ∼ gamma

(
n,

1

θ

)
=⇒ E(− lnT ) =

n

θ
=⇒ E

(
− lnT

n

)
=

1

θ
.

We have found a function of a sufficient statistic T =
∏n

i=1 Yi whose expectation is 1/θ (not
θ). Therefore, we are still not done. Let’s set

V = − lnT ∼ gamma

(
n,

1

θ

)
and calculate the first inverse moment of V . Note that

E

(
1

V

)
=

∫
R

1

v
fV (v)dv =

∫ ∞
0

1

v

θn

Γ(n)
vn−1e−θv︸ ︷︷ ︸

gamma(n, 1/θ) pdf

dv

=
θn

Γ(n)

∫ ∞
0

v(n−1)−1e−θvdv

=
θn

Γ(n)
Γ(n− 1)

(
1

θ

)n−1
=

Γ(n− 1)θn

(n− 1)Γ(n− 1)θn−1
=

θ

n− 1
.

Therefore,
θ

n− 1
= E

(
1

V

)
= E

(
− 1

lnT

)
=⇒ E

(
−n− 1

lnT

)
= θ.

This shows

θ̂ = −n− 1

lnT
= − n− 1

ln
n∏
i=1

Yi

= − n− 1
n∑
i=1

lnYi

is the MVUE of θ. It is a function of a sufficient statistic T =
∏n

i=1 Yi and is unbiased. �

Example 9.7 (continued). Suppose Y1, Y2, ..., Yn is an iid sample from a U(0, θ) population
distribution, where θ > 0 is unknown. We have already shown T = Y(n) is a sufficient
statistic for θ. Therefore, the MVUE must be a function of T . In Example 8.1 (notes, pp
75-77), we showed

E(Y(n)) =

(
n

n+ 1

)
θ =⇒ E

[(
n+ 1

n

)
Y(n)

]
= θ.

This shows

θ̂ =

(
n+ 1

n

)
Y(n)

is the MVUE of θ. It is a function of a sufficient statistic T = Y(n) and is unbiased. �

Example 9.8 (continued). Suppose Y1, Y2, ..., Yn is an iid sample from

fY (y|θ) =

{
e−(y−θ), y > θ

0, otherwise.
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We have already shown T = Y(1) is a sufficient statistic for θ. Therefore, the MVUE must
be a function of T . Let’s find the pdf of Y(1) so we can calculate its expectation. Recall that
in general,

fY(1)(y) = nfY (y)[1− FY (y)]n−1.

The population cdf is

FY (y) =

{
0, y ≤ θ

1− e−(y−θ), y > θ.

Therefore, for y > θ, the pdf of Y(1) is

fY(1)(y) = ne−(y−θ)
{

1− [1− e−(y−θ)]
}n−1

= ne−(y−θ)
[
e−(y−θ)

]n−1
= n

[
e−(y−θ)

]n
= ne−n(y−θ).

Summarizing,

fY(1)(y) =

{
ne−n(y−θ), y > θ

0, otherwise.

The mean of Y(1) is

E(Y(1)) =

∫
R
yfY(1)(y)dy =

∫ ∞
θ

y × ne−n(y−θ)dy.

In the last integral, let
u = y − θ =⇒ du = dy

so that

E(Y(1)) =

∫ ∞
0

(u+ θ) ne−nudu = E(U + θ),

where U ∼ exponential(1/n); note that ne−nu is the exponential(1/n) pdf and the last
integral is over (0,∞). Therefore,

E(Y(1)) = E(U + θ) = E(U) + θ =
1

n
+ θ =⇒ E

(
Y(1) −

1

n

)
= θ.

This shows

θ̂ = Y(1) −
1

n

is the MVUE of θ. It is a function of a sufficient statistic T = Y(1) and is unbiased. �

Example 9.9 (continued). Suppose Y1, Y2, ..., Yn is an iid sample from an exponential(θ)
population distribution, where θ > 0 is unknown. We have already shown T =

∑n
i=1 Yi is a

sufficient statistic for θ. Therefore, the MVUE must be a function of T . Because

E(Y ) = θ,

it follows that θ̂ = Y is the MVUE of θ. It is a function of a sufficient statistic T =
∑n

i=1 Yi
and is unbiased. �
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Remark: In some problems, we are more interested in estimating a function of θ, say τ(θ),
where τ : R→ R. To find the MVUE of τ(θ), we adjust our MVUE recipe slightly.

1. Start by finding a sufficient statistic T = T (Y1, Y2, ..., Yn).

2. Find a function of T that is an unbiased estimator of τ(θ).

Example 9.9 (continued). Suppose Y1, Y2, ..., Yn is an iid sample from an exponential(θ)
distribution, where θ > 0 is unknown. Find the MVUE of τ(θ) = θ2, the population variance.

Solution. We have already shown T =
∑n

i=1 Yi is a sufficient statistic and that Y is the

MVUE of θ. Therefore, consider Y
2
. Using the variance computing formula, we have

E(Y
2
) = V (Y ) + [E(Y )]2 =

θ2

n
+ θ2 = θ2

(
1

n
+ 1

)
=

(
n+ 1

n

)
θ2,

showing that Y
2

is biased. However,

E(Y
2
) =

(
n+ 1

n

)
θ2 =⇒ E

[(
n

n+ 1

)
Y

2
]

= θ2.

This shows (
n

n+ 1

)
Y

2

is the MVUE of θ2. It is a function of a sufficient statistic T =
∑n

i=1 Yi and is unbiased. �

Example 9.12. Suppose Y1, Y2, ..., Yn is an iid sample from a normal distribution with mean
µ and variance 1. The N (µ, 1) pdf is given by

fY (y|µ) =


1√
2π
e−

1
2
(y−µ)2 , −∞ < y <∞

0, otherwise.

(a) Find the MVUE of µ.
(b) Find the MVUE of τ(µ) = exp(µ).

Solutions. We start by finding a sufficient statistic T . The likelihood function is given by

L(µ|y) =
n∏
i=1

fY (yi|µ) = fY (y1|µ)× fY (y2|µ)× · · · × fY (yn|µ)

=
1√
2π
e−

1
2
(y1−µ)2 × 1√

2π
e−

1
2
(y2−µ)2 × · · · × 1√

2π
e−

1
2
(yn−µ)2

=

(
1√
2π

)n
e−

1
2

∑n
i=1(yi−µ)2 .

We now write
n∑
i=1

(yi − µ)2 =
n∑
i=1

(y2i − 2µyi + µ2) =
n∑
i=1

y2i − 2µ
n∑
i=1

yi + nµ2.
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Therefore, we can write the likelihood function as

L(µ|y) =

(
1√
2π

)n
e−

1
2

∑n
i=1(yi−µ)2

=

(
1√
2π

)n
e−

1
2(

∑n
i=1 y

2
i−2µ

∑n
i=1 yi+nµ

2)

=

(
1√
2π

)n
e−

1
2

∑n
i=1 y

2
i × eµ

∑n
i=1 yi × e−nµ2/2

=

(
1√
2π

)n
eµ

∑n
i=1 yi × e−nµ2/2︸ ︷︷ ︸

g(t,µ)

× e−
1
2

∑n
i=1 y

2
i︸ ︷︷ ︸

h(y1,y2,...,yn)

,

where t =
∑n

i=1 yi. By the Factorization Theorem, it follows that T =
∑n

i=1 Yi is a sufficient
statistic for µ.

(a) The MVUE of µ must be a function of T . Because

E(Y ) = µ,

it follows that Y is the MVUE of µ. It is a function of a sufficient statistic T =
∑n

i=1 Yi and
is unbiased.

(b) We now have to find a function of T =
∑n

i=1 Yi that is an unbiased estimator of τ(µ) =
exp(µ). Because Y is MVUE for µ, let’s start by working with exp(Y ). Note that

E[exp(Y )] = E(eY ) = E(etY )
∣∣∣
t=1

= mY (1),

where mY (t) is the mgf of Y . We know

Y ∼ N
(
µ,

1

n

)
=⇒ mY (t) = exp

[
µt+

( 1
n
)t2

2

]
=⇒ mY (1) = exp

(
µ+

1

2n

)
= exp(µ) exp

(
1

2n

)
.

Therefore, we have shown

E[exp(Y )] = exp(µ) exp

(
1

2n

)
=⇒ E

[
exp(Y )

exp
(

1
2n

)] = exp(µ).

This shows
exp(Y )

exp
(

1
2n

) = exp

(
Y − 1

2n

)
= eY−

1
2n

is the MVUE of τ(µ) = exp(µ). It is a function of a sufficient statistic T =
∑n

i=1 Yi and is
unbiased. �
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9.5 Method of moments

Preview: Having just discussed the notion of a “best” point estimator (i.e., the MVUE),
it is important to remember that our treatment of this problem was limited to iid sampling
and relatively simple population-level models (i.e., those models involving a single parameter
θ). This represents only a small fraction of the possible scenarios we may encounter where
estimation is needed. Therefore, we pursue two additional methods which will produce point
estimators:

• method of moments

• method of maximum likelihood.

These methods can be applied in a variety of situations and their utility is not limited to iid
sampling and/or single parameter population-level models.

Method of moments: Suppose Y1, Y2, ..., Yn is a sample from a population distribution,
denoted by pY (y|θ) or fY (y|θ), where θ = (θ1, θ2, ..., θd) is an unknown population parameter.
The method of moments (MOM) approach says to equate population moments to sample
moments and solve the resulting system of equations for all unknown parameters. Recall the
kth population moment is

µ′k = E(Y k),

and define the kth sample moment to be

m′k =
1

n

n∑
i=1

Y k
i .

Let d denote the number of parameters to be estimated; i.e., d is the dimension of θ.
The method of moments (MOM) procedure uses the following system of d equations and d
unknowns:

µ′1 = m′1
µ′2 = m′2

...

µ′d = m′d.

Estimators are obtained by solving this system algebraically for θ1, θ2, ..., θd. Population
moments µ′1, µ

′
2, ..., µ

′
d will usually be functions of θ1, θ2, ..., θd. The resulting estimators are

called method of moments estimators. If θ is a scalar (i.e., if d = 1), then we only need
one equation. If d = 2, we need 2 equations, and so on.

Example 9.13. Suppose Y1, Y2, ..., Yn is an iid sample from a U(0, θ) population distribution,
where θ > 0 is unknown. Recall the U(0, θ) pdf is given by

fY (y|θ) =


1

θ
, 0 < y < θ

0, otherwise.
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In the U(0, θ) population-level model, there is d = 1 parameter. The first population moment
is

E(Y ) =
θ

2
.

The first sample moment is
1

n

n∑
i=1

Yi = Y .

Therefore, the MOM estimator of θ is found by solving

θ

2
set
= Y =⇒ θ̂ = 2Y .

The MOM estimator of θ is θ̂ = 2Y . �

Example 9.14. Suppose Y1, Y2, ..., Yn is an iid sample from a beta(θ, 1) population distri-
bution, where θ > 0 is unknown. Recall the beta(θ, 1) pdf is given by

fY (y|θ) =

{
θyθ−1, 0 < y < 1

0, otherwise.

In the beta(θ, 1) population-level model, there is d = 1 parameter. The first population
moment is

E(Y ) =
θ

θ + 1
.

The first sample moment is
1

n

n∑
i=1

Yi = Y .

Therefore, the MOM estimator of θ is found by solving

θ

θ + 1
set
= Y =⇒ θ = (θ + 1)Y

=⇒ θ = θY + Y

=⇒ θ − θY = Y =⇒ θ(1− Y ) = Y =⇒ θ̂ =
Y

1− Y
.

The MOM estimator of θ is θ̂ = Y /(1− Y ). �

Example 9.15. Suppose Y1, Y2, ..., Yn is an iid sample from a Rayleigh(θ) population dis-
tribution, where θ > 0 is unknown. Recall the Rayleigh pdf is given by

fY (y|θ) =


2y

θ
e−y

2/θ, y > 0

0, otherwise.

The first population moment is

E(Y ) =

∫
R
yfY (y)dy =

∫ ∞
0

2y2

θ
e−y

2/θdy.
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In the last integral, let
u = y2 =⇒ du = 2y dy.

Therefore, we have

E(Y ) =

∫ ∞
0

2y2

θ
e−u/θ

du

2y
=

1

θ

∫ ∞
0

u
1
2 e−u/θdu =

1

θ
Γ

(
3

2

)
θ

3
2 = Γ

(
3

2

)√
θ.

The first sample moment is
1

n

n∑
i=1

Yi = Y .

Therefore, the MOM estimator of θ is found by solving

Γ

(
3

2

)√
θ

set
= Y =⇒

√
θ =

Y

Γ
(
3
2

) =⇒ θ̂ =

[
Y

Γ
(
3
2

)]2 .
The MOM estimator of θ is θ̂ = Y

2
/Γ2(3/2). �

Observation: In the last three examples, we see that the MOM estimator in each case is
not a function of a sufficient statistic.

• Example 9.13: U(0, θ). The MOM estimator θ̂ = 2Y is not a function of the sufficient
statistic T (Y1, Y2, ..., Yn) = Y(n).

• Example 9.14: beta(θ, 1). The MOM estimator θ̂ = Y /(1− Y ) is not a function of the
sufficient statistic T (Y1, Y2, ..., Yn) =

∏n
i=1 Yi.

• Example 9.15: Rayleigh(θ). The MOM estimator θ̂ = Y
2
/Γ2(3/2) is not a function of

the sufficient statistic T (Y1, Y2, ..., Yn) =
∑n

i=1 Y
2
i .

Discussion: Moments describe only limited aspects of a distribution (population or sam-
ple), so it is not surprising that MOM estimators are not necessarily the best estimators.
Remember that if a point estimator does not depend on a sufficient statistic, then it cannot
be “best” as we have defined it (this is what the Rao-Blackwell Theorem guarantees).

Remark: In some instances, MOM estimators are best. For example, suppose

• Y1, Y2, ..., Yn is an iid sample from a Poisson(θ) population distribution, or

• Y1, Y2, ..., Yn is an iid sample from an exponential(θ) population distribution.

In both instances, the MOM estimator is θ̂ = Y , and, in both instances, a sufficient statistic
is T (Y1, Y2, ..., Yn) =

∑n
i=1 Yi. Therefore, the MOM estimator in each case is (a) unbiased and

(b) a function of a sufficient statistic, and hence is the MVUE. However, there is no theory
which says MOM estimators are necessarily optimal, as the preceding examples illustrate.
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Example 9.16. Suppose Y1, Y2, ..., Yn is an iid sample from a gamma(α, β) population
distribution, where both α > 0 and β > 0 are unknown. In this population-level model,
there are d = 2 parameters, so we will need 2 equations to find the MOM estimators. The
first two population moments are

E(Y ) = αβ

E(Y 2) = V (Y ) + [E(Y )]2 = αβ2 + (αβ)2.

The first two sample moments are

1

n

n∑
i=1

Yi = Y

1

n

n∑
i=1

Y 2
i = m′2.

Therefore, the MOM estimators of α and β are found by solving

αβ
set
= Y

αβ2 + (αβ)2
set
= m′2.

Substituting the first equation into the second, we get

αβ2 + Y
2

= m′2 =⇒ αβ2 = m′2 − Y
2
.

Solving for β in the first equation, we get

β =
Y

α
=⇒ α

(
Y

α

)2

= m′2 − Y
2

=⇒ 1

α
=
m′2 − Y

2

Y
2 =⇒ α̂ =

Y
2

m′2 − Y
2 .

Substituting α̂ into the original system (the first equation), we get

α̂β = Y =⇒ β̂ =
Y

α̂
=⇒ β̂ =

Y

Y
2

m′2 − Y
2

=⇒ β̂ =
m′2 − Y

2

Y
.

These are the MOM estimators of α and β, respectively. �

Observation: In Example 9.10 (notes, pp 126-127), we showed a sufficient statistic for
θ = (α, β) under the gamma population model was

T =


n∏
i=1

Yi

n∑
i=1

Yi

 .

Again, we see that the MOM estimators of α and β (in Example 9.16) are not functions of
the sufficient statistic.
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9.6 Maximum likelihood estimation

Remark: The method of maximum likelihood is, by far, the most common method to use
when finding point estimators; i.e., when estimating a population-level model. Maximum
likelihood estimators are found by maximizing the likelihood function.

Recall: Suppose Y1, Y2, ..., Yn is an iid sample from a population distribution denoted by
pY (y|θ) or fY (y|θ), where θ (a scalar) is an unknown population parameter. Recall the
likelihood function, denoted by L(θ|y) = L(θ|y1, y2, ..., yn), is found as follows:

• In the discrete case,

L(θ|y) = pY (y1|θ)× pY (y2|θ)× · · · × pY (yn|θ) =
n∏
i=1

pY (yi|θ).

• In the continuous case,

L(θ|y) = fY (y1|θ)× fY (y2|θ)× · · · × fY (yn|θ) =
n∏
i=1

fY (yi|θ).

Note: In the discrete case, the likelihood function L(θ|y) actually provides a (joint) proba-
bility. Suppressing pY (y|θ)’s dependence on θ, note that

L(θ|y) = pY (y1)× pY (y2)× · · · × pY (yn)

= P (Y1 = y1)P (Y2 = y2) · · ·P (Yn = yn) = P (Y1 = y1, Y2 = y2, ..., Yn = yn)︸ ︷︷ ︸
joint probability of the sample

.

In this light, a casual (but useful) interpretation of the likelihood function is that it is “the
probability of the data.” Therefore, one can think of maximum likelihood estimates as those
estimates which “maximize the probability of the data.”

Terminology: Suppose Y1, Y2, ..., Yn is an iid sample from a population distribution denoted
by pY (y|θ) or fY (y|θ), where θ ∈ R is an unknown population parameter (for now, we consider
the scalar case). The maximum likelihood estimator (MLE) of θ is the value of θ that
maximizes the likelihood function L(θ|y); i.e.,

θ̂ = arg max
θ
L(θ|y).

Therefore, we can find the MLE of θ by writing out the likelihood function, viewing it as a
function of θ (as always), and then maximizing it as a function of θ.

Q: How do we maximize L(θ|y)?
A: For many scenarios, this reduces to a calculus problem. If L(θ|y) is a differentiable
function of θ, then we can take the derivative of L(θ|y) and set it equal to zero; i.e.,

∂

∂θ
L(θ|y)

set
= 0.
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Calculus trick: Because the natural logarithm function is increasing, the value of θ that
maximizes L(θ|y) is the same as the value of θ that maximizes lnL(θ|y); i.e.,

θ̂ = arg max
θ
L(θ|y) = arg max

θ
lnL(θ|y).

Therefore, we can also take the derivative of the log-likelihood function lnL(θ|y) and set
it equal to zero; i.e.,

∂

∂θ
lnL(θ|y)

set
= 0.

We then solve this equation (which is called the score equation) for θ to get a first-order

critical point θ̂. We then show

∂2

∂θ2
lnL(θ|y)

∣∣∣
θ=θ̂

< 0,

which verifies θ̂ maximizes lnL(θ|y) by the Second Derivative Test. If θ̂ maximizes lnL(θ|y),

then θ̂ maximizes L(θ|y) too.

Example 9.17. Suppose Y1, Y2, ..., Yn is an iid sample from a Poisson(θ) population distri-
bution, where θ > 0 is unknown. Recall the Poisson(θ) pmf is given by

pY (y|θ) =


θye−θ

y!
, y = 0, 1, 2, ...

0, otherwise.

The likelihood function is given by

L(θ|y) =
θy1e−θ

y1!
× θy2e−θ

y2!
× · · · × θyne−θ

yn!
=

θ
∑n
i=1 yie−nθ

y1!y2! · · · yn!
=
θ
∑n
i=1 yie−nθ∏n
i=1 yi!

.

The log-likelihood function is given by

lnL(θ|y) = ln

(
θ
∑n
i=1 yie−nθ∏n
i=1 yi!

)

= ln
(
θ
∑n
i=1 yi

)
+ ln

(
e−nθ

)
− ln

(
n∏
i=1

yi!

)
=

n∑
i=1

yi ln θ − nθ − ln

(
n∏
i=1

yi!

)
.

The derivative of the log-likelihood function is given by

∂

∂θ
lnL(θ|y) =

∑n
i=1 yi
θ

− n set
= 0

=⇒
n∑
i=1

yi − nθ = 0 =⇒
n∑
i=1

yi = nθ =⇒ θ̂ =
1

n

n∑
i=1

yi = y.

We now show this first-order critical point θ̂ = y maximizes lnL(θ|y). The second derivative
of the log-likelihood function is given by

∂2

∂θ2
lnL(θ|y) = −

∑n
i=1 yi
θ2

.
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Figure 9.4: Accident data. Poisson likelihood function L(θ|y) in Example 9.17. The maxi-

mum likelihood estimate θ̂ = y ≈ 1.23 is shown by using a dark circle.

Note that
∂2

∂θ2
lnL(θ|y)

∣∣∣
θ=y

= −
∑n

i=1 yi
y2

= −ny
y2

= −n
y
< 0.

Therefore, θ̂ = y maximizes lnL(θ|y). The MLE of θ is

θ̂ = Y .

Application: In Example 9.4 (notes, pp 118-119), we examined an iid sample of n = 84
policies and the observed data on

Y = the number of accidents in a given year.

Suppose the observations Y1, Y2, ..., Y84 are modeled as iid Poisson counts with mean θ > 0.
Under this assumption, the maximum likelihood estimate of θ based on these data is

θ̂ = y =
1

84

84∑
i=1

yi =
1

84
(103) ≈ 1.23.

The likelihood function L(θ|y) based on these data is shown in Figure 9.4 (above). �
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Example 9.18. Suppose Y1, Y2, ..., Yn is an iid sample from a Rayleigh(θ) population dis-
tribution, where θ > 0 is unknown. Recall the Rayleigh pdf is given by

fY (y|θ) =


2y

θ
e−y

2/θ, y > 0

0, otherwise.

The likelihood function is given by

L(θ|y) =
2y1
θ
e−y

2
1/θ × 2y2

θ
e−y

2
2/θ × · · · × 2yn

θ
e−y

2
n/θ =

(
2

θ

)n( n∏
i=1

yi

)
e−

∑n
i=1 y

2
i /θ.

The log-likelihood function is given by

lnL(θ|y) = ln

[(
2

θ

)n( n∏
i=1

yi

)
e−

∑n
i=1 y

2
i /θ

]

= ln

[(
2

θ

)n]
+ ln

(
n∏
i=1

yi

)
+ ln

(
e−

∑n
i=1 y

2
i /θ
)

= n (ln 2− ln θ) + ln

(
n∏
i=1

yi

)
−
∑n

i=1 y
2
i

θ
.

The derivative of the log-likelihood function is given by

∂

∂θ
lnL(θ|y) = −n

θ
+

∑n
i=1 y

2
i

θ2
set
= 0

=⇒ −nθ +
n∑
i=1

y2i = 0 =⇒
n∑
i=1

y2i = nθ =⇒ θ̂ =
1

n

n∑
i=1

y2i .

We now show this first-order critical point θ̂ maximizes lnL(θ|y). The second derivative of
the log-likelihood function is given by

∂2

∂θ2
lnL(θ|y) =

n

θ2
− 2

∑n
i=1 y

2
i

θ3
.

Note that

∂2

∂θ2
lnL(θ|y)

∣∣∣
θ=θ̂

=
n

θ̂2
− 2

∑n
i=1 y

2
i

θ̂3
=
nθ̂

θ̂3
− 2nθ̂

θ̂3
= −nθ̂

θ̂3
= − n

θ̂2
< 0.

Therefore, θ̂ maximizes lnL(θ|y). The MLE of θ is

θ̂ =
1

n

n∑
i=1

Y 2
i .
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Figure 9.5: Light bulb data. Rayleigh likelihood function L(θ|y) in Example 9.18. The

maximum likelihood estimate θ̂ = m′2 = 21.5 is shown by using a dark circle.

Application: In Example 9.5 (notes, pp 120-121), we examined an iid sample of n = 30
bulbs and the observed data on

Y = time until failure (in 100s hours).

Suppose the observations Y1, Y2, ..., Y30 are modeled as iid Rayleigh(θ), where θ > 0. Under
this assumption, the maximum likelihood estimate of θ based on these data is

θ̂ =
1

30

30∑
i=1

y2i =
1

30
(645.0) = 21.5.

The likelihood function L(θ|y) based on these data is shown in Figure 9.5 (above). �

Remark: In population-level models where the support depends on an unknown parameter,
we have to be careful in how we find the MLE.

Example 9.19. Suppose Y1, Y2, ..., Yn is an iid sample from a U(0, θ) population distribution,
where θ > 0 is unknown. Recall the U(0, θ) pdf is given by

fY (y|θ) =


1

θ
, 0 ≤ y ≤ θ

0, otherwise.
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Figure 9.6: Uniform likelihood function L(θ|y) in Example 9.19. The maximum likelihood

estimate θ̂ = y(n) is shown by using a dark circle.

The likelihood function is given by

L(θ|y) = fY (y1|θ)× fY (y2|θ)× · · · × fY (yn|θ)

=
1

θ
I(0 ≤ y1 ≤ θ)× 1

θ
I(0 ≤ y2 ≤ θ)× · · · × 1

θ
I(0 ≤ yn ≤ θ)

=
1

θn

n∏
i=1

I(0 ≤ yi ≤ θ)

=
1

θn
I(0 ≤ y(n) ≤ θ).

The likelihood function L(θ|y) is shown in Figure 9.6 (above). Note that L(θ|y) is not
differentiable for all θ; therefore, we cannot use a calculus argument. However, note that

• For θ ≥ y(n), L(θ|y) = 1/θn, which is a decreasing function of θ (see above).

• For θ < y(n), L(θ|y) = 0.

Clearly, the MLE of θ is θ̂ = Y(n).
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Observation: In the last three examples, we see that the MLE in each case is a function
of a sufficient statistic.

• Example 9.17: Poisson(θ). The MLE θ̂ = Y is a function of the sufficient statistic
T (Y1, Y2, ..., Yn) =

∑n
i=1 Yi.

• Example 9.18: Rayleigh(θ). The MLE θ̂ = 1
n

∑n
i=1 Y

2
i is a function of the sufficient

statistic T (Y1, Y2, ..., Yn) =
∑n

i=1 Y
2
i .

• Example 9.19: U(0, θ). The MLE θ̂ = Y(n) is a function of the sufficient statistic
T (Y1, Y2, ..., Yn) = Y(n).

Discussion: These examples illustrate the link that exists between maximum likelihood
estimation and sufficiency. That is, if a sufficient statistic T = T (Y1, Y2, ..., Yn) exists, then

the MLE θ̂ will depend on T . This is easy to show. If T is sufficient, then by the Factorization
Theorem we can write

L(θ|y) = L(θ|y1, y2, ..., yn) = g(t, θ)h(y1, y2, ..., yn) ∝ g(t, θ).

Therefore, when we maximize L(θ|y) or lnL(θ|y) with respect to θ to find the MLE, this will
only depend on t = T (y1, y2, ..., yn) through g(t, θ); i.e., the term h(y1, y2, ..., yn) is simply
a proportionality constant, so it will not affect the maximization. Compare this to MOM
estimators which are not guaranteed to be functions of sufficient statistics.

Remark: We now discuss situations where a population-level model includes more than one
parameter; i.e., the population-level parameter to be estimated is θ = (θ1, θ2, ..., θd).

Multiparameter setting: Suppose Y1, Y2, ..., Yn is a sample from a population distribution,
denoted by pY (y|θ) or fY (y|θ), where θ = (θ1, θ2, ..., θd) is an unknown population parameter.
Let L(θ|y) denote the likelihood function. The maximum likelihood estimator (MLE) of θ
is

θ̂ = arg max
θ

L(θ|y) = arg max
θ

lnL(θ|y).

That is, the MLE (as before in the scalar case) is the value θ̂ that maximizes the likelihood
function. Maximizing L(θ|y) or lnL(θ|y) is basically a multivariable calculus problem. If
lnL(θ|y) is a differentiable function, then the MLE can be found by solving the system of
equations

∂

∂θ1
lnL(θ|y)

set
= 0

∂

∂θ2
lnL(θ|y)

set
= 0

...
∂

∂θd
lnL(θ|y)

set
= 0

for θ1, θ2, ..., θd. The equations above are called the score equations.
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Q: How can we verify a solution to the score equations is a maximizer?
A: Mathematically, for a d-dimensional maximization problem, we can calculate the Hessian
matrix

H =
∂2

∂θ∂θ′
lnL(θ|y),

a d×d matrix of second-order partial derivatives, and show this matrix is negative definite
when we evaluate it at the first-order critical point θ̂; i.e., a solution to the score equations.
This is a sufficient condition. Recall a d× d matrix H is negative definite if a′Ha < 0 for all
a ∈ Rd, a 6= 0.

Example 9.20. Suppose Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2) population distribu-
tion, where both parameters −∞ < µ < ∞ and σ2 > 0 are unknown. Recall the N (µ, σ2)
pdf is given by

fY (y|µ, σ2) =


1√

2πσ2
e−

1
2σ2

(y−µ)2 , −∞ < y <∞

0, otherwise.

Set θ = (µ, σ2). The likelihood function is given by

L(θ|y) = L(µ, σ2|y) =
1√

2πσ2
e−

1
2σ2

(y1−µ)2 × 1√
2πσ2

e−
1

2σ2
(y2−µ)2 × · · · × 1√

2πσ2
e−

1
2σ2

(yn−µ)2

=

(
1

2πσ2

)n/2
e−

1
2σ2

∑n
i=1(yi−µ)2 .

The log-likelihood function is given by

lnL(θ|y) = −n
2

ln(2πσ2)− 1

2σ2

n∑
i=1

(yi − µ)2.

The score equations are

∂

∂µ
lnL(θ|y) =

1

σ2

n∑
i=1

(yi − µ)
set
= 0

∂

∂σ2
lnL(θ|y) = − n

2σ2
+

1

2σ4

n∑
i=1

(yi − µ)2
set
= 0.

We now want to solve the score equations. Note that in the first equation, we have

1

σ2

n∑
i=1

(yi − µ) = 0 =⇒
n∑
i=1

(yi − µ) = 0 =⇒ µ̂ = y.

Plugging this solution into the second equation, we get

− n

2σ2
+

1

2σ4

n∑
i=1

(yi − y)2 = 0 =⇒ nσ2 =
n∑
i=1

(yi − y)2 =⇒ σ̂2 =
1

n

n∑
i=1

(yi − y)2.
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Now, let’s show the first order critical point

θ̂ =

(
µ̂
σ̂2

)
=

 y

1

n

n∑
i=1

(yi − y)2


is a maximizer. The Hessian matrix is

H =


∂2

∂µ2
lnL(θ|y)

∂2

∂µ∂σ2
lnL(θ|y)

∂2

∂σ2∂µ
lnL(θ|y)

∂2

∂(σ2)2
lnL(θ|y)

 =


− n

σ2
− 1

σ4

n∑
i=1

(yi − µ)

− 1

σ4

n∑
i=1

(yi − µ)
n

2σ4
− 1

σ6

n∑
i=1

(yi − µ)2

 .

With a′ = (a1, a2), note that

a′Ha
∣∣∣
µ=µ̂,σ2=σ̂2

=
(
a1 a2

)


− n

σ̂2
− 1

σ̂4

n∑
i=1

(yi − µ̂)

− 1

σ̂4

n∑
i=1

(yi − µ̂)
n

2σ̂4
− 1

σ̂6

n∑
i=1

(yi − µ̂)2


(
a1
a2

)

= −na
2
1

σ̂2
− na22

2σ̂4
< 0.

Therefore, the first-order critical point we found above is a maximizer and hence the MLE
of θ = (µ, σ2) is

θ̂ =

 Y

1

n

n∑
i=1

(Yi − Y )2

 .

Observation: Note that the MLE of σ2 in this example is

σ̂2 =
1

n

n∑
i=1

(Yi − Y )2 = S2
b and not S2 =

1

n− 1

n∑
i=1

(Yi − Y )2.

This demonstrates that MLEs may be biased estimators; i.e., there is no guarantee that
MLEs will be unbiased. �

Exercise: Revisit Example 9.20 and determine the MLE of σ2 when µ = µ0 is known. In
this case, there is only one unknown population parameter (σ2) and the likelihood function
is

L(σ2|y) =

(
1

2πσ2

)n/2
e−

1
2σ2

∑n
i=1(yi−µ0)2 .

The MLE of σ2 when µ = µ0 is known turns out to be

σ̂2 =
1

n

n∑
i=1

(Yi − µ0)
2.
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Figure 9.7: Rainfall data. Histogram of maximum rainfall amounts corresponding to n = 142
recent major weather events in the United States. Time period: 2000-2018.

Discussion: When µ = µ0, the solutions Y

1

n

n∑
i=1

(Yi − Y )2

 and

 µ0

1

n

n∑
i=1

(Yi − µ0)
2


should be “close” to each other in distance. What if they are not “close?” What might be
true if these two solutions are far away from each other?

Remark: In most “real” problems involving data analysis, the likelihood is a complicated
function which must be maximized by using numerical optimization methods. This is usually
carried out by using statistical software (e.g., R, etc.).

Example 9.21. Using resources from the National Oceanic and Atmospheric Administra-
tion, I recorded the maximum rainfall amount (in inches) for the most recent n = 142 major
weather events (e.g., hurricanes, cyclones, etc.) in the United States. Note that I only in-
cluded the event when the maximum rainfall amount occurred in the United States or in one
of its territories. I restricted attention to those events that occurred since 2000. A histogram
of the data is shown in Figure 9.7 (above).
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Analysis: Let’s assume Y1, Y2, ..., Y142 are iid observations from a gamma(α, β) population
distribution, where α > 0 and β > 0 are unknown, and estimate α and β by using maximum
likelihood. Recall the gamma(α, β) pdf is

fY (y|α, β) =


1

Γ(α)βα
yα−1e−y/β, y > 0

0, otherwise.

The likelihood function is given by

L(α, β|y) =
1

Γ(α)βα
yα−11 e−y1/β × 1

Γ(α)βα
yα−12 e−y2/β × · · · × 1

Γ(α)βα
yα−1142 e

−y142/β

=

[
1

Γ(α)βα

]142( 142∏
i=1

yi

)α−1

e−
∑142
i=1 yi/β.

The log-likelihood function is given by

lnL(α, β|y) = −142 ln Γ(α)− 142α ln β + (α− 1)
142∑
i=1

ln yi −
∑142

i=1 yi
β

.

This function cannot be maximized analytically. If you take the derivative of lnL(α, β|y)
with respect to α, then you will be forced to deal with the derivative of the gamma function
Γ(α), which is not easy to work with. Therefore, let’s maximize lnL(α, β|y) numerically
(see R code online). I’ve done this using the Nelder-Mead numerical optimization routine
using R’s optim function. I used the MOM estimates as starting values; see Example 9.16
(pp 140, notes).

> mle = optim(par=c(alpha.mom,beta.mom),fn=loglike,method="Nelder-Mead")

> c(alpha.mom,beta.mom) # MOM estimates

[1] 2.316696 5.625545

> mle$par # MLEs

[1] 2.516750 5.178724

Therefore, the maximum likelihood estimates of α and β for the rainfall data are

α̂ ≈ 2.52

β̂ ≈ 5.18.

I superimposed the gamma(α̂ = 2.52, β̂ = 5.18) density onto the histogram of the rainfall
data; see Figure 9.8 (next page, left). A quantile-quantile (qq) plot of the data is shown
in Figure 9.8 (right). The linear pattern in the qq plot suggests the gamma distribution
is a reasonably good fit. Note that the outlier on the high side (60.58 inches) is Hurricane
Harvey which hit Texas in 2017. �
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Figure 9.8: Left: Histogram of the rainfall data in Example 9.21 with a gamma(2.52, 5.18)
density superimposed. Right: Quantile-quantile (qq) plot for the data under a gamma
population distribution assumption.

Example 9.22. Logistic regression. Suppose Y1, Y2, ..., Yn are independent Bernoulli random
variables; specifically, Yi ∼ Bernoulli(pi), where

ln

(
pi

1− pi

)
= β0 + β1xi ⇐⇒ pi =

exp(β0 + β1xi)

1 + exp(β0 + β1xi)
.

In this model, the xi’s are fixed constants. The likelihood function of θ = (β0, β1) is

L(θ|y) = L(β0, β1|y) =
n∏
i=1

pyii (1− pi)1−yi

=
n∏
i=1

[
exp(β0 + β1xi)

1 + exp(β0 + β1xi)

]yi [
1− exp(β0 + β1xi)

1 + exp(β0 + β1xi)

]1−yi
.

Taking logarithms and simplifying gives

lnL(θ|y) = lnL(β0, β1|y) =
n∑
i=1

[
yi(β0 + β1xi)− ln(1 + eβ0+β1xi)

]
.

Closed-form expressions for the maximizers β̂0 and β̂1 do not exist except in very simple
situations. Again, numerical optimization methods are needed to maximize lnL(β0, β1|y).
For example, R’s glm (generalized linear model) function does this using a technique known
as “iteratively re-weighted least squares.” �
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Invariance: One of the nicest results in mathematical statistics is the invariance property
of maximum likelihood estimators. Succinctly put, the invariance property says that if θ̂ is
the MLE of θ, then τ(θ̂) is the MLE of τ(θ), where τ is any function. For example,

• θ̂2 is the MLE of θ2

• sin θ̂ is the MLE of sin θ

• e−θ̂ is the MLE of e−θ.

The invariance property also holds in the multiparameter setting when τ is a vector-valued
function. For example, in Example 9.21, the maximum likelihood estimate of E(Y ) = αβ,
the population mean maximum rainfall amount (under a gamma assumption), is

α̂β̂ ≈ 2.52(5.18) ≈ 13.05 inches.

The maximum likelihood estimate of the population variance V (Y ) = αβ2 is

α̂β̂2 ≈ 2.52(5.18)2 ≈ 67.62 (inches)2.

Example 9.23. Suppose Y1, Y2, ..., Yn is an iid sample from an exponential(β) population
distribution, where β > 0 is unknown. Find the MLE of φp, the pth quantile of the distri-
bution of Y .

Solution. Recall the pth quantile of a (continuous) probability distribution is the value φp
which solves

p = P (Y ≤ φp) = FY (φp),

where FY (y) is the cdf of Y . Recall for Y ∼ exponential(β), the cdf is given by

FY (y) =

{
0, y ≤ 0

1− e−y/β, y > 0.

Therefore, the pth quantile of Y ∼ exponential(β) is found by solving

p = 1− e−φp/β =⇒ φp = −β ln(1− p).

By the invariance property of MLEs, the MLE of τ(β) = −β ln(1− p) is −β̂ ln(1− p), where

β̂ is the MLE of β. The likelihood function is given by

L(β|y) =
n∏
i=1

1

β
e−yi/β =

1

βn
e−

∑n
i=1 yi/β.

It is easy to show (verify) the MLE of β is β̂ = Y . Therefore, the MLE of the pth quantile is

φ̂p = −Y ln(1− p). �
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9.7 Large-sample (asymptotic) considerations

Recall: In Chapter 8, we described important characteristics we would like a point estimator
θ̂ = T (Y1, Y2, ..., Yn) to possess. In particular, we discussed bias, variance, and MSE of θ̂, and
we quantified the merit of a point estimator by using these characteristics. In this chapter, we
even addressed the question of finding the “best” point estimator; i.e., finding the unbiased
estimator θ̂ that had the smallest possible variance (the MVUE). Throughout all of these
discussions, whether or not you realized it, we were always making assessments based on a
fixed sample size. Therefore, these assessments utilized finite-sample distributional results.

Remark: Many statistical inference procedures we use in practice are not based on finite-
sample results. Recall from Chapter 8 when we wrote a 100(1− α)% confidence interval for
a population mean µ to be

Y ± tn−1,α/2
S√
n
.

This is an exact (finite-sample) confidence interval, but only when Y1, Y2, ..., Yn is an iid
sample from a N (µ, σ2) population distribution. The reason it is exact is that the interval
is derived from the pivotal quantity

T =
Y − µ
S/
√
n

which follows a t(n − 1) distribution, regardless of what the sample size n is. Therefore,
the confidence coefficient of the interval is exactly 1 − α. On the other hand, when the
population distribution is not normal (or maybe not even known), we wrote

Y ± zα/2
S√
n

as an approximate 100(1 − α)% confidence interval for µ. This interval is not exact. Its
confidence coefficient is approximately equal to 1− α when the sample size n is large.

Discussion: Because the last interval is only approximate, it is important to see where the
approximations arise. First, we are using the CLT to argue that

Y ∼ AN
(
µ,
σ2

n

)
so that Z =

Y − µ
σ/
√
n
∼ AN (0, 1)

when n is large. Then, we are additionally approximating the standard error

σY =
σ√
n

by using σ̂Y =
S√
n

with the hope that the estimated standard error σ̂Y will be “close” to the true standard error
σY when the sample size n is large. Note that the other large-sample confidence intervals we
examined in Section 8.5 (notes); i.e.,

p̂± zα/2

√
p̂(1− p̂)

n
,
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(Y 1+ − Y 2+)± zα/2

√
S2
1

n1

+
S2
2

n2

,

and

(p̂1 − p̂2)± zα/2

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

all rely heavily on these same types of large-sample approximations.

Remark: Because large-sample inference procedures are so common in statistics, it is im-
portant to have a mathematical understanding of large-sample (or asymptotic) results. Of
course, we have already presented one very important large-sample result in Chapter 7,
namely, the Central Limit Theorem. This result allowed us to approximate probabilities of
events involving sample means (and sample sums).

Central Limit Theorem: Suppose Y1, Y2, ..., Yn is an iid sample from a population dis-
tribution with mean E(Y ) = µ and variance V (Y ) = σ2 < ∞. The sequence of random
variables

Zn =
Y − µ
σ/
√
n

d−→ N (0, 1),

as n→∞. We say “Zn converges in distribution to N (0, 1).”

Preview: We now discuss additional large-sample (asymptotic) results which will enhance
our understanding of why commonly used statistical methods are valid in large samples.

Q: What’s the point? Large-sample results are technically valid only under the assumption
that n→∞. This is not realistic.
A: Because finite-sample results are often not available (or they are intractable), and large-
sample results can offer a good approximation to them when n is “large.” We already saw this
in Chapter 7 when we used the CLT to approximate probabilities−often these approximations
were very good in finite samples.

9.7.1 Consistency

Terminology: We say an estimator θ̂n is a consistent estimator of θ if, for all ε > 0,

lim
n→∞

P (|θ̂n − θ| > ε) = 0.

That is, the sequence of probabilities P (|θ̂n − θ| > ε)→ 0, as n→∞.

Remark: Consistency is a desirable large-sample property for an estimator to possess. If θ̂n
is consistent, then the probability the estimator θ̂n differs from the true θ becomes small as
the sample size n becomes large. On the other hand, if an estimator is not consistent, then
the estimator θ̂n may never get close to θ, regardless of how large the sample size n is.
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Remark: The statement “θ̂n is a consistent estimator of θ” is often replaced by the statement
“θ̂n converges in probability to θ.” If the latter terminology is used, then we write

θ̂n
p−→ θ, as n→∞.

Example 9.24. Suppose Y1, Y2, ..., Yn is an iid sample from a U(0, θ) population distribution,
where θ > 0 is unknown. Recall the U(0, θ) pdf is given by

fY (y) =


1

θ
, 0 < y < θ

0, otherwise.

Show that θ̂n = Y(n) is a consistent estimator of θ.

Solution. Suppose ε > 0. It suffices to show

lim
n→∞

P (|Y(n) − θ| > ε) = 0

or, equivalently,
lim
n→∞

P (|Y(n) − θ| ≤ ε) = 1.

We will first derive an expression for P (|Y(n) − θ| ≤ ε) and then show this sequence of
probabilities converges to 1. Because P (|Y(n)−θ| ≤ ε) is a probability involving the maximum
order statistic Y(n), we have to use the (sampling) distribution of Y(n) to find the probability.
In Chapter 6, we showed the cdf of the maximum order statistic Y(n) is

FY(n)(y) = P (Y(n) ≤ y) = P (Y1 ≤ y, Y2 ≤ y, ..., Yn ≤ y)

= P (Y1 ≤ y)P (Y2 ≤ y) · · ·P (Yn ≤ y)

= [P (Y ≤ y)]n

= [FY (y)]n.

The population cdf of Y ∼ U(0, θ) is

FY (y) =


0, y ≤ 0
y

θ
, 0 < y < θ

1, y ≥ θ.

Therefore, the cdf of Y(n) is

FY(n)(y) =


0, y ≤ 0(y
θ

)n
, 0 < y < θ

1, y ≥ θ.

Now, we observe that

P (|Y(n) − θ| ≤ ε) = P (−ε ≤ Y(n) − θ ≤ ε) = P (θ − ε ≤ Y(n) ≤ θ + ε)

= FY(n)(θ + ε)− FY(n)(θ − ε).
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Because ε > 0, it follows that θ + ε > θ and therefore

FY(n)(θ + ε) = 1.

Similarly, θ − ε < θ and therefore

FY(n)(θ − ε) =

(
θ − ε
θ

)n
.

Therefore,

P (|Y(n) − θ| ≤ ε) = FY(n)(θ + ε)− FY(n)(θ − ε) = 1−
(
θ − ε
θ

)n
︸ ︷︷ ︸

→ 0

→ 1,

as n→∞. We have shown
lim
n→∞

P (|Y(n) − θ| ≤ ε) = 1,

so we are done. �

Remark: The preceding example illustrates how one shows an estimator θ̂n is consistent by
appealing to the definition of consistency; i.e., by showing

lim
n→∞

P (|θ̂n − θ| > ε) = 0 or lim
n→∞

P (|θ̂n − θ| ≤ ε) = 1

directly. For most problems, this approach is not necessary. The following result presents
sufficient conditions for an estimator θ̂n to be consistent; showing these conditions hold is
often easier.

Result: Suppose θ̂n is a point estimator of θ. If both the bias

B(θ̂n) = E(θ̂n − θ) = E(θ̂n)− θ → 0

and the variance
V (θ̂n)→ 0

as n→∞, then θ̂n is a consistent estimator of θ.

Remark: It is easy to see why these conditions are sufficient. From Markov’s Inequality
(STAT 511, CH4), we have

P (|θ̂n − θ| > ε) = P ((θ̂n − θ)2 > ε2) ≤ E[(θ̂n − θ)2]
ε2

.

We have already shown
E[(θ̂n − θ)2] = V (θ̂n) + [B(θ̂n)]2.

Therefore, if both V (θ̂n) → 0 and B(θ̂n) → 0, then P (|θ̂n − θ| > ε) is less than or equal to
something that is converging to zero. Because probabilities are nonnegative (Kolmogorov

Axiom 1), then P (|θ̂n − θ| > ε)→ 0 as well.
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Weak Law of Large Numbers (WLLN): Suppose Y1, Y2, ..., Yn is an iid sample from a
population with mean E(Y ) = µ and variance V (Y ) = σ2 <∞. Then

Y =
1

n

n∑
i=1

Yi
p−→ E(Y ) = µ,

as n→∞. That is, the sample mean Y is a consistent estimator of the population mean.

Proof. The sample mean Y is an unbiased estimator of µ so B(Y ) = 0 for all n. The variance

V (Y ) =
σ2

n
→ 0,

as n→∞, provided that σ2 <∞. Therefore, the sufficient conditions in the previous result
are satisfied. �

Generalization: Suppose Y1, Y2, ..., Yn is an iid sample from a population and let h : R→ R
be any real function. Then

1

n

n∑
i=1

h(Yi)
p−→ E[h(Y )],

as n→∞, provided that V [h(Y )] <∞. Note that the WLLN stated above is a special case
of this result when h(Y ) = Y : i.e., h is the identity function.

Example 9.25. Suppose Y1, Y2, ..., Yn is an iid sample from an exponential(θ) population
distribution, where the population mean E(Y ) = θ is unknown. From the WLLN, we know

Y =
1

n

n∑
i=1

Yi
p−→ E(Y ) = θ,

as n→∞. That is, the sample mean is a consistent estimator of θ. Applying the generalized
version of the WLLN, the following probability limits also hold when n→∞:

m′2 =
1

n

n∑
i=1

Y 2
i

p−→ E(Y 2) = 2θ2

m′3 =
1

n

n∑
i=1

Y 3
i

p−→ E(Y 3) = 6θ3

1

n

n∑
i=1

sinYi
p−→ E(sinY ).

Note that
E(Y 2) = V (Y ) + [E(Y )]2 = θ2 + θ2 = 2θ2

and

E(Y 3) =

∫ ∞
0

y3

θ
e−y/θdy =

Γ(4)θ4

θ
= 6θ3.
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I don’t know what

E(sinY ) =

∫ ∞
0

sin y

θ
e−y/θdy

is, but I know V (sinY ) <∞ because sinY and (sinY )2 are bounded random variables. The
expectation of any bounded random variable is finite. �

Application: Use the WLLN to approximate the integral∫ ∞
0

sin y e−ydy.

Note that e−y is the exponential pdf with mean θ = 1. Therefore, if I generate an iid sample
Y1, Y2, ..., Yn from an exponential(1) population distribution, the WLLN says

1

n

n∑
i=1

sinYi ≈ E(sinY ) =

∫ ∞
0

sin y e−ydy

when n is large, where above Y ∼ exponential(1). In R,

> exp.data = rexp(1000000,1)

> mean(sin(exp.data))

[1] 0.4998616

This illustrates a commonly used statistical technique known as Monte Carlo integra-
tion, where (complicated) integrals are approximated by using simulation. How would you
approximate ∫ ∞

0

17y1.3 cos(y2) e−ydy?

Suppose Y ∼ exponential(1) again. If Y1, Y2, ..., Yn are iid exponential(1), then the WLLN
says

1

n

n∑
i=1

17Y 1.3
i cos(Y 2

i ) ≈ E[17Y 1.3 cos(Y 2)] =

∫ ∞
0

17y1.3 cos(y2) e−ydy

when n is large. Therefore, simply repeat the simulation:

> exp.data = rexp(1000000,1)

> mean(17*exp.data^(1.3)*cos(exp.data^2))

[1] 1.328258

Functions of consistent estimators: Suppose we have two consistent point estimators
θ̂n and θ̂′n that satisfy

θ̂n
p−→ θ

θ̂′n
p−→ θ′,

as n→∞. We get the following results:
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1. cθ̂n
p−→ cθ, for any constant c ∈ R

2. θ̂n ± θ̂′n
p−→ θ ± θ′

3. θ̂nθ̂
′
n

p−→ θθ′

4.
θ̂n

θ̂′n

p−→ θ

θ′
, provided that θ′ 6= 0.

More generally, if g : R→ R is a continuous function, then

θ̂n
p−→ θ =⇒ g(θ̂n)

p−→ g(θ),

as n → ∞. In other words, convergence in probability (consistency) is preserved under
continuous mappings. Proving the results above is analogous to how one proves the corre-
sponding results involving limits of sequences of real numbers.

Example 9.26. Suppose Y1, Y2, ..., Yn is an iid sample from a beta(θ, 1) population distri-
bution, where θ > 0 is unknown. Recall the beta(θ, 1) pdf is given by

fY (y) =

{
θyθ−1, 0 < y < 1

0, otherwise.

Find a consistent estimator of θ.

Solution. From the WLLN, we know

Y
p−→ E(Y ) =

θ

θ + 1
,

as n→∞. We know

1− Y p−→ 1− θ

θ + 1
=

1

θ + 1

by continuity because g(x) = 1− x is a continuous function. Therefore, from (4) above, we
have

Y

1− Y
p−→

θ

θ + 1
1

θ + 1

= θ,

as n→∞. Therefore, Y /(1− Y ) is a consistent estimator of θ. �

Example 9.27. Suppose Y1, Y2, ..., Yn is an iid sample from a population with mean E(Y ) =
µ, variance V (Y ) = σ2, and finite fourth moment; i.e., E(Y 4) <∞. Prove

S2
b =

1

n

n∑
i=1

(Yi − Y )2
p−→ σ2.
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Proof. First note that

n∑
i=1

(Yi − Y )2 =
n∑
i=1

(Y 2
i − 2YiY + Y

2
)

=
n∑
i=1

Y 2
i − 2Y

n∑
i=1

Yi + nY
2

=
n∑
i=1

Y 2
i − 2nY

2
+ nY

2
=

n∑
i=1

Y 2
i − nY

2
.

Therefore, write

S2
b =

1

n

(
n∑
i=1

Y 2
i − nY

2

)
=

1

n

n∑
i=1

Y 2
i − Y

2
.

From the WLLN, we know

1

n

n∑
i=1

Y 2
i

p−→ E(Y 2) = V (Y ) + [E(Y )]2 = σ2 + µ2.

Also, from the WLLN, we know

Y
p−→ µ =⇒ Y

2 p−→ µ2,

by continuity because g(x) = x2 is a continuous function. Therefore,

S2
b =

1

n

n∑
i=1

Y 2
i − Y

2 p−→ (σ2 + µ2)− µ2 = σ2. �

Remark: We have just shown that

S2
b =

1

n

n∑
i=1

(Yi − Y )2

is a consistent estimator of the population variance σ2, which is interesting because S2
b is a

biased estimator of σ2 in finite samples; i.e., E(S2
b ) 6= σ2. What about our usual (unbiased

version of the) sample variance? Note that

S2 =
1

n− 1

n∑
i=1

(Yi − Y )2 =

(
n

n− 1

)
1

n

n∑
i=1

(Yi − Y )2 =

(
n

n− 1

)
S2
b .

We have already shown S2
b

p−→ σ2. Therefore,

S2 =

(
n

n− 1

)
S2
b

p−→ (1)σ2 = σ2,

because n/(n− 1)→ 1, as n→∞.

Summary: Suppose Y1, Y2, ..., Yn is an iid sample from a population with mean E(Y ) = µ,
variance V (Y ) = σ2, and finite fourth moment; i.e., E(Y 4) <∞. We have shown

• Y is a consistent estimator of µ

• S2 is a consistent estimator of σ2.
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9.7.2 Slutsky’s Theorem

Remark: We now discuss an important theoretical result that helps to explain why many
large-sample statistical inference procedures (e.g., confidence intervals, hypothesis tests, etc.)
are valid.

Slutsky’s Theorem: Suppose the sequence of random variables

Un
d−→ N (0, 1),

as n→∞, and suppose Wn
p−→ 1. Then

Un
Wn

d−→ N (0, 1)

as well.

Remark: Recall that Un
d−→ N (0, 1) means

FUn(u)→
∫ u

−∞

1√
2π
e−v

2/2dv = cdf of N (0, 1)

for all u ∈ R, as n → ∞; i.e., the sequence of cdfs FU1(u), FU2(u), FU3(u), ... converges
pointwise to the cdf of a N (0, 1) random variable. Slutsky’s Theorem says the sequence of
cdfs

F Un
Wn

(u)→
∫ u

−∞

1√
2π
e−v

2/2dv

just like the FUn(u) sequence does. That is, Un and Un/Wn have the same (standard normal)
distribution in the limit.

Example 9.28. Suppose Y1, Y2, ..., Yn is an iid sample from a population with mean µ and
variance σ2 <∞. Prove that

Y − µ
S/
√
n

d−→ N (0, 1),

as n→∞.

Proof. We will use Slutsky’s Theorem. From the CLT, we know

Un =
Y − µ
σ/
√
n

d−→ N (0, 1),

as n→∞. In Example 9.27 (notes), we just showed

S2 p−→ σ2 =⇒ S2

σ2

p−→ 1 =⇒ Wn =
S

σ

p−→ 1;

the last two implications follow from continuity. Now, simply note that

Y − µ
S/
√
n

=

Y − µ
σ/
√
n

S

σ

=
Un
Wn

d−→ N (0, 1)

by Slutsky’s Theorem. �
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Implication: Because
Y − µ
S/
√
n

d−→ N (0, 1)

as n→∞, we can write

1− α ≈ P

(
−zα/2 <

Y − µ
S/
√
n
< zα/2

)
= P

(
−zα/2

S√
n
< Y − µ < zα/2

S√
n

)
= P

(
zα/2

S√
n
> µ− Y > −zα/2

S√
n

)
= P

(
Y + zα/2

S√
n
> µ > Y − zα/2

S√
n

)
= P

(
Y − zα/2

S√
n
< µ < Y + zα/2

S√
n

)
.

This argument proves (
Y − zα/2

S√
n
, Y + zα/2

S√
n

)
is a large-sample 100(1− α)% confidence interval for the population mean µ.

Remark: If Y1, Y2, ..., Yn is an iid sample from a Bernoulli(p) population with 0 < p < 1,
then the same type of Slutsky’s Theorem argument can be used to show

p̂− p√
p̂(1− p̂)

n

d−→ N (0, 1),

as n→∞. Therefore,

p̂± zα/2

√
p̂(1− p̂)

n
,

is a large-sample 100(1− α)% confidence interval for the population proportion p.

9.7.3 Large-sample properties of MLEs

Remark: Not only do maximum likelihood estimators (MLEs) have useful interpretations
(i.e., they “maximize the probability of the data”), we know they are also functions of
sufficient statistics. Therefore, MLEs, or adjusted versions of them, often turn out to be
MVUEs in finite samples.

Preview: Most MLEs also enjoy desirable large-sample properties, specifically, they are
consistent (C) and they follow asymptotically normal (AN) sampling distributions. Cou-
pling these two large-sample characteristics together, we often say that “MLEs are CAN.”
Therefore, we can use MLEs as a basis for large-sample inference; in fact, many large-sample
inference techniques used in practice are derived from this fact.

PAGE 163



STAT 512: CHAPTER 9 JOSHUA M. TEBBS

Result: Suppose Y1, Y2, ..., Yn is an iid sample from a population distribution described by
pY (y|θ) or fY (y|θ), and suppose θ̂ is the MLE for θ. Under certain regularity conditions,

θ̂
p−→ θ,

as n→∞; i.e., θ̂ is a consistent estimator of θ. In addition,

θ̂ − θ√
v(θ)

n

d−→ N (0, 1),

as n→∞, where

v(θ) =
1

E
[
− ∂2

∂θ2
ln pY (Y |θ)

] (discrete case)

v(θ) =
1

E
[
− ∂2

∂θ2
ln fY (Y |θ)

] (continuous case).

Note that the convergence in distribution result above, restated, says

θ̂ ∼ AN
(
θ,
v(θ)

n

)
, for large n.

Remark: The quantity
v(θ)

n

is the large-sample (approximate) variance of θ̂. In a more advanced course, one calls

E

[
− ∂2

∂θ2
ln pY (Y |θ)

]
or E

[
− ∂2

∂θ2
ln fY (Y |θ)

]
the Fisher information and v(θ)/n the Cramér-Rao Lower Bound (CRLB). Interest-
ingly, for those distributions where suitable regularity conditions hold, the CRLB turns out
to be the lower bound on the variance of any unbiased estimator of θ in finite samples; hence,
using this lower bound can be helpful when attempting to find MVUEs.

Remark: The “regularity conditions” needed for us to claim that MLEs are consistent and
asymptotically normal (CAN) are technical but end up holding for most of the population
distributions we examine in this course. However, one condition needed is that the support
for Y cannot depend on θ. Therefore, this discussion (that MLEs are CAN) excludes MLEs
derived from uniform distributions, shifted exponential distributions, power family distribu-
tions; i.e., any population distribution where y ≤ θ or y ≥ θ. For example, when Y1, Y2, ..., Yn
are iid from a U(0, θ) population distribution, the MLE is

θ̂ = Y(n).

However, because the support RY = {y : 0 ≤ y ≤ θ} depends on θ, we cannot say that θ̂ is
approximately normal when n is large (and, in fact, it is not).
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Example 9.29. Suppose Y1, Y2, ..., Yn is an iid sample from a Poisson(θ) population distri-
bution, where θ > 0 is unknown. Recall the Poisson(θ) pmf is given by

pY (y|θ) =


θye−θ

y!
, y = 0, 1, 2, ...

0, otherwise.

In Example 9.17 (notes, pp 142-143), we showed that

θ̂ = Y

is the MLE of θ. From the WLLN, we already know that

Y
p−→ θ,

as n → ∞; i.e., θ̂ is a consistent estimator of θ. In addition, from the CLT (Chapter 7),
we already know that

Y ∼ AN
(
θ,
θ

n

)
, for large n.

We now demonstrate we get the same large-sample distribution by appealing to the large-
sample theory for MLEs. The pmf of Y , where nonzero, is

pY (y|θ) =
θye−θ

y!
.

The natural logarithm of the pmf is

ln pY (y|θ) = ln

(
θye−θ

y!

)
= y ln θ − θ − ln y!.

The first derivative of the log pmf is

∂

∂θ
ln pY (y|θ) =

∂

∂θ
(y ln θ − θ − ln y!) =

y

θ
− 1.

The second derivative of the log pmf is

∂2

∂θ2
ln pY (y|θ) = − y

θ2
.

Therefore,

E

[
− ∂2

∂θ2
ln pY (Y |θ)

]
= E

(
Y

θ2

)
=
E(Y )

θ2
=

θ

θ2
=

1

θ
=⇒ v(θ) =

1

E
[
− ∂2

∂θ2
ln pY (Y |θ)

] = θ.

Appealing to the large-sample properties of MLEs, we have

Y ∼ AN
(
θ,
θ

n

)
, for large n.
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Example 9.30. Suppose Y1, Y2, ..., Yn is an iid sample from a Rayleigh(θ) population dis-
tribution, where θ > 0 is unknown. Recall the Rayleigh pdf is given by

fY (y|θ) =


2y

θ
e−y

2/θ, y > 0

0, otherwise.

In Example 9.18 (notes, pp 144), we showed that

θ̂ =
1

n

n∑
i=1

Y 2
i

is the MLE of θ. From the WLLN, we already know that

1

n

n∑
i=1

Y 2
i

p−→ E(Y 2) = θ,

as n→∞; i.e., θ̂ is a consistent estimator of θ. Note that you can show E(Y 2) = θ directly

or by recalling Y 2 ∼ exponential(θ). We now derive the large-sample distribution of θ̂ by
appealing to the large-sample theory for MLEs. The pdf of Y , where nonzero, is

fY (y|θ) =
2y

θ
e−y

2/θ.

The natural logarithm of the pdf is

ln fY (y|θ) = ln

(
2y

θ
e−y

2/θ

)
= ln(2y)− ln θ − y2

θ
.

The first derivative of the log pdf is

∂

∂θ
ln fY (y|θ) =

∂

∂θ

[
ln(2y)− ln θ − y2

θ

]
= −1

θ
+
y2

θ2
.

The second derivative of the log pdf is

∂2

∂θ2
ln fY (y|θ) =

1

θ2
− 2y2

θ3
.

Therefore,

E

[
− ∂2

∂θ2
ln fY (Y |θ)

]
= E

(
− 1

θ2
+

2Y 2

θ3

)
= − 1

θ2
+

2E(Y 2)

θ3

= − 1

θ2
+

2θ

θ3
= − 1

θ2
+

2

θ2
=

1

θ2
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and thus,

v(θ) =
1

E
[
− ∂2

∂θ2
ln fY (Y |θ)

] = θ2.

Appealing to the large-sample properties of MLEs, we have

θ̂ =
1

n

n∑
i=1

Y 2
i ∼ AN

(
θ,
θ2

n

)
, for large n.

Large-sample confidence intervals: Because MLEs are consistent and asymptotically
normal (CAN), we can write large-sample confidence intervals for the population-level pa-
rameters they estimate. The “AN” part of CAN means

Un =
θ̂ − θ√
v(θ)

n

d−→ N (0, 1),

as n→∞. The “C” part of CAN means

θ̂
p−→ θ, as n→∞.

Provided that v(θ) is a continuous function (which it usually is), we have

v(θ̂)
p−→ v(θ) =⇒ v(θ̂)

v(θ)

p−→ 1 =⇒ Wn =

√
v(θ̂)

v(θ)

p−→ 1.

Therefore,

Un
Wn

=

θ̂ − θ√
v(θ)

n√
v(θ̂)

v(θ)

=
θ̂ − θ√
v(θ̂)

n

d−→ N (0, 1),

as n→∞, by Slutsky’s Theorem. Therefore, for large n, we can write

1− α ≈ P

−zα/2 < θ̂ − θ√
v(θ̂)/n

< zα/2

 = P

−zα/2
√
v(θ̂)

n
< θ̂ − θ < zα/2

√
v(θ̂)

n


= P

zα/2
√
v(θ̂)

n
> θ − θ̂ > −zα/2

√
v(θ̂)

n


= P

θ̂ + zα/2

√
v(θ̂)

n
> θ > θ̂ − zα/2

√
v(θ̂)

n


= P

θ̂ − zα/2
√
v(θ̂)

n
< θ < θ̂ + zα/2

√
v(θ̂)

n

 .
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This argument proves θ̂ − zα/2
√
v(θ̂)

n
, θ̂ + zα/2

√
v(θ̂)

n


is a large-sample 100(1− α)% confidence interval for θ.

Remark: The novelty of the general formula above is that it “works” for any MLE (provided
the population distribution’s regularity conditions are met). This greatly expands our ability
to write large-sample confidence intervals for parameters in a variety of population-level
models (e.g., Poisson, Rayleigh, geometric, exponential/gamma, beta, etc.). All we have to
do is determine the MLE and then appeal to this large-sample result.

Illustration:

• Poisson(θ). MLE: θ̂ = Y , v(θ) = θ =⇒ v(θ̂) = Y . Therefore,

Y ± zα/2

√
Y

n

is a large-sample 100(1− α)% confidence interval for θ.

• Rayleigh(θ). MLE: θ̂ = 1
n

∑n
i=1 Y

2
i = m′2 (the second sample moment), v(θ) = θ2 =⇒

v(θ̂) = (m′2)
2. Therefore,

m′2 ± zα/2

√
(m′2)

2

n
⇐⇒ m′2 ± zα/2

(
m′2√
n

)
is a large-sample 100(1− α)% confidence interval for θ.

Exercise: Calculate large-sample 95% confidence intervals for θ using the accident data (pp
118-119, notes) under a Poisson(θ) assumption and using the light bulb data (pp 120, notes)
under a Rayleigh(θ) assumption. Note z0.025 ≈ 1.96.

• Accident data (Poisson): MLe: y = 1.23, sample size n = 84

y ± zα/2

√
y

n
=⇒ 1.23± 1.96

√
1.23

84
=⇒ (0.99, 1.47).

• Light bulb data (Rayleigh): MLe: m′2 = 21.5, sample size n = 30

m′2 ± zα/2
(
m′2√
n

)
=⇒ 21.5± 1.96

(
21.5√

30

)
=⇒ (13.8, 29.2).

These confidence intervals are interpreted in the usual way; i.e., we are (approximately) 95%
confident the corresponding interval contains its population-level parameter θ.
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