1. Suppose we have postulated the model

$$
Y_{i}=\beta_{1} x_{i}+\epsilon_{i},
$$

for $i=1,2, \ldots, n$, where $\epsilon_{i} \sim \operatorname{iid} \mathcal{N}\left(0, \sigma^{2}\right)$. This is our simple linear regression model where the intercept parameter $\beta_{0}=0$. This model is called the no-intercept model.
(a) The least squares estimator of β_{1} in the no-intercept model is the value of β_{1} that minimizes the objective function

$$
Q\left(\beta_{1}\right)=\sum_{i=1}^{n}\left(Y_{i}-\beta_{1} x_{i}\right)^{2} .
$$

Show this least squares estimator is

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n} x_{i} Y_{i}}{\sum_{i=1}^{n} x_{i}^{2}} .
$$

(b) Derive the sampling distribution of $\widehat{\beta}_{1}$ in the no-intercept model. Identify which error assumptions are needed where in your derivations.
2. Consider the simple linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i},
$$

for $i=1,2, \ldots, n$, where $\epsilon_{i} \sim \operatorname{iid} \mathcal{N}\left(0, \sigma^{2}\right)$.
(a) Recall the i th residual is $e_{i}=Y_{i}-\widehat{Y}_{i}$. When least squares is used to estimate the simple linear regression model, show

$$
\sum_{i=1}^{n} e_{i}=\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)=0,
$$

that is, the sum of the residuals is equal to zero. Interestingly, this "residuals sum to zero" property does not necessarily hold in the no-intercept model in Problem 1.
(b) Show

$$
e_{i} \sim \mathcal{N}\left(0, \sigma^{2}\left(1-h_{i i}\right)\right),
$$

where

$$
h_{i i}=\frac{1}{n}+\frac{\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} .
$$

This implies the residuals (unlike the errors) do not have constant variance; i.e., $V\left(e_{i}\right)$ changes as i does. In data analysis, $h_{i i}$ is called the leverage associated with the i th observation. Leverages can be useful in classifying observations as outliers or not.
3. Suppose $Y_{1}, Y_{2}, \ldots, Y_{n}$ are independent normal random variables with $E\left(Y_{i}\right)=\beta_{0}+\beta_{1} x_{i}$ and $V\left(Y_{i}\right)=\sigma^{2}$, for $i=1,2, \ldots, n$.
(a) Show the maximum likelihood estimators of β_{0}, β_{1}, and σ^{2} are

$$
\begin{aligned}
\widehat{\beta}_{0} & =\bar{Y}-\widehat{\beta}_{1} \bar{x} \\
\widehat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
\widehat{\sigma}^{2} & =\frac{\mathrm{SSE}}{n}
\end{aligned}
$$

where $\mathrm{SSE}=\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}\right)^{2}$. Under normality assumptions, note the MLEs of β_{0} and β_{1} are identical to the least squares estimators. The MLE of the error variance σ^{2} is slightly different than the (unbiased) version presented in the notes (the MLE here is biased).
(b) Show the likelihood ratio test for

$$
\begin{gathered}
H_{0}: \beta_{1}=0 \\
\text { versus } \\
H_{a}: \beta_{1} \neq 0
\end{gathered}
$$

is equivalent to the t test given in the notes with $\beta_{1,0}=0$ (see pp 109-110).
4. Suppose

$$
\mathbf{Y}=\left(\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right)
$$

is a trivariate random vector with mean $\boldsymbol{\mu}$ and variance-covariance matrix \mathbf{V}, where

$$
\boldsymbol{\mu}=\left(\begin{array}{c}
4 \\
6 \\
10
\end{array}\right) \quad \text { and } \quad \mathbf{V}=\left(\begin{array}{ccc}
4 & -3 & 0 \\
-3 & 9 & 2 \\
0 & 2 & 1
\end{array}\right)
$$

(a) Find the mean and variance of $U=Y_{1}-Y_{2}+Y_{3}$. Find the covariance of U and V, where $V=2 Y_{1}+3 Y_{2}-Y_{3}$.
(b) Define

$$
\mathbf{A}=\left(\begin{array}{ccc}
2 & 4 & -2 \\
1 & 2 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{c}=\binom{-1}{2} .
$$

Calculate $E(\mathbf{c}+\mathbf{A Y})$ and $\operatorname{Cov}(\mathbf{c}+\mathbf{A Y})$.
(c) Define

$$
\mathbf{B}=\left(\begin{array}{rrr}
1 & 2 & 1 \\
2 & 3 & -1 \\
-1 & 4 & -1
\end{array}\right)
$$

Calculate $E\left(\mathbf{Y}^{\prime} \mathbf{B Y}\right)$.
5. Suppose the random vector

$$
\mathbf{Y}=\left(\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right)
$$

has a trivariate normal distribution with mean $\boldsymbol{\mu}$ and variance-covariance matrix \mathbf{V}, where

$$
\boldsymbol{\mu}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \quad \text { and } \quad \mathbf{V}=\left(\begin{array}{rrr}
1 & 2 & 1 \\
2 & 2 & -1 \\
1 & -1 & 4
\end{array}\right)
$$

that is, $\mathbf{Y} \sim \mathcal{N}_{3}(\boldsymbol{\mu}, \mathbf{V})$.
(a) What is the distribution of $U=Y_{1}+3 Y_{2}-2 Y_{3}$?
(b) Define

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 0 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

Calculate $E\left(\mathbf{Y}^{\prime} \mathbf{A Y}\right)$.
(c) When \mathbf{Y} is multivariate normal, then the variance of a quadratic form is

$$
V\left(\mathbf{Y}^{\prime} \mathbf{A} \mathbf{Y}\right)=2[\operatorname{tr}(\mathbf{A V})]^{2}+4 \boldsymbol{\mu}^{\prime} \mathbf{A V A} \boldsymbol{\mu}
$$

This formula is only correct when \mathbf{Y} follows a multivariate normal distribution (and it also requires \mathbf{A} to be symmetric). Calculate $V\left(\mathbf{Y}^{\prime} \mathbf{A Y}\right)$ with the matrix \mathbf{A} in part (b).

