
STAT 513 FALL 2023 HOMEWORK 2

1. Suppose Y1, Y2, ..., Yn is an iid sample from a Poisson population distribution with
mean λ > 0. The Central Limit Theorem (Chapter 7) assures us that

Y − λ√
λ

n

d−→ N (0, 1), as n→∞.

(a) Carefully argue that
Y − λ√

Y

n

and
Y − λ√
S2

n

also converge in distribution to N (0, 1), as n→∞. Hint: Argue that Y and S2 are both
consistent estimators of λ and then use Slutsky’s Theorem.
(b) Derive large-sample 100(1 − α)% confidence intervals for λ using each quantity in
part (a). Note that each one is a large-sample pivot.
(c) Suppose n = 100, λ = 10, and you calculate

Y − 10√
Y

100

.

Between what two values would you expect this statistic to fall with probability approx-
imately equal to 0.95? What might you conclude if it fell well outside this range?

2. Suppose Y1, Y2, ..., Yn is an iid sample from a Bernoulli(p) population distribution,
where 0 < p < 1. The population pmf is

pY (y|p) =

{
py(1− p)1−y, y = 0, 1

0, otherwise.

(a) Prove that

p̂ =
1

n

n∑
i=1

Yi

is the maximum likelihood estimator (MLE) of p.
(b) Use the large-sample properties of MLEs to show that

p̂ ∼ AN
(
p,

p(1− p)
n

)
,

for large n. Note this is the same result you would get by applying the CLT directly.
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Delta Method. Suppose Y1, Y2, ..., Yn is an iid sample from a population distribution
described by pY (y|θ) or fY (y|θ), and suppose θ̂ is the MLE for θ. Under certain regularity
conditions, we know

θ̂ − θ√
v(θ)

n

d−→ N (0, 1),

as n→∞, where

v(θ) =
1

E
[
− ∂2

∂θ2
ln pY (Y |θ)

] (discrete case)

v(θ) =
1

E
[
− ∂2

∂θ2
ln fY (Y |θ)

] (continuous case).

This means MLEs are asymptotically normal. The Delta Method says that functions
of MLEs are also asymptotically normal. Specifically, suppose g is a continuous and
differentiable function. Then,

g(θ̂)− g(θ)√
[g′(θ)]2v(θ)

n

d−→ N (0, 1),

as n → ∞, where g′(θ) = ∂g(θ)/∂θ. To see why this is true, let’s sketch a proof. First,
write

g(θ̂) = g(θ) + g′(θ)(θ̂ − θ) + higher order terms

using a Taylor series expansion. After rearranging and multiplying by
√
n, we have

√
n[g(θ̂)− g(θ)] ≈ g′(θ)

√
n(θ̂ − θ).

The term
√
n(θ̂ − θ) converges in distribution to N (0, v(θ)) by assumption and hence

g′(θ)
√
n(θ̂ − θ) converges in distribution to

N
(
0, [g′(θ)]2v(θ)

)
.

Because all higher order terms (even when multiplied by
√
n) converge in probability to

zero, Slutsky’s Theorem gives

√
n[g(θ̂)− g(θ)]

d−→ N
(
0, [g′(θ)]2v(θ)

)
⇐⇒ g(θ̂)− g(θ)√

[g′(θ)]2v(θ)

n

d−→ N (0, 1),

or, in other words,

g(θ̂) ∼ AN
(
g(θ),

[g′(θ)]2v(θ)

n

)
,

for large n.
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3. In Problem 2, use the Delta Method to show

p̂

1− p̂
∼ AN

(
p

1− p
,

p

n(1− p)3

)
,

for large n. The statistic
p̂

1− p̂
is called the sample odds. Hint: Work with g(p) = p/(1− p).

4. Suppose Y1, Y2, ..., Yn is an iid sample from an exponential distribution with mean
β > 0.
(a) Find the MLE of β and derive its large-sample distribution.
(b) Find the MLE of β2 and derive its large-sample distribution.
(c) Find the MLE of P (Y > 1) = 1− e−1/β and derive its large-sample distribution.

5. Suppose X1, X2, ..., Xn is an iid N (µ, c2µ2) sample, where c2 is known. Let µ̃ and µ̂
denote the method of moments and maximum likelihood estimators of µ, respectively.
(a) Show that

µ̃ = X and µ̂ =

√
X

2
+ 4c2m′2 −X

2c2
,

where m′2 = n−1
∑n

i=1X
2
i is the second sample moment.

(b) Prove that both estimators µ̃ and µ̂ are consistent.
(c) Show that

µ̃ ∼ AN

(
µ,
σ2
µ̃

n

)
and µ̂ ∼ AN

(
µ,
σ2
µ̂

n

)
for large n and calculate σ2

µ̃ and σ2
µ̂. Which estimator is more efficient?
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