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10 Hypothesis Testing

10.1 Introduction

Preview: Suppose Y1, Y2, ..., Yn is an iid sample from a population distribution denoted by
pY (y|θ) or fY (y|θ), where θ is an unknown parameter. Recall that we use different notation
for discrete and continuous population-level models:

• discrete: pY (y|θ) is a probability mass function; e.g., Bernoulli, Poisson, etc.

• continuous: fY (y|θ) is a probability density function; e.g., uniform, normal, exponen-
tial, etc.

Our goal in this chapter is to learn about the theory of hypothesis tests for θ (and functions
of θ; e.g., a population mean, a population variance, etc.).

Remark: Hypothesis testing is a form of statistical inference, which is the process by
which we make a decision (or “infer”) about the value of an unknown population parameter.
Recall in STAT 512 we studied other types statistical inference procedures:

• In Chapter 9, we studied methods of point estimation (MOM and MLE) and we dis-
cussed how one might find the “best” point estimator for θ.

• In Chapter 8, we learned how one could develop interval estimators (i.e., confidence
intervals) for θ.

In both settings, our goal was to use the observations Y1, Y2, ..., Yn to estimate the value of θ.
Point estimators are “one-shot guesses,” whereas interval estimators incorporate uncertainty
(hence, producing an interval of “plausible values” of θ). In due course, we will learn there
is an elegant duality between interval estimation and hypothesis testing.

Importance: Hypothesis tests are widely used in translational areas, including biomedicine,
epidemiology, engineering, and the social sciences. They are commonly taught in introduc-
tory courses, so most students have at least heard of them. Hypothesis tests are useful
because they can shed insight on answers to interesting questions. For example,

• Have starting salaries of USC graduates increased over the last 5 years?

• Is a new drug or intervention superior when compared to the standard method of
treatment?

• How do vaccination rates compare among different races/ethnicities?

Not surprisingly, the theoretical foundation of hypothesis testing is often hidden from stu-
dents in their first exposure. In this course, we will learn the underlying mathematics of how
hypothesis tests work.
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10.2 Definitions and examples

Terminology: Suppose Y1, Y2, ..., Yn is an iid sample from a population distribution denoted
by pY (y|θ) or fY (y|θ), where θ is an unknown parameter (a scalar, unless otherwise noted).
A hypothesis test is a statistical inference procedure which pits two competing hypotheses
regarding θ against each other. The goal is to determine which hypothesis is more supported
by the available information in the sample.

Remark: One can think of any hypothesis test as consisting of four parts:

1. the null hypothesis H0

2. the alternative hypothesis Ha

3. a test statistic T = T (Y1, Y2, ..., Yn)

4. a rejection region (which we will denote by RR).

The null and alternative hypotheses are written in terms of θ. A test statistic T is used to
decide between H0 and Ha. If T falls in the rejection region (RR), then we reject H0 in favor
of Ha. If it does not, then we do not reject H0.

Example 10.1. Suppose Y1, Y2, ..., Y10 is an iid sample of size n = 10 from a N (θ, σ2 = 100)
population distribution, where θ is unknown. If θ denotes the population mean starting salary
(in $1000s) among all USC STEM majors (which we model using a normal distribution),
then we might be interested in testing

H0 : θ = 50
versus

Ha : θ > 50.

The null hypothesis H0 states the population mean salary is $50,000, whereas the alternative
hypothesis Ha states the population mean salary is more than $50,000.

Q: Which statistic T should we use as a test statistic to decide between H0 and Ha?
A: If possible, we want to pick a statistic whose (sampling) distribution we know or at least
can derive. We also learned in STAT 512 how sufficient statistics contained all of the
available information about θ. Therefore, we might start by considering statistics (a) which
are sufficient and (b) which we can derive the sampling distribution of (or we already know).

Suppose we decide to use the sample mean

T = T (Y1, Y2, ..., Y10) = Y =
1

10

n∑
i=1

Yi

(which is sufficient when σ2 is known) as a test statistic and a rejection region of the form

RR = {y > 55}.

PAGE 2
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Figure 10.1: Example 10.1. Sampling distribution of Y when H0 is true. The rejection region
RR = {y ≥ 55} is shown shaded.

That is, we will reject H0 : θ = 50 in favor of Ha : θ > 50 when the sample mean Y is larger
than 55. What is the sampling distribution of T = T (Y1, Y2, ..., Y10) = Y ? From STAT 512,
we know

Y ∼ N
(
θ,

σ2

10

)
=⇒ Y ∼ N (θ, 10) .

Figure 10.1 shows the sampling distribution of Y when H0 is true; i.e., when the population
mean is θ = 50. Note that even when H0 is true, the probability of the rejection region is

PH0(RR) = PH0(Y > 55) ≈ 0.057.

Therefore, even when H0 : θ = 50 is true, there is a chance we will reject it when using this
rejection region.

> 1-pnorm(55,50,sqrt(10))

[1] 0.05692315

Note: For any event A, the notation PH0(A) means that we are calculating P (A) under the
assumption that H0 is true.
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Q: Could we use another test statistic in Example 10.1?
A: Of course, we can. However, calculations are likely to be much harder.

Instead of using the sample mean Y , suppose we decide to use the maximum order statistic

T = T (Y1, Y2, ..., Y10) = Y(10)

as a test statistic and a rejection region of the form

RR = {y(10) > 80}.

What is the sampling distribution of T = Y(10)? From STAT 512, we recall

fY(10)(y) = 10fY (y)[FY (y)]9,

where fY (y) is the N (θ, 100) pdf and FY (y) is the N (θ, 100) cdf; i.e.,

FY (y) =

∫ y

−∞

1√
2π(100)

e−(t−θ)2/2(100)dt.

Therefore, the sampling distribution of Y(10) cannot be written out in closed form (it depends
on an improper integral which has no closed-form answer), but we can graph it in R. Figure
10.2 (next page) shows the sampling distribution of Y(10) when H0 is true; i.e., when the
population mean is 50.

Q: What is the probability of this rejection region when H0 is true?
A: This is difficult to calculate as we would have to integrate fY(10)(y). In theory, it is

PH0(RR) = PH0(Y(10) > 80)

=

∫ ∞
80

fY(10)(y)dy

=

∫ ∞
80

10√
2π(100)

e−(y−50)2/2(100)

[∫ y

−∞

1√
2π(100)

e−(t−50)2/2(100)dt

]9

dy.

Instead of attempting this calculation (it is futile), we can use Monte Carlo simulation
to approximate PH0(Y(10) > 80). Briefly, this consists of

1. Generating a large number of N (50, 100) iid samples, each of size 10.

2. Recording the value of the maximum order statistic y(10) in each sample.

3. Calculating the proportion of samples where the maximum y(10) exceeds 80.

By the WLLN (Chapter 9), this proportion will approximate the true probability when the
number of samples (say, B) is large. I coded this using B = 100, 000 samples (see R code
online) and obtained

PH0(RR) = PH0(Y(10) > 80) ≈ 0.014.
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Figure 10.2: Example 10.1. Sampling distribution of Y(10) when H0 is true. The rejection
region RR = {y(10) ≥ 80} is shown shaded.

Comparison: It is interesting to compare the two rejection regions:

RR1 = {y > 55} and RR2 = {y(10) > 80}.

The probability of rejecting H0 when H0 is true is smaller for the second test (0.057 versus
0.014), so one may think using RR2 is “better” in some sense. However, what if H0 is not
true? Which test has a better chance of rejecting H0? I constructed the following table:

Probability of rejecting H0 : θ = 50
θ = 50 θ = 55 θ = 60 θ = 65 θ = 70

RR1 = {y > 55} 0.057 0.500 0.943 0.999 0.999+
RR2 = {y(10) > 80} 0.014 0.061 0.207 0.501 0.822

Therefore, although the second rejection region/test does a better job of guarding against
one type of error (i.e., rejecting a true H0), the first one has a much larger probability (power)
of rejecting H0 when Ha is true. �
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States of Nature: For any hypothesis test, we can make one of two mistakes:

• Type I Error: Rejecting H0 when H0 is true

• Type II Error: Not rejecting H0 when Ha is true.

Therefore, for any test we perform, there are four possible scenarios. These are summarized
in the following table:

Decision
Reject H0 Do not reject H0

Truth
H0 Type I Error OK
Ha OK Type II Error

Remark: Because H0 and Ha are written in terms of θ (an unknown population-level
parameter), we never get to know for sure which hypothesis is correct. Therefore, the best
we can do is to select rejection regions (and sample sizes) that guard against making these
errors. In addition, this is why we use language like “Reject H0” and “Do not reject H0,”
because we are simply gauging how much evidence we have against H0. Using the language
“Accept H0” is typically frowned against because this suggests we have accepted H0 as being
true. In reality, it may or may not be.

Terminology: The probability of Type I Error is denoted by α. It is the probability we
reject H0 when H0 is true; i.e.,

α = P (Type I Error) = PH0(RR) = P (Reject H0|H0 true).

This is also called the significance level (or level) of the test. The probability of Type II
Error is denoted by β. It is the probability of not rejecting H0 when Ha is true; i.e.,

β = P (Type II Error) = PHa(RR) = P (Do not reject H0|Ha true).

Remarks: The definition for α above is straightforward when H0 specifies a single value for
θ; e.g., H0 : θ = 50. This is an example of a simple (or sharp) null hypothesis. However,
what if in Example 10.1 we chose to write

H0 : θ ≤ 50
versus

Ha : θ > 50

instead? In this test, H0 is an example of a composite hypothesis because there is more than
one value of θ that makes H0 true. We will learn later how to redefine α = P (Type I Error)
in this situation (i.e., for a composite H0). It should be clear that β = P (Type II Error) will
be different for different values of θ which satisfy Ha. We have already seen this in Example
10.1 (see the table on the last page).
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Example 10.2. Suppose Y1, Y2, ..., Y15 is an iid sample from an exponential(θ) population,
where θ > 0 is unknown. We are interested in testing

H0 : θ = 10
versus

Ha : θ < 10.

We will use the test statistic T = T (Y1, Y2, ..., Y15) =
∑15

i=1 Yi and a rejection region of the
form

RR =

{
t =

15∑
i=1

yi < k

}
.

(a) Find the constant k which ensures α = 0.05.
(b) For the value of k in part (a), calculate β when θ = 5.

Solution. In part (a), we want to determine k so that

0.05 = PH0(RR) = PH0 (T < k) .

What is the sampling distribution of T =
∑15

i=1 Yi? Recall

Y1, Y2, ..., Yn ∼ iid exponential(θ) =⇒ T =
n∑
i=1

Yi ∼ gamma(n, θ).

Therefore, T =
∑15

i=1 Yi
H0∼ gamma(15, 10), and thus

0.05 = PH0 (T < k) =⇒ k ≈ 92.5;

i.e., k is the 0.05 quantile (5th percentile) of a gamma distribution with shape 15 and scale
10; see Figure 10.3 (left, next page).

> qgamma(0.05,15,1/10)

[1] 92.4633

In part (b), we now calculate

β = P (Type II Error) = P (Do not reject H0|θ = 5) = P (T > k|θ = 5) ,

where k ≈ 92.5. When θ = 5, the test statistic T =
∑15

i=1 Yi ∼ gamma(15, 5). Therefore,

β = P (T > k|θ = 5) ≈ 0.178.

> k = qgamma(0.05,15,1/10) # critical value

> 1-pgamma(k,15,1/5)

[1] 0.1775725

PAGE 7
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Figure 10.3: Example 10.2. Left: Sampling distribution of T =
∑15

i=1 Yi when H0 is true.
The rejection region RR = {t =

∑15
i=1 yi < k} is shown shaded. Right: Sampling distribution

of T =
∑15

i=1 Yi when θ = 5; i.e., when Ha is true. The probability of Type II Error (when
θ = 5) is shown shaded.

Discussion: This example shows while the probability of Type I Error α may be “accept-
able,” the probability of Type II Error β may be “unacceptable.” How can we remedy this?
In practice, attaining acceptable values for α and β simultaneously is a balancing act.

• The reason for the “balancing act” is that α and β are inversely related; i.e., as one
increases, the other decreases (other things being equal).

• A common approach in hypothesis testing is to first select a value of α which is “ac-
ceptable” (e.g., α = 0.05, etc.). Then, use a sufficiently large sample size n to attain a
desired target probability for β. We will see examples of this later. �

Exercise: Redo Example 10.2 using (a) α = 0.01 and n = 15 (β will increase) and (b)
α = 0.05 and n = 30 (β will decrease).

Example 10.3. Suppose Y1, Y2, ..., Yn is an iid sample from a Poisson(θ) population, where
θ > 0 is unknown. In STAT 512 (Example 9.4, pp 118), we used a Poisson distribution to
model the number of accidents per year for a sample of n = 84 policies. Suppose we want
to test

H0 : θ = 1
versus

Ha : θ > 1.

PAGE 8
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We will use the test statistic T = T (Y1, Y2, ..., Y84) =
∑84

i=1 Yi and a rejection region of the
form

RR =

{
t =

84∑
i=1

yi ≥ k

}
.

Find the constant k which ensures α = 0.01.

Solution. We want to determine k so that

0.01 = PH0(RR) = PH0 (T ≥ k) .

What is the (sampling) distribution of T =
∑84

i=1 Yi? Recall

Y1, Y2, ..., Yn ∼ iid Poisson(θ) =⇒ T =
n∑
i=1

Yi ∼ Poisson(nθ).

Therefore, T =
∑84

i=1 Yi
H0∼ Poisson(84), and thus

0.01 = PH0 (T ≥ k) =⇒ k = 106;

i.e., k is the 0.99 quantile (99th percentile) of a Poisson distribution with mean 84; see Figure
10.4 (next page).

> qpois(0.99,84)

[1] 106

Observation: Using k = 106 does not provide a Type I Error probability of exactly
α = 0.01; note that

PH0 (T ≥ 106) ≈ 0.0115

PH0 (T ≥ 107) ≈ 0.0088.

Of course, the reason this happens is because the sampling distribution of T =
∑84

i=1 Yi
is discrete. Therefore, if we use k = 106 as a critical value, then our significance level is
α ≈ 0.0115. If we use k = 107, then α ≈ 0.0088.

Q: What should we do?
A: There is no “right” answer, but we can think about different options.

• Using k = 107 would confer a slightly smaller Type I Error probability (more conserva-
tive), while using k = 106 would confer a slightly larger one (more anti-conservative).
An analyst can make his/her decision between these two options in the light of how
serious a Type I Error is.

• An alternative solution would be to create a randomized test. In discrete data
problems (like the Poisson), these tests can be used to “hit” α = 0.01 exactly. In this
example, a randomized test would be performed as follows:

PAGE 9
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Figure 10.4: Example 10.3. Sampling distribution of T =
∑84

i=1 Yi when H0 is true. The
rejection region RR = {t =

∑84
i=1 yi ≥ 106} is shown shaded.

– If t ≤ 105, then do not reject H0.

– If t ≥ 107, then reject H0.

– If t = 106, then we reject H0 with probability p (see description below).

Description: Suppose U has a Bernoulli distribution with probability of success

p = P (U = 1) ≈ 0.01− 0.0088

0.0115− 0.0088
≈ 0.44

and suppose U is obtained independently of the sample Y1, Y2, ..., Y84. In this instance, the
probability of Type I Error is

α = PH0 (T ≥ 107) + PH0 ({T = 106} ∩ {U = 1})

= 0.0088 + (0.0115− 0.0088)

(
0.01− 0.0088

0.0115− 0.0088

)
= 0.01.

The last step is true because U is independent of the sample and hence U ⊥⊥ T .
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Remark: Using randomization in this way provides a beautiful mathematical solution when
the test statistic T is discrete (to guarantee an exact level α test). Unfortunately, the problem
with randomized tests is that no one actually uses them. The notion of potentially basing
one’s entire decision on a coin flip (with probability p) is just too unpalatable.

Analysis: The observed data for the number of accidents (in tabular form) are given below:

Number of accidents Number of policies
0 32
1 26
2 12
3 7
4 4
5 2
6 1

For these data, the value of the test statistic is

t =
84∑
i=1

yi = 103.

Therefore, we would not reject H0 : θ = 1 at the α ≈ 0.0115 level. �

Q: Can we avoid the discreteness issue in Example 10.3 by using the CLT for T =
∑84

i=1 Yi?
A: Yes, but the CLT only offers an approximation to the true sampling distribution of T .
From STAT 512 (Chapter 7), we know

T =
84∑
i=1

Yi ∼ AN (84θ, 84θ) =⇒ Z =
T − 84√

84

H0∼ AN (0, 1).

Therefore, to perform an approximate level α test for

H0 : θ = 1
versus

Ha : θ > 1,

one could simply reject H0 by using

RR = {z > zα},

where zα is the upper α quantile of a N (0, 1) distribution; see Figure 10.5 (next page).
This is a large-sample hypothesis test because one is using a rejection region from a
large-sample (or asymptotic) sampling distribution result (the CLT). Because the reference
distribution (i.e., standard normal) is continuous, randomization is not needed. However,
using RR = {z > zα} does not provide an exact level α test; it is only an approximation.

PAGE 11
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1 − α

α

Figure 10.5: N (0, 1) pdf. The upper α quantile zα is shown by using a dark circle.

Example 10.4. Suppose Y1, Y2, ..., Yn is an iid sample from a Rayleigh(θ) population dis-
tribution, where θ > 0 is unknown. Recall the Rayleigh pdf is given by

fY (y|θ) =


2y

θ
e−y

2/θ, y > 0

0, otherwise.

Suppose we want to test

H0 : θ = θ0

versus
Ha : θ 6= θ0,

where θ0 is a specified value (e.g., θ0 = 20, etc.). We will use the test statistic T =
T (Y1, Y2, ..., Yn) =

∑n
i=1 Y

2
i and a rejection region of the form

RR = {t < k1 or t > k2} ,

where t =
∑n

i=1 y
2
i and k2 > k1. Determine values of k1 and k2 to ensure a level α test.

Solution: First of all, it is important to note that this is an example of a two-sided test.
This alternative hypothesis does not specify a specific direction of departure from θ0 (e.g.,
greater than or less than). Therefore, it makes sense that we will reject H0 when T is too

PAGE 12
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large or too small. In addition, we have not provided numerical values for α, n, and θ0 in
this example, so our answers for k1 and k2 will depend on them. We begin by recalling

Y ∼ Rayleigh(θ) =⇒ Y 2 ∼ exponential(θ).

Therefore,

Y 2
1 , Y

2
2 , ..., Y

2
n ∼ iid exponential(θ) =⇒ T =

n∑
i=1

Y 2
i ∼ gamma(n, θ) =⇒ 2T

θ
∼ χ2(2n).

We want the probability of Type I Error to equal α. This means

α = P (Type I Error) = PH0(RR) = PH0({T < k1} ∪ {T > k2})
= PH0(T < k1) + PH0(T > k2)

= PH0

(
2T

θ0

<
2k1

θ0

)
︸ ︷︷ ︸

set
= α/2

+PH0

(
2T

θ0

>
2k2

θ0

)
︸ ︷︷ ︸

set
= α/2

.

We know 2T/θ0
H0∼ χ2(2n). Therefore, we can choose

2k1

θ0

= χ2
2n,1−α/2 =⇒ k1 =

θ0χ
2
2n,1−α/2

2

2k2

θ0

= χ2
2n,α/2 =⇒ k2 =

θ0χ
2
2n,α/2

2
,

where

χ2
2n,1−α/2 = lower α/2 quantile of χ2(2n)

χ2
2n,α/2 = upper α/2 quantile of χ2(2n);

see Figure 10.6 (next page). Therefore, a level α rejection region is

RR =

{
t <

θ0χ
2
2n,1−α/2

2
or t >

θ0χ
2
2n,α/2

2

}
,

where t =
∑n

i=1 y
2
i .

Analysis: In STAT 512 (Example 9.5, pp 120), we used a Rayleigh distribution to model
the time to failure for a sample of n = 30 light bulb filaments under “intense use” conditions.
Here are the lifetimes:

4.43 5.93 3.74 5.82 5.90 2.90 2.64 6.49 5.31 8.49
1.01 1.07 1.41 3.42 1.22 4.01 0.57 1.47 2.81 8.52
0.52 4.77 0.85 2.21 6.85 3.43 1.87 5.15 2.02 10.58
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1 − α

α 2 α 2

Figure 10.6: χ2(2n) pdf. The lower α/2 quantile χ2
2n,1−α/2 and the upper α/2 quantile χ2

2n,α/2

are shown by using dark circles.

Suppose we want to test

H0 : θ = 20
versus

Ha : θ 6= 20

using α = 0.10. With n = 30 and θ0 = 20, we have

k1 =
20(43.2)

2
≈ 431.9

k2 =
20(79.1)

2
≈ 790.8.

Therefore, a level α = 0.10 rejection region is

RR = {t < 431.9 or t > 790.8} .

The observed test statistic is t =
∑30

i=1 y
2
i = 645.0, so we would not reject H0 : θ = 20 at the

α = 0.10 level. �

> qchisq(0.05,60)

[1] 43.18796

> qchisq(0.95,60)

[1] 79.08194
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Example 10.5. Suppose we have two independent random samples:

• X1, X2, ..., Xn is an iid sample from a N (0, σ2
X) population distribution

• Y1, Y2, ..., Ym is an iid sample from a N (0, σ2
Y ) population distribution.

The goal is to formulate a test for the equality of variances; i.e.,

H0 : σ2
X = σ2

Y

versus
Ha : σ2

X 6= σ2
Y .

Create a test statistic that (under H0) has a known sampling distribution and specify a level
α rejection region.

Solution. We start with what we know from STAT 512:

X ∼ N (0, σ2
X) =⇒ X

σX
∼ N (0, 1) =⇒ X2

σ2
X

∼ χ2(1) =⇒ 1

σ2
X

n∑
i=1

X2
i ∼ χ2(n).

Similarly,
1

σ2
Y

m∑
i=1

Y 2
i ∼ χ2(m).

Because the two samples are independent, the statistics
∑n

i=1X
2
i and

∑m
i=1 Y

2
i are also

independent; hence, ∑n
i=1X

2
i

σ2
X

/
n∑m

i=1 Y
2
i

σ2
Y

/
m

∼ F (n,m).

When H0 : σ2
X = σ2

Y is true, we have

T =

1

n

n∑
i=1

X2
i

1

m

n∑
i=1

Y 2
i

H0∼ F (n,m).

Therefore, we can use T (the ratio of the second sample moments) as a test statistic to test
H0 versus Ha. Define

Fn,m,1−α/2 = lower α/2 quantile of F (n,m)

Fn,m,α/2 = upper α/2 quantile of F (n,m)

and refer to Figure 10.7 (next page). A level α rejection region is

RR =
{
t < Fn,m,1−α/2 or t > Fn,m,α/2

}
,

where t = 1
n

∑n
i=1 x

2
i /

1
m

∑m
i=1 y

2
i .
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1 − α

α 2 α 2

Figure 10.7: F (n,m) pdf. The lower α/2 quantile Fn,m,1−α/2 and the upper α/2 quantile
Fn,m,α/2 are shown by using dark circles.

Application: A study was performed to compare the serum alkaline phosphatase (ALP)
levels in children with seizures who received anticonvulsant therapy (ACT) to the levels in
a control group of children who did not receive ACT and had no history of having seizures.
Investigators were interested in how the variation of the ALP levels compare for the two
groups. We regard the (centered) ALP levels to be normally distributed with zero mean
and variances σ2

X (control group, n = 20) and σ2
Y (treatment group, m = 25). Side-by-side

boxplots of the centered data are shown in Figure 10.8 (next page). With n = 20 and
m = 25, a level α = 0.05 rejection region is

RR = {t < 0.42 or t > 2.30} .

The value of the test statistic is

t =
1
20

∑20
i=1 x

2
i

1
25

∑25
i=1 y

2
i

≈ 629.92

1392.65
≈ 0.45.

Therefore, we would not reject H0 : σ2
X = σ2

Y at the α = 0.05 level. �

> qf(0.025,20,25)

[1] 0.4173726

> qf(0.975,20,25)

[1] 2.300455
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Figure 10.8: Seizure data. ALP levels for control (n = 20) and treatment (m = 25) groups.

Example 10.6. Suppose Y1, Y2, ..., Yn is an iid sample from a U(0, θ) population distribution,
where θ > 0 is unknown. We are interested in testing

H0 : θ = 1
versus

Ha : θ > 1.

We will use the test statistic T = T (Y1, Y2, ..., Yn) = Y(n), the maximum order statistic, and
a rejection region of the form

RR =
{
t = y(n) > k

}
.

(a) Find the constant k which ensures α = 0.05.
(b) For the value of k in part (a), determine the smallest sample size n to ensure the
probability of Type II Error β ≤ 0.10 when θ = 1.25.

Solution. Recall the U(0, θ) pdf and cdf are

fY (y) =


1

θ
, 0 < y < θ

0, otherwise
and FY (y) =


0, y ≤ 0
y

θ
, 0 < y < θ

1, y ≥ θ,
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Figure 10.9: Example 10.6. Left: Sampling distribution of T = Y(n) when H0 is true. The
rejection region RR =

{
t = y(n) > k

}
is shown shaded. Right: Sampling distribution of

T = Y(n) when n = 11 and θ = 1.25; i.e., when Ha is true. The probability of Type II Error
(shaded) satisfies β ≤ 0.10.

respectively. The sampling distribution of the maximum order statistic T = Y(n) is

fY(n)(y) = nfY (y)[FY (y)]n−1 =


nyn−1

θn
, 0 < y < θ

0, otherwise.

In part (a), we want to determine k so that

0.05 = PH0(RR) = PH0

(
Y(n) > k

)
=

∫ 1

k

nyn−1dy = yn
∣∣∣1
y=k

= 1− kn =⇒ k = 0.951/n;

see Figure 10.9 (above, left). In part (b), we want to find the value of n which solves

0.10 = P (Type II Error) = P (Do not reject H0|θ = 1.25)

= P
(
Y(n) < 0.951/n|θ = 1.25

)
=

∫ 0.951/n

0

nyn−1

(1.25)n
dy =

1

(1.25)n
yn
∣∣∣0.951/n

0
=

0.95

(1.25)n
.

Solving this equation for n, we have

(1.25)n = 9.5 =⇒ n ln(1.25) = ln(9.5) =⇒ n =
ln(9.5)

ln(1.25)
≈ 10.08.

Because (0.95)/(1.25)n is monotone decreasing in n, the solution n = 11 is the smallest
sample size that guarantees β ≤ 0.10 when θ = 1.25; see Figure 10.9 (above, right). �
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10.3 Common large-sample hypothesis tests

Note: We revisit the four settings described in Section 8.3 (STAT 512); i.e., inference for
population means and population proportions for one and two populations. Our goal now is
to formulate large-sample hypothesis tests for each population parameter:

µ ←− population mean

p ←− population proportion

µ1 − µ2 ←− difference of two population means (independent samples)

p1 − p2 ←− difference of two population proportions (independent samples).

In each setting (see Section 8.3), we presented an unbiased estimator θ̂ that satisfied θ̂ ∼
AN (θ, σ2

θ̂
) for large sample sizes; this was conferred by the CLT. These estimators and their

standard errors are summarized below:

Parameter θ Estimator θ̂ Standard error σθ̂ Estimated standard error σ̂θ̂

µ Y
σ√
n

S√
n

p p̂

√
p(1− p)

n

√
p̂(1− p̂)

n

µ1 − µ2 Y 1+ − Y 2+

√
σ2

1

n1

+
σ2

2

n2

√
S2

1

n1

+
S2

2

n2

p1 − p2 p̂1 − p̂2

√
p1(1− p1)

n1

+
p2(1− p2)

n2

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

10.3.1 Theoretical development

Derivation: Suppose the goal is to perform a level α test for

H0 : θ = θ0

versus
Ha : θ 6= θ0.

We know

θ̂ ∼ AN (θ, σ2
θ̂
) =⇒ Z =

θ̂ − θ0

σθ̂

H0∼ AN (0, 1),

when the sample size(s) is (are) large. The last statement regarding Z can be written more
mathematically; i.e., when H0 : θ = θ0 is true,

Z =
θ̂ − θ0

σθ̂

d−→ N (0, 1), as n→∞ (or as min{n1, n2} → ∞).
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1 − α

α 2 α 2

Figure 10.10: N (0, 1) pdf. The lower α/2 quantile −zα/2 and the upper α/2 quantile zα/2
are shown by using dark circles.

With this convergence result, one might hope to use Z as a large-sample test statistic to
test H0 versus Ha. The problem is that the standard error σθ̂ in all four scenarios depends
on unknown population-level parameters (e.g., σ2, p, etc.). Thus, we cannot use Z as a test
statistic because it isn’t even a statistic. The “work-around” involves noting that

σθ̂
σ̂θ̂

p−→ 1, as n→∞ (or as min{n1, n2} → ∞).

This is true in each scenario because θ̂
p−→ θ by the WLLN and the ratio σθ̂/σ̂θ̂ is a continuous

function. Therefore, when H0 : θ = θ0 is true,

Z∗ =
θ̂ − θ0

σ̂θ̂
=

θ̂ − θ0

σθ̂︸ ︷︷ ︸
d−→N (0,1)

×
(
σθ̂
σ̂θ̂

)
︸ ︷︷ ︸

p−→1

d−→ N (0, 1),

by Slutsky’s Theorem. An approximate level α test uses Z∗ as a test statistic with rejection
region

RR = {z∗ < −zα/2 or z∗ > zα/2} = {|z∗| > zα/2},
where

−zα/2 = lower α/2 quantile of N (0, 1)

zα/2 = upper α/2 quantile of N (0, 1);

see Figure 10.10 (above).
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1 − α

α

1 − α

α

Figure 10.11: N (0, 1) pdf. Left: The upper α quantile zα is shown by using a dark circle.
Right: The lower α quantile −zα is shown by using a dark circle.

One-sided tests: The previous derivation assumes a two-sided Ha : θ 6= θ0. Making
adjustments for one-sided alternatives is easy. If we test H0 : θ = θ0 versus Ha : θ > θ0, the
rejection region is

RR = {z∗ > zα}.
If we test H0 : θ = θ0 versus Ha : θ < θ0, the rejection region is

RR = {z∗ < −zα};

see Figure 10.11 (above). Both of these (one-sided) rejection regions satisfy α ≈ PH0(RR).

10.3.2 Relationship with (large-sample) interval estimators

Interesting: By now, you are probably realizing that performing a level α hypothesis test
and writing a 1− α interval estimator are similar procedures. We have shown

Z∗ =
θ̂ − θ0

σ̂θ̂

H0∼ AN (0, 1),

when the sample size(s) is (are) large; i.e., Z∗ is a large-sample pivotal quantity. This means
we can write

1− α ≈ PH0(−zα/2 < Z∗ < zα/2) = PH0

(
−zα/2 <

θ̂ − θ0

σ̂θ̂
< zα/2

)
= PH0

(
θ̂ − zα/2σ̂θ̂ < θ0 < θ̂ + zα/2σ̂θ̂

)
.

PAGE 21



STAT 513: CHAPTER 10 JOSHUA M. TEBBS

Of course, we recognize (
θ̂ − zα/2σ̂θ̂, θ̂ + zα/2σ̂θ̂

)
as an approximate 1−α interval estimator for θ. But, when H0 is true, what does the event

{−zα/2 < Z∗ < zα/2}

represent? It is the complement of the rejection region (i.e., the “acceptance region”) for a
two-sided test of H0 : θ = θ0 versus Ha : θ 6= θ0. Therefore, we have discovered the following
equivalence:

θ0 resides in the 1− α interval estimator ⇐⇒ H0 : θ = θ0 is not rejected at level α.

A similar equivalence exists for one-sided tests and one-sided interval estimators.

Discussion: Given the equivalence above, this prompts the obvious question: Do we really
need hypothesis tests? After all, we can perform the test by writing an interval estimator for
θ and then noting where θ0 falls. In addition, interval estimators give us more information
than simply saying “Reject H0” or “Do not reject H0.” In many instances, writing interval
estimators is the preferred method of statistical inference. However, the notion of testing
extends far beyond the (relatively simple) problems we consider in this chapter. For example,
a hypothesis test might be used to determine if two categorical variables are independent,
if errors in a linear regression model follow a normal distribution, or if two distributions are
(stochastically) ordered in some way. In these and other scenarios, there may not even be a
single population-level parameter that describes the hypothesis under consideration.

10.3.3 Sample size determination

Setting: In the large-sample scenarios considered in this section, suppose we would test

H0 : θ = θ0

versus
Ha : θ > θ0

using a rejection region of the form

RR = {θ̂ > k},

where k is chosen to ensure the test is (approximately) level α; i.e., α ≈ PH0(θ̂ > k). Our
goal is to determine the sample size n that confers a Type II Error probability equal to β
for a pre-specified value θa > θ0, that is,

θa = θ0 + ∆,

where ∆ > 0 is the practically important difference we wish to detect. The Type I
Error probability request implies

α ≈ PH0(θ̂ > k) = PH0

(
Z >

k − θ0

σθ̂

)
=⇒ k − θ0

σθ̂
= zα.
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1 − α

α

θ0 k

1 − β

β

k θa

Figure 10.12: Left: Sampling distribution θ̂ ∼ AN (θ0, σ
2
θ̂
) under H0. The rejection region

RR = {θ̂ > k} (shaded) has probability α. Right: Sampling distribution θ̂ ∼ AN (θa, σ
2
θ̂
)

under Ha. The complement set RR = {θ̂ < k} (shaded) has probability β.

The Type II Error probability request implies

β ≈ PHa(θ̂ < k) = PHa

(
Z <

k − θa
σθ̂

)
=⇒ k − θa

σθ̂
= −zβ.

Our goal is to select the sample size n that satisfies both of these two equations. Note that
the standard error σθ̂ is a function of sample size, so n is “hiding” in this quantity. Figure
10.12 (above) is helpful in understanding where these equations come from.

Population mean: Suppose the goal is to test

H0 : µ = µ0

versus
Ha : µ > µ0

using a rejection region of the form

RR = {Y > k},

where Y is the sample mean. The two equations (previously derived) are

k − µ0

σ/
√
n

= zα (Type I Error requirement)

k − µa
σ/
√
n

= −zβ (Type II Error requirement).

PAGE 23



STAT 513: CHAPTER 10 JOSHUA M. TEBBS

Solving for k in each equation (and then equating the solutions), we get

zα

(
σ√
n

)
+ µ0 = −zβ

(
σ√
n

)
+ µa.

Solving the last equation for n yields

n =

[
(zα + zβ)σ

∆

]2

,

where ∆ = µa − µ0. This solution for n will ensure

• the test is approximately level α

• when µ = µa (i.e., the alternative Ha is true), we will not reject H0 with probability
approximately equal to β;

– i.e., we will reject H0 with probability approximately equal to 1− β.

Remark: For this formula to be useful, we must elicit a value for the population variance
σ2 (in this instance, a “nuisance parameter”). In practice, this value can be chosen by using
related studies, preliminary data, or expert opinion. In the absence of available information,
one could use a conservative upper bound for σ2 (this will make the sample size n larger).

Example 10.7. A researcher who specializes in childhood obesity is examining school-
provided lunches at public elementary schools in Augusta, GA. In this population, suppose
she wants to test

H0 : µ = 30
versus

Ha : µ > 30,

where µ is the population mean BMI. She wants to perform a level α = 0.05 test. In addition,
if the population mean BMI is 32, she would like to reject H0 with probability at least 0.80.
How many children should she sample to perform the test with these requirements? The
population standard deviation σ is assumed to be approximately 7.5.

Solution. The probability of Type I Error is α = 0.05. The probability of Type II Error (when
µa = 32) is β = 0.20. The corresponding standard normal quantiles are z0.05 ≈ 1.65 and
z0.20 ≈ 0.84, respectively. The practically important difference is ∆ = µa−µ0 = 32−30 = 2.
We have

n =

[
(zα + zβ)σ

∆

]2

≈
[

(1.65 + 0.84)(7.5)

2

]2

≈ 87.19.

Therefore, she would have to sample n = 88 students.

> qnorm(0.95,0,1)

[1] 1.644854

> qnorm(0.80,0,1)

[1] 0.8416212
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Q: How would the sample size change if she required β = 0.01 instead? That is, if µa = 32,
then she would like to reject H0 with probability 1− β = 0.99.
A: Now, she would use zβ = z0.01 ≈ 2.33 to reflect the change in the Type II Error probability
requirement. We have

n =

[
(zα + zβ)σ

∆

]2

≈
[

(1.65 + 2.33)(7.5)

2

]2

≈ 222.76.

She would have to sample n = 223 students. �

> qnorm(0.99,0,1)

[1] 2.326348

Population proportion: Suppose the goal is to test

H0 : p = p0

versus
Ha : p > p0

using a rejection region of the form

RR = {p̂ > k},

where p̂ is the sample proportion. The two equations (previously derived) are

k − p0√
p0(1− p0)

n

= zα (Type I Error requirement)

k − pa√
pa(1− pa)

n

= −zβ (Type II Error requirement).

The value of n that satisfies both equations is

n =

[
zα
√
p0(1− p0) + zβ

√
pa(1− pa)

∆

]2

,

where ∆ = pa − p0. This solution for n will ensure

• the test is approximately level α

• when p = pa (i.e., the alternative Ha is true), we will not reject H0 with probability
approximately equal to β;

– i.e., we will reject H0 with probability approximately equal to 1− β.
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Example 10.8. A Phase II clinical trial evaluating the effects of a new drug for metastatic
prostate cancer shows positive results, so investigators would like to plan a larger Phase III
trial. The goal is to test

H0 : p = 0.35
versus

Ha : p > 0.35,

where p is the (population-level) probability of response among all eligible patients. The
protocol calls for a level α = 0.05 test. In addition, if the probability of response is pa = 0.40,
the investigators would like to reject H0 with probability 0.80. How many patients should
be recruited for the Phase III trial?

Solution. We have α = 0.05 and β = 0.20. From Example 10.7, we know to use zα =
z0.05 ≈ 1.65 and zβ = z0.20 ≈ 0.84. The practically important difference is ∆ = pa − p0 =
0.40− 0.35 = 0.05. We have

n =

[
zα
√
p0(1− p0) + zβ

√
pa(1− pa)

∆

]2

≈

[
1.65

√
0.35(0.65) + 0.84

√
0.40(0.60)

0.05

]2

≈ 574.57.

Therefore, the Phase III trial will require 575 patients. �

10.4 Hypothesis tests arising from normal populations

Preview: We now derive hypothesis tests for means and variances when the population
distribution is N (µ, σ2). We consider one and two populations. Given the duality between
hypothesis tests and interval estimators, one should compare this section with Section 8.7
(notes) in STAT 512. All hypothesis tests in this section are exact; i.e., we are not appealing
to large-sample arguments like we did in the last section. Rejection regions come from the
t, χ2, and F distributions, and they have Type I Error probability equal to α exactly.

Remark: Test statistics for all scenarios considered this section are given without proof.
This is because we have derived all relevant sampling distributions in STAT 512 (see Chapters
7-8). All tests presented will assume a two-sided alternative (so that the rejection region is
two-sided). Rejection regions for one-sided alternatives are formed in the obvious way.

10.4.1 Population mean µ

Setting: Suppose Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2) population distribution,
where both µ and σ2 are unknown. The goal is to construct a level α test for

H0 : µ = µ0

versus
Ha : µ 6= µ0.
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1 − α

α 2 α 2

Figure 10.13: t(n − 1) pdf. The lower α/2 quantile −tn−1,α/2 and the upper α/2 quantile
tn−1,α/2 are shown by using dark circles.

When H0 is true, we know

T =
Y − µ0

S/
√
n
∼ t(n− 1).

Therefore, a level α test uses the rejection region

RR = {t < −tn−1,α/2 or t > tn−1,α/2} = {|t| > tn−1,α/2},

where

−tn−1,α/2 = lower α/2 quantile of t(n− 1)

tn−1,α/2 = upper α/2 quantile of t(n− 1);

see Figure 10.13 (above). This inference procedure is called a one-sample t test.

10.4.2 Population variance σ2

Setting: Suppose Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2) population distribution,
where both µ and σ2 are unknown. The goal is to construct a level α test for

H0 : σ2 = σ2
0

versus
Ha : σ2 6= σ2

0.
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1 − α

α 2 α 2

Figure 10.14: χ2(n− 1) pdf. The lower α/2 quantile χ2
n−1,1−α/2 and the upper α/2 quantile

χ2
n−1,α/2 are shown by using dark circles.

When H0 is true, we know

T =
(n− 1)S2

σ2
0

∼ χ2(n− 1).

Therefore, a level α test uses the rejection region

RR = {t < χ2
n−1,1−α/2 or t > χ2

n−1,α/2},

where

χ2
n−1,1−α/2 = lower α/2 quantile of χ2(n− 1)

χ2
n−1,α/2 = upper α/2 quantile of χ2(n− 1);

see Figure 10.14 (above).

10.4.3 Difference of two population means µ1 − µ2 (independent samples)

Setting: Suppose we have two independent random samples:

• Y11, Y12, ..., Y1n1 is an iid sample from a N (µ1, σ
2
1) population distribution

• Y21, Y22, ..., Y2n2 is an iid sample from a N (µ2, σ
2
2) population distribution,
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where all population parameters are unknown. The goal is to construct a level α test for

H0 : µ1 − µ2 = d0

versus
Ha : µ1 − µ2 6= d0,

where d0 is a pre-specified difference of the population means. In practice, one often takes
d0 = 0 because the goal is to test whether or not the population means are equal. This
inference procedure is called a two-sample t test.

Case 1: σ2
1 = σ2

2 = σ2; i.e., the population variances are equal. When H0 is true, we know

T =
(Y 1+ − Y 2+)− d0

Sp

√
1

n1

+
1

n2

∼ t(n1 + n2 − 2)

where

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

is the pooled sample variance estimator. Therefore, a level α test uses the rejection region

RR = {t < −tn1+n2−2,α/2 or t > tn1+n2−2,α/2} = {|t| > tn1+n2−2,α/2}.

Case 2: σ2
1 6= σ2

2; i.e., the population variances are unequal. Under this assumption, we
have few options. The reason is that there is no test statistic available for which the exact
sampling distribution is known under H0. When H0 is true, it can be shown that

T =
(Y 1+ − Y 2+)− d0√

S2
1

n1

+
S2

2

n2

follows an approximate t(ν) distribution, where

ν =

(
S2

1

n1

+
S2

2

n2

)2

S4
1

n2
1(n1 − 1)

+
S4

2

n2
2(n2 − 1)

.

Therefore, an approximate level α test uses the same RR above with the degrees of freedom
n1 + n2 − 2 replaced by ν.

Note: This equation for ν above, which is commonly referred to as Satterthwaite’s for-
mula, is obtained by using a MOM argument to estimate degrees of freedom for general
linear combinations of χ2 random variables. Under equal variances, recall that

(n1 + n2 − 2)S2
p

σ2
=

(n1 − 1)S2
1

σ2
+

(n2 − 1)S2
2

σ2
∼ χ2(n1 + n2 − 2);
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i.e., this specific linear combination of S2
1 and S2

2 follows a χ2 distribution exactly and the
common population variance σ2 “cancels out” when the two-sample t statistic is formed.
When the population variances are unequal (σ2

1 6= σ2
2), the best we can do is work with

S2
1

n1

+
S2

2

n2

.

This quantity does not have a χ2 distribution. However, it can be regarded as a linear
combination, which, in distribution, is of the form a1χ

2(ν1) + a2χ
2(ν2), where a1 and a2 are

constants (depending on sample sizes and population variances). A rigorous derivation of
Satterthwaite’s formula is challenging, but this is the central issue.

10.4.4 Equality of two population variances (independent samples)

Setting: Suppose we have two independent random samples:

• Y11, Y12, ..., Y1n1 is an iid sample from a N (µ1, σ
2
1) population distribution

• Y21, Y22, ..., Y2n2 is an iid sample from a N (µ2, σ
2
2) population distribution,

where all population parameters are unknown. The goal is to construct a level α test for

H0 : σ2
1 = σ2

2

versus
Ha : σ2

1 6= σ2
2.

From STAT 512, we know

(n1 − 1)S2
1

σ2
1

/
(n1 − 1)

(n2 − 1)S2
2

σ2
2

/
(n2 − 1)

=

(
S2

1

S2
2

)
σ2

2

σ2
1

∼ F (n1 − 1, n2 − 1).

Note that when H0 is true, the test statistic

T =
S2

1

S2
2

∼ F (n1 − 1, n2 − 1).

Therefore, a level α test uses the rejection region

RR = {t < Fn1−1,n2−1,1−α/2 or t > Fn1−1,n2−1,α/2},

where

Fn1−1,n2−1,1−α/2 = lower α/2 quantile of F (n1 − 1, n2 − 1)

Fn1−1,n2−1,α/2 = upper α/2 quantile of F (n1 − 1, n2 − 1)

see Figure 10.15 (next page).
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1 − α

α 2 α 2

Figure 10.15: F (n1 − 1, n2 − 1) pdf. The lower α/2 quantile Fn1−1,n2−1,1−α/2 and the upper
α/2 quantile Fn1−1,n2−1,α/2 are shown by using dark circles.

10.5 Probability values

Example 10.9. Does exercise delay the age at menarche? A study examining the effects
of exercise on the menstrual cycle compared two groups of swimmers: females who began
training prior to menarche (the beginning of menstruation) and females who began training
after they had reached menarche. Two independent random samples of swimmers were
obtained. Our goal is to test

H0 : µ1 − µ2 = 0
versus

Ha : µ1 − µ2 > 0,

where µ1 is the population mean age at menarche for those who began training before they
had reached menarche and µ2 is the population mean age at menarche for those who began
training after. Side-by-side boxplots of the data are shown in Figure 10.16 (next page, left).

Analysis: I used the t.test function in R to perform a two-sample t test while assuming
normality for both populations and equal population variances (see Section 10.4.3, notes).
Here is the output:

> t.test(pre_men,post_men,conf.level=0.95,var.equal=TRUE,alternative="greater")

t = 7.0583, df = 150, p-value = 2.914e-11

PAGE 31



STAT 513: CHAPTER 10 JOSHUA M. TEBBS

Pre−menarche Post−menarche

12
13

14
15

16
17

18

A
ge

 a
t m

en
ar

ch
e 

(in
 y

ea
rs

)

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 10.16: Swimmer data. Left: Age at menarche for two groups: training before menar-
che (n1 = 96) and training after menarche (n2 = 56). Right: t(150) pdf; the test statistic
t ≈ 7.06 is shown by using a dark circle.

The value of the test statistic is t = 7.0583, which is so far out in the tail of the t(150)
reference distribution that H0 would be rejected at any reasonable level. The probability
value

p-value = 2.491× 10−11

is the area to the right of t = 7.0583 under the t(150) pdf. Note that if H0 was true, then
the test statistic t would be regarded as a realization from this pdf. The very small p-value
suggests that indeed this is highly unlikely. �

Terminology: The probability value (p-value) is the smallest significance level α for
which H0 would be rejected. Therefore,

• if p-value ≤ α, then we reject H0

• if p-value > α, then we do not reject H0.

Remarks: The p-value is one of the most fundamentally misunderstood statistics in all of
statistics. The reason for this is that applied researchers are generally not quite sure what
it means.

• Because a p-value is always calculated assuming H0 is true, it is tempting to say that
it is “the probability H0 is true.” Unfortunately, this is not correct. In Example 10.9,
this interpretation would literally mean

P (µ1 − µ2 > 0),
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which does not even make sense mathematically because µ1 and µ2 are fixed (i.e., they
are not random).

• Other texts might use the mysterious “more extreme” analogy in an attempt to inter-
pret the p-value, that is,

“A p-value is the probability that if we replicated the study, we would ob-
serve a test statistic as extreme or more extreme than the one we observed,
assuming H0 was true.”

Although this interpretation is correct, it is built on the somewhat fanciful notion that
a study would ever be replicated just for the benefit of interpreting what researchers
just observed.

• I have found the easiest explanation (for non-statisticians) is that “the p-value is a
measure of evidence against H0; the smaller it is, the more evidence we have.”

Example 10.3 (continued). Suppose Y1, Y2, ..., Yn is an iid sample from a Poisson(θ) popu-
lation, where θ > 0 is unknown. Suppose we want to test

H0 : θ = 1
versus

Ha : θ > 1.

For the accident data in Example 10.3 (pp 8-11, notes), our observed test statistic based on
a sample of n = 84 policies was

t =
84∑
i=1

yi = 103.

The rejection region in Example 10.3 involved the sample sum T =
∑84

i=1 Yi and specified to
reject H0 when T was large. Using the “as/more extreme” analogy above, the p-value is

p = PH0(T ≥ 103) ≈ 0.025.

Therefore, H0 would be rejected for any significance level α ≥ 0.025. �

> 1-ppois(102,84)

[1] 0.02452888

Interesting: Suppose a hypothesis test is performed using a continuous test statistic T .
When viewed as a random variable, the p-value P is uniformly distributed over (0, 1) when
H0 is true; i.e.,

P
H0∼ U(0, 1).

This is not true when the test statistic T is discrete.

Simulation: I prove the result above in a more advanced course, but for our purposes a
simulation exercise should be sufficient to demonstrate the result. Suppose Y1, Y2, ...Y10 is an
iid sample from a N (0, 1) distribution. I used R to simulate B = 10000 such samples. For
each one, I performed a one-sample t test for
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p−value

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 10.17: Monte Carlo simulation. Histogram of B = 10000 probability values.

H0 : µ = 0
versus

Ha : µ 6= 0,

and I recorded the p-value for each test; note that H0 is true under the N (0, 1) population
model. Therefore, this simulation produced 10,000 p-values, which I plotted in a histogram;
see Figure 10.17 (above). The p-values line up with a U(0, 1) pdf almost exactly! The
discrepancies we see are attributable to the variation arising from Monte Carlo sampling.

Revelation: In the light of the previous result, it should be clear that using a p-value to
decide between H0 and Ha is equivalent to using the rejection region approach that we have
espoused all along. Suppose a level α hypothesis test uses the continuous test statistic T
with rejection region RR, that is,

α = PH0(T ∈ RR).

The p-value P calculated from the sampling distribution of T satisfies P
H0∼ U(0, 1) and

hence
α = PH0(P ≤ α).

The events {T ∈ RR} and {P ≤ α} are the same event, and hence “T ∈ RR” and “P ≤ α”
are equivalent decision rules.
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10.6 Power functions

Remark: The power function is an important part of any hypothesis test, and it emerges
as relevant in formalizing definitions of test optimality (as we will see momentarily). In
previous examples, we have become comfortable with specifying beforehand the significance
level of the test; i.e.,

α = PH0(RR) = P (Reject H0|H0 true).

Then, for a specified value of the population parameter θ which satisfies Ha, say θa ∈ Ha,
we might calculate the Type II Error probability β or possibly a sample size n necessary to
attain a targeted value of β. These types of calculations can be made by using the power
function.

Terminology: Suppose Y1, Y2, ..., Yn is an iid sample from pY (y|θ) or fY (y|θ), where the
population parameter θ is unknown. Suppose our goal is to perform a level α test of

H0 : θ = θ0

versus
Ha : θ 6= θ0,

where θ0 is a fixed value. In the following, the alternative hypothesis Ha can be one sided; in
addition, all definitions henceforth apply regardless of whether the test is “exact” or based
on large-sample arguments. The power function of the test, denoted by K(θ), is given by

K(θ) = Pθ(RR) = P (Reject H0|θ).

The power function gives the probability of rejecting H0 when viewed as a function of θ.

• It should be clear that

K(θ0) = Pθ0(RR) = Pθ0(Reject H0) = P (Reject H0|H0 true) = α.

Therefore, the point (θ0, α) is one point on the power function.

• For values of θ that are “close to” θ0, one would expect the power to be smaller than
when θ is “far away from” θ0. This makes sense intuitively. It is more difficult to
detect small departures from H0 than it is to detect large ones.

• The shape of the power function always depends on the alternative hypothesis Ha.
Figure 10.18 (next page) shows the typical shape of a power function for the two-sided
test above.

Observation: Suppose θa ∈ Ha, that is, θa is a value of θ which makes Ha true. Then

K(θa) = 1− Pθa(Type II Error).

Proof. This is a straightforward application of the complement rule; i.e.,

K(θa) = Pθa(Reject H0) = 1− Pθa(Do not reject H0) = 1− Pθa(Type II Error). �
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Figure 10.18: Power function for H0 : θ = θ0 versus Ha : θ 6= θ0. The significance level
satisfies K(θ0) = α.

Example 10.10. Suppose Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2
0) population, where

µ is unknown and σ2
0 is known. We would like to test

H0 : µ = µ0

versus
Ha : µ > µ0.

To perform the test, we will use the “one-sample z statistic”

Z∗ =
Y − µ0

σ0/
√
n

H0∼ N (0, 1)

and RR = {z∗ > zα} as a level α rejection region. Derive the power function K(µ) for this
test.

Solution. From the definition of the power function, we have

K(µ) = Pµ(RR) = Pµ(Z∗ > zα) = Pµ

(
Y − µ0

σ0/
√
n
> zα

)
= Pµ

(
Y > zα(σ0/

√
n) + µ0

)
.
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Figure 10.19: Example 10.10. Power function K(µ) for H0 : µ = 50 versus Ha : µ > 50.
Left: n = 5. Right: n ∈ {5, 15, 30}. A horizontal line at α = 0.05 has been added.

Now, simply re-standardize the random variable Y as a function of µ; i.e.,

Pµ
(
Y > zα(σ0/

√
n) + µ0

)
= P

(
Y − µ
σ0/
√
n
>
zα(σ0/

√
n) + µ0 − µ

σ0/
√
n

)
= P

(
Z >

zα(σ0/
√
n) + µ0 − µ

σ0/
√
n

)
= 1− FZ

(
zα(σ0/

√
n) + µ0 − µ

σ0/
√
n

)
,

where FZ is the N (0, 1) cdf. This cdf can be calculated in R using the pnorm function.

Discussion: First, it is of interest to note that

K(µ0) = 1− FZ
(
zα(σ0/

√
n) + µ0 − µ0

σ0/
√
n

)
= 1− FZ(zα) = 1− (1− α) = α;

i.e., the power of the test when H0 is true is the significance level. Second, it is easy to show
K(µ) is an increasing function of µ; note that

∂

∂µ
K(µ) =

∂

∂µ

[
1− FZ

(
zα(σ0/

√
n) + µ0 − µ

σ0/
√
n

)]
= −fZ

(
zα(σ0/

√
n) + µ0 − µ

σ0/
√
n

)
×
(
− 1

σ0/
√
n

)
> 0,

because fZ(·) > 0; i.e., fZ is a pdf. Figure 10.19 (above) shows examples of what K(µ) looks
like when µ0 = 50, σ2

0 = 100, and α = 0.05. �
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Figure 10.20: Example 10.11. Power function for H0 : θ = 1 versus Ha : θ > 1. A horizontal
line at α ≈ 0.0115 has been added.

Example 10.11. Suppose Y1, Y2, ..., Yn is an iid sample from a Poisson(θ) population, where
θ > 0 is unknown. In Example 10.3 (see pp 8-11, notes), we wanted to test

H0 : θ = 1
versus

Ha : θ > 1

with a random sample of n = 84 policies. An α ≈ 0.0115 rejection region was

RR =

{
t =

84∑
i=1

yi ≥ 106

}
.

Derive the power function K(θ) for this test.

Solution. Recall that T =
∑84

i=1 Yi ∼ Poisson(84θ). We have

K(θ) = Pθ(RR) = Pθ(T ≥ 106) = 1− Pθ (T ≤ 105) = 1−
105∑
t=0

(84θ)te−84θ

t!
.

The probability Pθ (T ≤ 105) can be calculated in R using the ppois function. Figure 10.20
(above) shows the graph of K(θ). Note that K(1) = α ≈ 0.0115. �
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10.7 Most powerful tests

Recall: Suppose Y1, Y2, ..., Yn is an iid sample from pY (y|θ) or fY (y|θ), where θ is an unknown
population-level parameter. In STAT 512 (Chapter 9), we posed the question,

“What is the best possible (point) estimator for θ?”

We called such an estimator θ̂ the (uniformly) minimum variance unbiased estimator (MVUE).

That is, among all unbiased estimators for θ, the MVUE θ̂ is the one with the smallest pos-
sible variance. I sometimes add the adverb “uniformly” to reinforce the notion that θ̂ is
best regardless of what the true value of θ is. We learned the critical role that sufficient
statistics play in answering this question formally.

Preview: We are now ready to embark on the same journey but for hypothesis testing
instead. That is, we would like to answer the question,

“What is the best possible hypothesis test for θ?”

Just as we did in the point estimation problem, we will first have to define what we mean
by “best.” Then, we will need the appropriate theory to help us answer the question. Not
surprisingly, sufficient statistics will again resurface when deriving best tests.

Strategy: We will attack this question in two stages. In the first stage, we will consider
“simple-versus-simple tests;” i.e., tests of the form

H0 : θ = θ0

versus
Ha : θ = θa,

where θ0 and θa are both fixed values of θ. Recall that a hypothesis is called simple (or
sharp) when it identifies exactly one probability distribution. In the second stage, we will
then generalize our simple-versus-simple approach to find best rejection regions for one-sided
tests like

H0 : θ = θ0

versus
Ha : θ > θ0

and
H0 : θ = θ0

versus
Ha : θ < θ0.

We will learn that deriving best rejection regions for two-sided tests with Ha : θ 6= θ0 is
generally not possible (unless we alter our definition of “best”).

Recall: Suppose Y1, Y2, ..., Yn is an iid sample from pY (y|θ) or fY (y|θ). The likelihood
function, which is denoted by L(θ|y) = L(θ|y1, y2, ..., yn), is determined as follows:

• In the discrete case,

L(θ|y) = pY(y|θ) = pY (y1|θ)× pY (y2|θ)× · · · × pY (yn|θ) =
n∏
i=1

pY (yi|θ).
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• In the continuous case,

L(θ|y) = fY(y|θ) = fY (y1|θ)× fY (y2|θ)× · · · × fY (yn|θ) =
n∏
i=1

fY (yi|θ).

The likelihood function plays an important role in deriving best tests, as we now see.

Neyman-Pearson Lemma: Suppose Y1, Y2, ..., Yn is an iid sample from pY (y|θ) or fY (y|θ),
where θ is an unknown population-level parameter, and consider testing

H0 : θ = θ0

versus
Ha : θ = θa.

The level α test that maximizes the power when Ha is true uses the rejection region

RR =

{
L(θ0|y)

L(θa|y)
< k

}
,

where k satisfies
α = PH0(RR) = P (Reject H0|H0 true).

The test which uses the rejection region above is called the most powerful level α test.
That is, among all level α tests for H0 versus Ha, the most powerful test maximizes the
probability of rejecting H0 when Ha is true. This is what we mean by “best.”

Example 10.12. Suppose Y is a single observation from a beta(1, θ) population distribution,
where θ > 0. Derive the most powerful level α = 0.05 test for

H0 : θ = 2
versus

Ha : θ = 4.

Solution. Recall the beta(1, θ) pdf is given by

fY (y|θ) =

{
θ(1− y)θ−1, 0 < y < 1

0, otherwise.

Therefore, because both H0 and Ha are simple hypotheses, we are really testing

H0 : Y ∼ fY (y|2) =

{
2(1− y), 0 < y < 1

0, otherwise
versus

Ha : Y ∼ fY (y|4) =

{
4(1− y)3, 0 < y < 1

0, otherwise;

see Figure 10.21 (next page). In this problem, there is only one observation; i.e., n = 1.
Therefore, the likelihood function

L(θ|y) = fY (y|θ) = θ(1− y)θ−1.
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Figure 10.21: Example 10.12. Population pdfs for H0 : θ = 2 and Ha : θ = 4.

To find the most powerful test/rejection region, we first calculate the ratio

L(θ0|y)

L(θa|y)
=
L(2|y)

L(4|y)
=

2(1− y)

4(1− y)3
=

1

2(1− y)2
.

The Neyman-Pearson Lemma says the most powerful level α = 0.05 test uses

RR =

{
L(2|y)

L(4|y)
< k

}
=

{
1

2(1− y)2
< k

}
,

where k satisfies

0.05 = PH0(RR) = PH0

(
1

2(1− Y )2
< k

)
.

On first glance, the last equation might suggest we need to find the distribution of

U = h(Y ) =
1

2(1− Y )2
, when Y ∼ beta(1, 2),

and then choose k to be the 0.05 quantile from this distribution. Although you could do
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this, it is ultimately unnecessary. Note that the event{
1

2(1− Y )2
< k

}
=

{
1

(1− Y )2
< 2k

}
=

{
(1− Y )2 >

1

2k

}
=

{
1− Y >

√
1

2k

}
=

{
Y < 1−

√
1

2k

}
= {Y < k∗} ,

where k∗ = 1 −
√

1/2k. Because all of the events above are the same event, choosing k to
satisfy

0.05 = PH0

(
1

2(1− Y )2
< k

)
is the same as choosing k∗ to satisfy

0.05 = PH0 (Y < k∗) =⇒ k∗ ≈ 0.0253;

i.e., k∗ is the 0.05 quantile of a beta(1, 2) distribution. Therefore, the Neyman-Pearson
Lemma says

RR = {y < 0.0253}

is the most powerful level α = 0.05 rejection region.

qbeta(0.05,1,2)

[1] 0.02532057

Discussion: In Example 10.12, among all level α = 0.05 tests which exist, the one which
uses the rejection region above maximizes the power when Ha is true; i.e., when θ = 4. In
fact, we can easily calculate what the power is; note that

K(4) = PHa(RR) = PHa (Y < 0.0253) ≈ 0.0974.

Therefore, although the rejection region above is the most powerful, it is not all that powerful.
This should not be surprising; after all, we are making a decision on the basis of a single
observation Y and the pdfs under H0 and Ha are not that different to begin with. �

> pbeta(0.0253,1,4)

[1] 0.09742383

Exercise: Redo Example 10.12 to find the most powerful level α = 0.05 test of

H0 : θ = 2
versus

Ha : θ = 5.

Does the rejection region change? What about if Ha : θ = 6? Ha : θ = 100?
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Example 10.13. Suppose Y1, Y2, ..., Yn is an iid sample from an exponential(θ) population,
where θ > 0 is unknown. Derive the most powerful level α test for

H0 : θ = θ0

versus
Ha : θ = θa,

where θa < θ0.

Solution. Recall the exponential(θ) pdf is given by

fY (y|θ) =


1

θ
e−y/θ, y > 0

0, otherwise.

The likelihood function is given by

L(θ|y) =
n∏
i=1

fY (yi|θ) =
1

θ
e−y1/θ × 1

θ
e−y2/θ × · · · × 1

θ
e−yn/θ =

1

θn
e−

∑n
i=1 yi/θ.

To find the most powerful test/rejection region, we first calculate the ratio

L(θ0|y)

L(θa|y)
=

1

θn0
e−

∑n
i=1 yi/θ0

1

θna
e−

∑n
i=1 yi/θa

=

(
θa
θ0

)n
e
−
∑n
i=1 yi

(
1
θ0
− 1
θa

)
=

(
θa
θ0

)n
e
−t
(

1
θ0
− 1
θa

)
,

where the sufficient statistic t =
∑n

i=1 yi. The Neyman-Pearson Lemma says the most
powerful level α test uses

RR =

{(
θa
θ0

)n
e
−t
(

1
θ0
− 1
θa

)
< k

}
,

where k satisfies

α = PH0(RR) = PH0

((
θa
θ0

)n
e
−T
(

1
θ0
− 1
θa

)
< k

)
.

Working with the last equation looks terrifying. However, note that the event{(
θa
θ0

)n
e
−T
(

1
θ0
− 1
θa

)
< k

}
=

{
e
−T
(

1
θ0
− 1
θa

)
< k

(
θ0

θa

)n}
=

{
−T

(
1

θ0

− 1

θa

)
< ln

(
k

(
θ0

θa

)n)}

=

T < −
ln

(
k

(
θ0

θa

)n)
1

θ0

− 1

θa

 = {T < k∗},
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1 − α

α

Figure 10.22: Gamma(n, θ0) pdf. The lower α quantile gn,θ0,1−α is shown using a dark circle.

where the constant

k∗ = −
ln

(
k

(
θ0

θa

)n)
1

θ0

− 1

θa

.

Therefore, choosing k to satisfy

α = PH0

((
θa
θ0

)n
e
−T
(

1
θ0
− 1
θa

)
< k

)
is the same as choosing k∗ to satisfy

α = PH0(T < k∗).

This is easy! When H0 : θ = θ0 is true, we know

T =
n∑
i=1

Yi
H0∼ gamma(n, θ0).

Therefore, k∗ = gn,θ0,1−α, the lower α quantile of a gamma distribution with shape n and
scale θ0; see Figure 10.22 (above). The Neyman-Pearson Lemma says

RR =

{
t =

n∑
i=1

yi < gn,θ0,1−α

}
is the most powerful level α rejection region.

PAGE 44



STAT 513: CHAPTER 10 JOSHUA M. TEBBS

Discussion: Two remarks are in order.

• In Example 10.13, we see the most powerful level α test depends on the observations
Y1, Y2, ..., Yn through a sufficient statistic T =

∑n
i=1 Yi. This is not a coincidence. In

fact, it is easy to show that if a most powerful test exists, the rejection region must
depend on a sufficient statistic.

• The most powerful level α rejection region in Example 10.13,

RR =

{
t =

n∑
i=1

yi < gn,θ0,1−α

}
,

does not depend on the value of θ under Ha (recall Ha : θ = θa). This suggests that the
most powerful rejection region above will be the same regardless of what θa is. This
observation will be important later when we discuss uniformly most powerful tests of
H0 : θ = θ0 versus Ha : θ < θ0.

Application: In STAT 512 (Example 6.19, pp 35), we used the exponential(θ) distribution
to model the time to treatment failure (TTF) for n = 14 Japanese patients with non-small
cell lung cancer who were treated with two cancer drugs. Here were the times (TTF, in
months):

0.8 7.5 13.4 1.4 0.5 68.9 16.1 20.4 15.6 4.2 2.4 8.2 5.3 14.0

The most powerful level α = 0.05 test for

H0 : θ = 24
versus

Ha : θ = 12

uses the rejection region

RR =

{
t =

14∑
i=1

yi < 203.1

}
.

The value of the (sufficient) test statistic

t =
14∑
i=1

yi = 178.7.

Therefore, we would reject H0 : θ = 24 in favor of Ha : θ = 12 when using this most powerful
level α = 0.05 decision rule. �

> qgamma(0.05,14,1/24)

[1] 203.1345

> ttf = c(0.8,7.5,13.4,1.4,0.5,68.9,16.1,20.4,15.6,4.2,2.4,8.2,5.3,14.0)

> sum(ttf)

[1] 178.7
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Result: Suppose Y1, Y2, ..., Yn is an iid sample from pY (y|θ) or fY (y|θ), where θ is an un-
known population-level parameter, and let T = T (Y1, Y2, ..., Yn) be a sufficient statistic. The
rejection region for the most powerful level α test of

H0 : θ = θ0

versus
Ha : θ = θa

must depend on Y1, Y2, ..., Yn through a sufficient statistic T .

Proof. Because T is sufficient, we know we can write the likelihood function

L(θ|y) = L(θ|y1, y2, ..., yn) = g(t, θ)h(y1, y2, ..., yn),

by the Factorization Theorem. Therefore,

L(θ0|y)

L(θa|y)
=
g(t, θ0)h(y1, y2, ..., yn)

g(t, θa)h(y1, y2, ..., yn)
=
g(t, θ0)

g(t, θa)
.

The most powerful level α rejection region is

RR =

{
L(θ0|y)

L(θa|y)
< k

}
=

{
g(t, θ0)

g(t, θa)
< k

}
,

which clearly depends on the value of the sufficient statistic T = t. �

Implication: In our quest to determine best tests, we know we can immediately restrict
attention to those tests whose rejection regions depend on sufficient statistics. In other
words, if a level α test’s rejection region does not involve a sufficient statistic, we know it
cannot be most powerful.

Summary: The Neyman-Pearson Lemma shows us how to derive the most powerful level
α test for problems which involve two simple hypotheses; i.e.,

H0 : θ = θ0

versus
Ha : θ = θa.

We now move on to the more practical situation where composite alternative hypotheses are
allowed; i.e., tests of the form

H0 : θ = θ0

versus
Ha : θ > θ0

or
H0 : θ = θ0

versus
Ha : θ < θ0.

Our goal is the same, namely, we would like to determine the most powerful test when Ha is
composite. However, now we would like our test/rejection region to be “most powerful for
all values of θ which satisfy Ha.” We call these uniformly most powerful tests.
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Figure 10.23: Left: UMP level α power function K(θ) for H0 : θ = θ0 versus Ha : θ > θ0.
Right: UMP level α power function K(θ) for H0 : θ = θ0 versus Ha : θ < θ0. In both figures
K∗(θ) is the power function of another level α test.

Terminology: Suppose we are interested in testing

H0 : θ = θ0

versus
Ha : θ > θ0

or
H0 : θ = θ0

versus
Ha : θ < θ0.

The uniformly most powerful (UMP) level α test has a power function K(θ) that
satisfies

K(θ) ≥ K∗(θ), for all θ ∈ Ha,

where K∗(θ) is the power function of any other level α test; see Figure 10.23 (above).

Remark: When we used the Neyman-Pearson Lemma to find the most powerful level α test
for

H0 : θ = θ0

versus
Ha : θ = θa,

we were actually finding the uniformly most powerful level α test. It’s just that in this
situation, there is only one value of θ allowed in Ha (i.e., Ha is a simple hypothesis). There-
fore, saying “uniformly” with a simple Ha is not necessary. However, when the alternative
is composite, the phrase “uniformly” is needed because we need to guarantee K(θ) ≥ K∗(θ)
for all values of θ which satisfy Ha.
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Q: How do we find UMP level α tests for composite alternatives?
A: Fortunately, we have already done most of the work. Suppose we would like to derive
the UMP level α test for

H0 : θ = θ0

versus
Ha : θ > θ0.

We first “pretend” as if we are performing the simple-versus-simple test

H0 : θ = θ0

versus
H ′a : θ = θa,

where θa is an arbitrary value which satisfies θa > θ0. We then derive the most powerful
level α test for H0 versus H ′a as we have done previously (i.e., by using the Neyman-Pearson
Lemma). If the rejection region for this test does not depend on θa, then this same rejection
region must be the UMP level α rejection region for the test of H0 : θ = θ0 versus Ha : θ > θ0.

Note: This approach would be analogous to derive the UMP level α test for

H0 : θ = θ0

versus
Ha : θ < θ0.

In this case, the simple-versus-simple test would use H ′a : θ = θa, where θa < θ0.

Example 10.14. Suppose Y1, Y2, ..., Yn is an iid sample from a Bernoulli(p) population,
where 0 < p < 1 is unknown. Derive the UMP level α test for

H0 : p = p0

versus
Ha : p > p0.

Solution. We first use the Neyman-Pearson Lemma to find the most powerful level α test
for

H0 : p = p0

versus
H ′a : p = pa,

where pa > p0. Recall the Bernoulli(p) pmf is

pY (y|p) =

{
py(1− p)1−y, y = 0, 1

0, otherwise.

The likelihood function is given by

L(p|y) =
n∏
i=1

pY (yi|p) = py1(1− p)1−y1 × py2(1− p)1−y2 × · · · × pyn(1− p)1−yn

= p
∑n
i=1 yi(1− p)n−

∑n
i=1 yi .
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To find the most powerful test/rejection region (for H0 versus H ′a), we first calculate the
ratio

L(p0|y)

L(pa|y)
=
p
∑n
i=1 yi

0 (1− p0)n−
∑n
i=1 yi

p
∑n
i=1 yi

a (1− pa)n−
∑n
i=1 yi

=

[
p0(1− pa)
pa(1− p0)

]∑n
i=1 yi

(
1− p0

1− pa

)n
=

[
p0(1− pa)
pa(1− p0)

]t(
1− p0

1− pa

)n
,

where the sufficient statistic t =
∑n

i=1 yi. The Neyman-Pearson Lemma says the most
powerful level α test for H0 versus H ′a uses

RR =

{[
p0(1− pa)
pa(1− p0)

]t(
1− p0

1− pa

)n
< k

}
,

where k satisfies

α = PH0(RR) = PH0

([
p0(1− pa)
pa(1− p0)

]T (
1− p0

1− pa

)n
< k

)
.

Let’s simplify the event above using algebra; note that{[
p0(1− pa)
pa(1− p0)

]T (
1− p0

1− pa

)n
< k

}
=

{[
p0(1− pa)
pa(1− p0)

]T
< k

(
1− pa
1− p0

)n}

=

{
T ln

(
p0(1− pa)
pa(1− p0)

)
< ln

(
k

(
1− pa
1− p0

)n)}

=

T >

ln

(
k

(
1− pa
1− p0

)n)
ln

(
p0(1− pa)
pa(1− p0)

)
 = {T > k∗},

where the constant

k∗ =

ln

(
k

(
1− pa
1− p0

)n)
ln

(
p0(1− pa)
pa(1− p0)

) .

Therefore, choosing k to satisfy

α = PH0

([
p0(1− pa)
pa(1− p0)

]T (
1− p0

1− pa

)n
< k

)

is the same as choosing k∗ to satisfy

α = PH0(T > k∗).
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This is easy! When H0 : p = p0 is true, we know

T =
n∑
i=1

Yi
H0∼ b(n, p0).

Therefore, we can choose k∗ to be the (upper) quantile of the b(n, p0) distribution which
provides a level α test. To summarize, we have shown the most powerful level α test for

H0 : p = p0

versus
H ′a : p = pa

uses the rejection region

RR =

{
t =

n∑
i=1

yi > k∗

}
,

where k∗ is a quantile from the b(n, p0) distribution. Now, we simply note that this rejection
region does not depend on the value of pa under H ′a (which we specified arbitrarily). There-
fore, this same rejection region must be most powerful level α for all pa > p0; i.e., uniformly
most powerful (UMP) level α for

H0 : p = p0

versus
Ha : p > p0.

Application: On August 17, 2021, Dr. Pastides reinstated the mask mandate for all
faculty, staff, and students at the University of South Carolina. Let p denote the population
proportion of UofSC students who support this decision. A random sample of n = 100
students is obtained and each student is asked if s/he supports the mandate. The goal is to
test

H0 : p = 0.5
versus

Ha : p > 0.5.

The UMP level α ≈ 0.0443 test uses

RR =

{
t =

100∑
i=1

yi ≥ 59

}
,

that is, among all α ≈ 0.0443 tests, this one provides the largest power for all p > 0.5.
Because T ∼ b(100, p), the corresponding power function is

K(p) = Pp(RR) = Pp(T ≥ 59) = 1− Pp (T ≤ 58) = 1−
58∑
t=0

(
100

t

)
pt(1− p)n−t.

The probability Pp (T ≤ 58) can be calculated in R using the pbinom function. Figure 10.24
(next page) shows the graph of K(p). Note that K(0.5) = α ≈ 0.0443. �

1-pbinom(58,100,0.5)

[1] 0.04431304
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Figure 10.24: Example 10.14. Power function for H0 : p = 0.5 versus Ha : p > 0.5. A
horizontal line at α ≈ 0.0443 has been added.

Example 10.15. Suppose Y1, Y2, ..., Yn is an iid sample from a N (0, σ2) population, where
σ2 > 0 is unknown. Derive the UMP level α test for

H0 : σ2 = σ2
0

versus
Ha : σ2 < σ2

0.

Solution. We first use the Neyman-Pearson Lemma to find the most powerful level α test
for

H0 : σ2 = σ2
0

versus
H ′a : σ2 = σ2

a,

where σ2
a < σ2

0. Recall the N (0, σ2) pdf is

fY (y|σ2) =


1√

2πσ2
e−y

2/2σ2

, −∞ < y <∞

0, otherwise.
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The likelihood function is given by

L(σ2|y) =
n∏
i=1

fY (yi|σ2) =
1√

2πσ2
e−y

2
1/2σ

2 × 1√
2πσ2

e−y
2
2/2σ

2 × · · · × 1√
2πσ2

e−y
2
n/2σ

2

=

(
1

2πσ2

)n/2
e−

∑n
i=1 y

2
i /2σ

2

.

To find the most powerful test/rejection region (for H0 versus H ′a), we first calculate the
ratio

L(σ2
0|y)

L(σ2
a|y)

=

(
1

2πσ2
0

)n/2
e−

∑n
i=1 y

2
i /2σ

2
0(

1

2πσ2
a

)n/2
e−

∑n
i=1 y

2
i /2σ

2
a

=

(
σ2
a

σ2
0

)n/2
e
−
∑n
i=1 y

2
i

/(
1

2σ20
− 1

2σ2a

)
=

(
σ2
a

σ2
0

)n/2
e
−t
/(

1

2σ20
− 1

2σ2a

)
,

where the sufficient statistic t =
∑n

i=1 y
2
i . The Neyman-Pearson Lemma says the most

powerful level α test for H0 versus H ′a uses

RR =

{(
σ2
a

σ2
0

)n/2
e
−T
/(

1

2σ20
− 1

2σ2a

)
< k

}
,

where k satisfies

α = PH0(RR) = PH0

((
σ2
a

σ2
0

)n/2
e
−T
/(

1

2σ20
− 1

2σ2a

)
< k

)
.

Let’s simplify the event above using algebra; note that{(
σ2
a

σ2
0

)n/2
e
−T
/(

1

2σ20
− 1

2σ2a

)
< k

}
=

{
e
−T
/(

1

2σ20
− 1

2σ2a

)
< k

(
σ2

0

σ2
a

)n/2}

=

−
T

1

2σ2
0

− 1

2σ2
a

< ln

(
k

(
σ2

0

σ2
a

)n/2)
=

T < −
ln

(
k

(
σ2

0

σ2
a

)n/2)
1

2σ2
0

− 1

2σ2
a

 = {T < k∗},

where the constant

k∗ = −
ln

(
k

(
σ2

0

σ2
a

)n/2)
1

2σ2
0

− 1

2σ2
a

.
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1 − α

α

Figure 10.25: χ2(n) pdf. The lower α quantile χ2
n,1−α is shown by using a dark circle.

Therefore, choosing k to satisfy

α = PH0

((
σ2
a

σ2
0

)n/2
e
−T
/(

1

2σ20
− 1

2σ2a

)
< k

)

is the same as choosing k∗ to satisfy

α = PH0(T < k∗) = PH0

(
T

σ2
0

<
k∗

σ2
0

)
=⇒ k∗

σ2
0

= χ2
n,1−α =⇒ k∗ = σ2

0χ
2
n,1−α,

where χ2
n,1−α is the lower α quantile of the χ2(n) distribution; see Figure 10.25 (above).

Aside: From STAT 512, we remember that

T

σ2
∼ χ2(n) =⇒ T

σ2
0

H0∼ χ2(n).

Therefore, we have shown the most powerful level α test for

H0 : σ2 = σ2
0

versus
H ′a : σ2 = σ2

a

PAGE 53



STAT 513: CHAPTER 10 JOSHUA M. TEBBS

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

σ2

K
(σ

2 )

Figure 10.26: Example 10.15. Power function for σ2 = 9 versus Ha : σ2 < 9. A horizontal
line at α = 0.05 has been added.

uses the rejection region

RR =

{
t =

n∑
i=1

y2
i < σ2

0χ
2
n,1−α

}
.

Now, we simply note that this rejection region does not depend on the value of σ2
a under H ′a

(which we specified arbitrarily). Therefore, this same rejection region must be most powerful
level α for all σ2

a < σ2
0; i.e., uniformly most powerful (UMP) level α for

H0 : σ2 = σ2
0

versus
Ha : σ2 < σ2

0.

The corresponding power function is

K(σ2) = Pσ2(RR) = Pσ2(T < σ2
0χ

2
n,1−α) = P

(
T

σ2
<
σ2

0χ
2
n,1−α

σ2

)
= Fχ2(n)

(
σ2

0χ
2
n,1−α

σ2

)
,

where Fχ2(n) is the χ2(n) cdf. This cdf can be calculated in R using the pchisq function.
Figure 10.26 (above) shows the graph of K(σ2) when n = 20, σ2

0 = 9, and α = 0.05. �
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10.8 Likelihood ratio tests

Remark: We have just learned that UMP tests are “optimal” in the sense that they maxi-
mize power when the alternative hypothesis is true. Unfortunately, UMP tests rarely exist
once you get outside the simple testing problems considered in this class. This does not void
their value. In fact, I would argue that in any statistical analysis, it is important to think
about what the “optimal” approach is, and UMP tests help to serve that purpose.

Preview: Given the limited practical utility of UMP tests, it is important to discuss more
general methods. Arguably the most common method is the likelihood ratio test (LRT).
As its name suggests, the LRT is based on the ratio of two likelihood functions, one corre-
sponding to H0 and the other which does not put any restrictions on the population-level
parameter θ. We now state new terminology needed to describe the LRT approach.

Terminology: Suppose Y1, Y2, ..., Yn is an iid sample from pY (y|θ) or fY (y|θ), where θ is
an unknown population-level parameter. The set of all allowable values of θ is called the
parameter space, denoted by Θ. For example,

• Y ∼ Bernoulli(θ) =⇒ Θ = {0 < θ < 1} = (0, 1)

• Y ∼ exponential(θ) =⇒ Θ = {0 < θ <∞} = R+

• Y ∼ N (θ, 1) =⇒ Θ = {−∞ < θ <∞} = R

• Y ∼ gamma(α, β) =⇒ Θ = {θ = (α, β) : α > 0, β > 0} = R+ × R+

• Y ∼ N (µ, σ2) =⇒ Θ = {θ = (µ, σ2) : −∞ < µ <∞, σ2 > 0} = R× R+.

Terminology: For any population-level model, suppose we write the parameter space Θ as

Θ = Θ0 ∪Θa,

the union of two mutually exclusive sets. In our LRT formulation, we will call Θ0 the null
parameter space; i.e., it is the set of allowable values of θ under H0. We will call Θa the
alternative parameter space; i.e., it is the set of allowable values of θ under Ha.

Terminology: Suppose Y1, Y2, ..., Yn is an iid sample from pY (y|θ) or fY (y|θ), where θ is
an unknown population-level parameter (possibly vector-valued). Let L(θ|y) denote the
likelihood function of θ. A level α likelihood ratio test (LRT) for

H0 : θ ∈ Θ0

versus
Ha : θ ∈ Θa

uses the test statistic

λ =
max
θ∈Θ0

L(θ|y)

max
θ∈Θ

L(θ|y)
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and the rejection region
RR = {λ < k},

where k satisfies
α = PH0(RR) = P (Reject H0|H0 true).

Discussion: Several remarks are in order. The LRT statistic λ is the ratio of two maximized
likelihood functions.

• In the denominator, we maximize L(θ|y) over the entire parameter space Θ. Another
way to write this is

max
θ∈Θ

L(θ|y) = L(θ̂|y),

where θ̂ is the maximum likelihood estimator (MLE) of θ. In the LRT formulation,

we call θ̂ the “unrestricted MLE” because we are maximizing L(θ|y) over the entire
parameter space (with no restriction).

• In the numerator, we maximize L(θ|y) over the null parameter space Θ0, where Θ0 ⊂ Θ.
Therefore, it must be true that

0 ≤
max
θ∈Θ0

L(θ|y)

max
θ∈Θ

L(θ|y)
≤ 1 ⇐⇒ 0 ≤ λ ≤ 1

because in the numerator we are maximizing L(θ|y) over a “smaller set” than we are

in the denominator. Let θ̂0 denote the MLE of θ over Θ0. Another way to write the
numerator is

max
θ∈Θ0

L(θ|y) = L(θ̂0|y).

We call θ̂0 the “restricted MLE” because we are maximizing L(θ|y) over the null
parameter space; i.e., the parameter space “restricted” under H0.

• Summarizing, the LRT statistic is

λ =
L(θ̂0|y)

L(θ̂|y)
,

where θ̂0 and θ̂ are the restricted and unrestricted MLEs, respectively. Small values of
λ are evidence against H0.

• A technical issue arises in how we define the level α when performing a LRT.

– If H0 : θ = θ0 (i.e., a simple H0), then the null parameter space is Θ0 = {θ0}, a
singleton. In this situation,

max
θ∈Θ0

L(θ|y) = L(θ̂0|y) = L(θ0|y),

that is, we are maximizing L(θ|y) over a single point. There is only one value of
θ which makes H0 true so

α = P (Reject H0|H0 true) = Pθ0(RR) = Pθ0(λ < k).
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– If H0 : θ ≤ θ0 (i.e., a composite H0), the null parameter space is Θ0 = {θ ≤ θ0}.
Now, there are infinitely many values of θ which make H0 true so

α = PH0(RR) = P (Reject H0|H0 true)

becomes ambiguous. For H0 : θ ≤ θ0, we redefine the probability of Type I Error
as

α = max
θ≤θ0

Pθ(RR) = max
θ≤θ0

K(θ),

where K(θ) is the power function. In general, we define

α = max
θ∈Θ0

Pθ(RR) = max
θ∈Θ0

K(θ).

Example 10.16. Suppose Y1, Y2, ..., Yn is an iid sample from a Rayleigh(θ) population,
where θ > 0 is unknown. Recall the Rayleigh pdf is given by

fY (y|θ) =


2y

θ
e−y

2/θ, y > 0

0, otherwise.

(a) Derive a level α LRT for

H0 : θ = θ0

versus
Ha : θ 6= θ0,

where θ0 is a specified value.
(b) Derive the power function K(θ) for the test.

Solution. (a) We start by finding the likelihood function, which is

L(θ|y) = fY (y1|θ)× fY (y2|θ)× · · · × fY (yn|θ)

=
2y1

θ
e−y

2
1/θ × 2y2

θ
e−y

2
2/θ × · · · × 2yn

θ
e−y

2
n/θ =

(
2

θ

)n( n∏
i=1

yi

)
e−

∑n
i=1 y

2
i /θ.

Now, we maximize L(θ|y) over the null parameter space and the entire parameter space
separately.

• The null parameter space is Θ0 = {θ0}, a singleton. Clearly,

max
θ∈Θ0

L(θ|y) = L(θ0|y).

• The entire parameter space is Θ = {0 < θ <∞} = R+. In STAT 512 (Example 9.18,
pp 144-145), we showed the (unrestricted) MLE of θ is

θ̂ =
1

n

n∑
i=1

Y 2
i ,

which is a function of T =
∑n

i=1 Y
2
i , a sufficient statistic.

PAGE 57



STAT 513: CHAPTER 10 JOSHUA M. TEBBS

The LRT statistic is

λ =
L(θ0|y)

L(θ̂|y)
=

(
2

θ0

)n( n∏
i=1

yi

)
e−

∑n
i=1 y

2
i /θ0

(
2

θ̂

)n( n∏
i=1

yi

)
e−

∑n
i=1 y

2
i /θ̂

=

(
θ̂

θ0

)n
e−

∑n
i=1 y

2
i /θ0

e−
∑n
i=1 y

2
i /θ̂

=

(
θ̂

θ0

)n
e−t/θ0

e−t/θ̂
,

where t =
∑n

i=1 y
2
i . We can use algebra to simplify this expression. Note the maximum

likelihood estimate θ̂ satsifies

θ̂ =
1

n

n∑
i=1

y2
i ⇐⇒ nθ̂ =

n∑
i=1

y2
i ⇐⇒ nθ̂ = t.

Therefore,

λ =

(
θ̂

θ0

)n
e−t/θ0

e−t/θ̂
=

(
t

nθ0

)n
e−t/θ0

e−nθ̂/θ̂
=

(
e

nθ0

)n
tne−t/θ0︸ ︷︷ ︸

think of this as a function of t

= g(t), say.

We have written the LRT statistic λ as a function of t; i.e., λ = g(t). The LRT rejection
region

RR = {λ < k}
says to reject H0 when λ is small. For what values of t is λ = g(t) small? Careful inspection
of g(t) reveals

g(t) ∝ tne−t/θ0 ,

which is the kernel of a gamma density with shape parameter n+ 1 and scale parameter θ0.
This means the shape of g(t) is similar to that of a gamma pdf; see Figure 10.27 (next page).
An important observation from Figure 10.27 is that

λ = g(t) < k ⇐⇒ t < k1 or t > k2,

that is, λ = g(t) is small whenever t is large or small. This means the rejection region can
be written as

RR = {λ < k} = {t < k1 or t > k2} ,
where k2 > k1. The LRT procedure says to choose k so that

α = PH0(RR) = Pθ0(λ < k) = Pθ0

((
e

nθ0

)n
T ne−T/θ0 < k

)
.

However, given the set equivalence above, we can now instead choose k1 and k2 so that

α = PH0(RR) = Pθ0({T < k1} ∪ {T > k2}) = Pθ0(T < k1) + Pθ0(T > k2).

This is easy! In Example 10.4 (pp 12-14, notes), we used the fact that

2T

θ0

H0∼ χ2(2n)
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t

g(
t)

k1 k2

k

Figure 10.27: Example 10.16. Plot of λ = g(t) versus t. Note that λ = g(t) < k ⇐⇒ t <
k1 or t > k2.

to calculate

k1 =
θ0χ

2
2n,1−α/2

2
and k2 =

θ0χ
2
2n,α/2

2
.

Therefore, a level α LRT uses the rejection region

RR =

{
t <

θ0χ
2
2n,1−α/2

2
or t >

θ0χ
2
2n,α/2

2

}
,

where t =
∑n

i=1 y
2
i . This was the same rejection region we used in Example 10.4.

(b) The power function is given by

K(θ) = Pθ(RR) = Pθ

(
T <

θ0χ
2
2n,1−α/2

2

)
+ Pθ

(
T >

θ0χ
2
2n,α/2

2

)

= Pθ

(
2T

θ
<
θ0χ

2
2n,1−α/2

θ

)
+ Pθ

(
2T

θ
>
θ0χ

2
2n,α/2

θ

)

= Fχ2(2n)

(
θ0χ

2
2n,1−α/2

θ

)
+ 1− Fχ2(2n)

(
θ0χ

2
2n,α/2

θ

)
,
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Figure 10.28: Power function K(θ) in Example 10.16 when n = 30, θ0 = 20, and α = 0.05.
A horizontal line at α = 0.05 has been added.

where Fχ2(2n) is the χ2(2n) cdf. This cdf can be calculated in R using the pchisq function.
Figure 10.28 (above) shows the graph of K(θ) when n = 30, θ0 = 20, and α = 0.05. �

Example 10.17. One-sample t test. Suppose Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2)
population, where both parameters are unknown. In Section 10.4.1 (notes), we presented
the one-sample t test for

H0 : µ = µ0

versus
Ha : µ 6= µ0.

When H0 is true, we know

T =
Y − µ0

S/
√
n
∼ t(n− 1).

Therefore, a level α test uses the rejection region

RR = {t < −tn−1,α/2 or t > tn−1,α/2} = {|t| > tn−1,α/2}.

We now sketch the details to show this is a LRT.
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Solution. The null hypothesis H0 : µ = µ0 looks like a simple hypothesis, but it is not
because σ2 > 0 is unknown (i.e., it is a nuisance parameter). The relevant parameter
spaces are

Θ0 = {θ = (µ, σ2) : µ = µ0, σ
2 > 0}

Θ = {θ = (µ, σ2) : −∞ < µ <∞, σ2 > 0}.

The likelihood function is

L(θ|y) = L(µ, σ2|y) =
n∏
i=1

1√
2πσ2

e−(yi−µ)2/2σ2

=

(
1

2πσ2

)n/2
e−

1
2σ2

∑n
i=1(yi−µ)2 .

Here are the relevant points:

1. Over the null parameter space Θ0, the (restricted) MLE is

θ̂0 =

 µ0

1

n

n∑
i=1

(Yi − µ0)2

 .

2. Over the entire parameter space Θ, the (unrestricted) MLE is

θ̂ =

(
Y
S2
b

)
=

 Y

1

n

n∑
i=1

(Yi − Y )2

 .

We showed this in STAT 512 (pp 148-150, notes).

3. The ratio of the two maximized likelihoods

λ =
L(θ̂0|y)

L(θ̂|y)
=


n∑
i=1

(yi − y)2

n∑
i=1

(yi − µ0)2


n/2

.

4. One can show algebraically that

λ < k ⇐⇒
∣∣∣∣y − µ0

s/
√
n

∣∣∣∣ ≥ k∗.

Of course, we know

T =
Y − µ0

S/
√
n

H0∼ t(n− 1),

so we can choose k∗ = tn−1,α/2 to ensure a level α test. This demonstrates the one-
sample t test is a LRT under normality. �
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Remark: Deriving exact tests using the LRT method is not always possible. Even in the
relatively easy problems we have discussed, it can be challenging. In this light, the following
large-sample result can be useful. Of course, this is an asymptotic result, so it is only
applicable when the sample size(s) is (are) large.

Large-sample result: Let L(θ|y) denote the likelihood function of θ (possibly vector-
valued) formed after observing Y1, Y2, ..., Yn. Consider testing

H0 : θ ∈ Θ0

versus
Ha : θ ∈ Θa

using the LRT statistic

λ =
max
θ∈Θ0

L(θ|y)

max
θ∈Θ

L(θ|y)
.

Under certain “regularity conditions,” it follows that

−2 lnλ
d−→ χ2(ν), under H0,

as n→∞, where the degrees of freedom

ν = dim(Θ)− dim(Θ0),

the difference between the number of free parameters specified by θ ∈ Θ and the number of
free parameters specified by θ ∈ Θ0. The meaning of the term “free parameters” will become
clear in the next example.

Remark: The difficult part about implementing an exact LRT (e.g., see Examples 10.16
and 10.17, etc.) is working out analytically what it means for the LRT statistic λ to be
“small.” In Example 10.16, we showed that λ was small whenever the sufficient statistic
T =

∑n
i=1 Y

2
i was large or small. In Example 10.17, we “showed” λ was small whenever the

one-sample t statistic was large or small. The asymptotic result above allows us to bypass
this step completely. Note that

λ < k ⇐⇒ − 2 lnλ > −2 ln k = k∗, say.

Therefore, an approximate level α LRT uses the rejection region

RR = {−2 lnλ > χ2
ν,α},

where χ2
ν,α is the upper α quantile of the χ2(ν) distribution.

Remark: The large-sample result above allows us to greatly expand the class of problems
for which we can now perform LRTs (albeit large-sample versions of them). This includes
problems involving multiple populations as the next example illustrates.
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Example 10.18. McCann and Tebbs (2009) summarize a study examining perceived unmet
need for dental health care for people with HIV infection. Baseline in-person interviews were
conducted with 2,864 HIV infected individuals, aged 18 years and older, as part of the HIV
Cost and Services Utilization Study. All respondents were asked,

“In the last six months, was there a time when you needed dental treatment but
could not get it?”

Here is the table that cross-classifies all subjects by denial of care response (yes/no) and
insurance type:

Private ins. Medicare w/ins. No insurance Medicare/no ins. Total

Denied care 49 142 181 175 547
Not denied care 609 697 630 381 2317

Total 658 839 811 556 2864

Is insurance type associated with the denial of dental health care for HIV patients? Perform
a large-sample level α = 0.05 LRT for

H0 : p1 = p2 = p3 = p4

versus
Ha : H0 not true,

where pi is the population-level probability of denial for the ith insurance group, i = 1, 2, 3, 4.

Solution. Let Yi denote the number of individuals denied care in the ith insurance group
and assume Y1, Y2, Y3, Y4 are mutually independent random variables satisfying

Yi ∼ b(ni, pi), i = 1, 2, 3, 4,

where ni is the column total (which we regard to be fixed). Set θ = (p1, p2, p3, p4). The
likelihood function of θ is the product of the four binomial pmfs; i.e.,

L(θ) = L(p1, p2, p3, p4) =
4∏
i=1

(
ni
yi

)
pyii (1− pi)ni−yi .

The relevant parameter spaces in this problem are

Θ0 = {θ : 0 < p1 < 1, 0 < p2 < 1, 0 < p3 < 1, 0 < p4 < 1, p1 = p2 = p3 = p4}
Θ = {θ : 0 < p1 < 1, 0 < p2 < 1, 0 < p3 < 1, 0 < p4 < 1}.

Note that

• over the null parameter space Θ0, the population-level parameters pi are the same.
Therefore, only 1 is allowed to vary freely (i.e., once we know 1, the other 3 are
determined).

• over the entire parameter space Θ, all 4 parameters are allowed to vary freely.

• the difference in the number of free parameters between the two parameter spaces is
ν = 4− 1 = 3.
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We now maximize L(θ) over the null parameter space Θ0 and the entire parameter space Θ
separately.

MLE over Θ0:
When H0 is true, that is, when

p1 = p2 = p3 = p4 = p, say,

the likelihood function can be written as

L∗(p) =
4∏
i=1

(
ni
yi

)
pyi(1− p)ni−yi =

4∏
i=1

(
ni
yi

)
p
∑4
i=1 yi(1− p)

∑4
i=1(ni−yi).

The log-likelihood function is

lnL∗(p) = ln c+
4∑
i=1

yi ln p+
4∑
i=1

(ni − yi) ln(1− p),

where the constant c =
∏4

i=1

(
ni
yi

)
is free of p. Taking derivatives with respect to p yields

∂

∂p
lnL∗(p) =

∑4
i=1 yi
p

−
∑4

i=1(ni − yi)
1− p

.

To find the MLE over Θ0, we set this partial derivative equal to zero and solve for p. That
is,

∂

∂p
lnL∗(p)

set
= 0 =⇒ (1− p)

4∑
i=1

yi − p
4∑
i=1

(ni − yi) = 0

=⇒
4∑
i=1

yi − p
4∑
i=1

yi − p
4∑
i=1

ni + p
4∑
i=1

yi = 0 =⇒ p̂ =

∑4
i=1 yi∑4
i=1 ni

.

It is straightforward to show ∂2/∂p2 lnL∗(p̂) < 0 so that p̂ maximizes lnL∗(p) by the Second
Derivative Test. We have shown the maximized likelihood function over Θ0 is

L(θ̂0) = L(p̂, p̂, p̂, p̂) =
4∏
i=1

(
ni
yi

)
p̂yi(1− p̂)ni−yi ,

where p̂ =
∑4

i=1 yi/
∑4

i=1 ni.

MLE over Θ:
Maximizing L(θ) = L(p1, p2, p3, p4) over Θ is a four-variable maximization problem. The
likelihood function is

L(θ) = L(p1, p2, p3, p4) =
4∏
i=1

(
ni
yi

)
pyii (1− pi)ni−yi .
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The log-likelihood function is

lnL(θ) = lnL(p1, p2, p3, p4) = ln c+
4∑
i=1

yi ln pi +
4∑
i=1

(ni − yi) ln(1− pi).

The (unrestricted) MLE of θ = (p1, p2, p3, p4) is obtained by solving

∂ lnL(p1, p2, p3, p4)

∂p1

set
= 0 =⇒ y1

p1

− n1 − y1

1− p1

= 0

∂ lnL(p1, p2, p3, p4)

∂p2

set
= 0 =⇒ y2

p2

− n2 − y2

1− p2

= 0

∂ lnL(p1, p2, p3, p4)

∂p3

set
= 0 =⇒ y3

p3

− n3 − y3

1− p3

= 0

∂ lnL(p1, p2, p3, p4)

∂p4

set
= 0 =⇒ y4

p4

− n4 − y4

1− p4

= 0

simultaneously. Solving this system for p1, p2, p3, and p4 gives

p̂1 =
y1

n1

, p̂2 =
y2

n2

, p̂3 =
y3

n3

, p̂4 =
y4

n4

,

the usual sample proportions. The maximized likelihood function over Θ is

L(θ̂) = L(p̂1, p̂2, p̂3, p̂4) =
4∏
i=1

(
ni
yi

)
p̂yii (1− p̂i)ni−yi ,

where p̂i = yi/ni, for i = 1, 2, 3, 4.

LRT: The LRT statistic is the ratio of the two maximized likelihood functions; i.e.,

λ =
L(θ̂0)

L(θ̂)
=

4∏
i=1

(
ni
yi

)
p̂yi(1− p̂)ni−yi

4∏
i=1

(
ni
yi

)
p̂yii (1− p̂i)ni−yi

=

4∏
i=1

(
ni
yi

)
p̂
∑4
i=1 yi(1− p̂)

∑4
i=1(ni−yi)

4∏
i=1

(
ni
yi

) 4∏
i=1

p̂yii

4∏
i=1

(1− p̂i)ni−yi

=

(∑4
i=1 yi∑4
i=1 ni

)∑4
i=1 yi

[
1−

(∑4
i=1 yi∑4
i=1 ni

)]∑4
i=1(ni−yi)

4∏
i=1

(
yi
ni

)yi 4∏
i=1

[
1−

(
yi
ni

)]ni−yi .
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It is worth noting that to find an exact level α = 0.05 LRT, one would have to specify the
value of k that satisfies

PH0


(∑4

i=1 Yi∑4
i=1 ni

)∑4
i=1 Yi

[
1−

(∑4
i=1 Yi∑4
i=1 ni

)]∑4
i=1(ni−Yi)

4∏
i=1

(
Yi
ni

)Yi 4∏
i=1

[
1−

(
Yi
ni

)]ni−Yi < k

 = 0.05

and then reject H0 when λ < k. Because this is completely intractable, it is much easier to
use the large-sample version of the LRT. We have

−2 lnλ = −2 ln


(∑4

i=1 yi∑4
i=1 ni

)∑4
i=1 yi

[
1−

(∑4
i=1 yi∑4
i=1 ni

)]∑4
i=1(ni−yi)

4∏
i=1

(
yi
ni

)yi 4∏
i=1

[
1−

(
yi
ni

)]ni−yi


and the (large-sample) rejection region

RR = {−2 lnλ > χ2
3,0.05 ≈ 7.81}.

> qchisq(0.95,3)

[1] 7.814728

Analysis: For the dental care data, the binomial counts are y1 = 49, y2 = 142, y3 = 181,
and y4 = 175. The sample sizes are n1 = 658, n2 = 839, n3 = 811, and n4 = 556. It is
straightforward to calculate

− 2 lnλ

= −2 ln


(

547

2864

)547(2317

2864

)2317

(
49

658

)49(142

839

)142(181

811

)181(175

556

)175(609

658

)609(697

839

)697(630

811

)630(381

556

)381

 ≈ 127.79.

Clearly, H0 : p1 = p2 = p3 = p4 is rejected at the α = 0.05 level. The (approximate)
probability value for the test is

p-value = PH0(χ
2(3) > 127.79) < 1× 10−16

indicating the evidence against H0 is overwhelming. Based on these data, there is clear
evidence the probability of dental health care denial is different across the four insurance
groups. �
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11 Bayesian Inference

11.1 Introduction

Discussion: Statistical inference deals with using information in a sample of data to make
statements about quantities that are not observed; e.g., population-level parameters, future
observations, etc. For example, suppose Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2) pop-
ulation, where both parameters are unknown. In this instance, we might want to perform a
hypothesis test regarding µ or write an interval estimator for σ2. In a prediction problem,
we might want to predict the value of a future random variable, say Yn+1.

Remark: In your exposure to statistics up until now, you have likely been taught exclusively
the classical (or frequentist) approach to inference. That is, you have been taught to
regard model parameters like µ and σ2 as fixed quantities that are unknown. By “fixed,”
we mean they are not random. One then uses the observed data y1, y2, ..., yn to learn about
(or “infer”) their values. The classical approach to inference can be summarized generally
as follows:

1. Posit a population-level probability model for Y , say Y ∼ pY (y|θ) or Y ∼ fY (y|θ),
where θ is a fixed (and unknown) population-level parameter.

2. Observe a sample Y1, Y2, ..., Yn from pY (y|θ) or fY (y|θ).

3. Use the observed values y1, y2, ..., yn to draw statistical inference for θ.

Bayesians take a different perspective. The key difference is they regard the population-level
parameter θ to be random with its own probability distribution. This distribution can be
used to incorporate (or model) “prior information” about θ. For example, suppose θ is the
population proportion of covid-19 positive individuals in Richland County. In this setting,
we could use known information on case counts and population sizes to elicit a prior model
for θ, say a beta(1, β) distribution where β is large (e.g., β = 9, β = 99, β = 999, etc.).
With a sample of test outcomes Y1, Y2, ..., Yn modeled as iid Bernoulli(θ) random variables
(i.e., positive/negative), the Bayesian would use the observed values and his/her prior belief
about θ to make a statement about the population proportion. The Bayesian approach can
be summarized generally as follows:

1. Posit a population-level probability model for Y , say Y ∼ pY (y|θ) or Y ∼ fY (y|θ).

2. Treat θ as a random variable itself with prior probability distribution g(θ).

3. Observe a sample Y1, Y2, ..., Yn from pY (y|θ) or fY (y|θ).

4. Use the observed values y1, y2, ..., yn and one’s prior belief about θ (through the prior
model) to draw statistical inference for θ.

Therefore, Bayesian’s put more structure into the modeling process. In addition to modeling
the random variables Y1, Y2, ..., Yn, they model the population parameters as well.
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11.2 Finding posterior distributions

Preview: For the Bayesian, statistical inference proceeds by deriving (or sampling from) the
posterior distribution of θ. This is a conditional probability distribution of the parameter
θ which has been “updated” to include the information from the observed values y1, y2, ..., yn.
Schematically, Bayesians think of inference in this way:

Model θ ∼ g(θ) −→ Observe Y|θ ∼ fY|θ(y|θ) −→ Update with g(θ|y).

The model for θ on the front end is the prior distribution. The posterior distribution is
the model on the back end. The posterior distribution combines prior information (supplied
through the prior model) and the observed data y. All statistical inference about θ is
performed by using the posterior distribution.

Five-Step Algorithm: We now present a general algorithm to find the posterior distribu-
tion in any given problem. We will learn later that some steps below can be streamlined or
skipped altogether.

1. Choose a prior distribution for θ, say θ ∼ g(θ). This distribution reflects our a priori
knowledge regarding θ. We will discuss approaches to choose g(θ) in due course.

2. Construct the conditional distribution fY|θ(y|θ). This is simply the multivariate
distribution of Y = (Y1, Y2, ..., Yn), but now viewed conditionally on θ.

• For example, if Y1, Y2, ..., Yn is an iid sample from fY (y|θ), then the conditional
distribution is

fY|θ(y|θ) =
n∏
i=1

fY (yi|θ).

Mathematically, fY|θ(y|θ) is same as the likelihood function L(θ|y) except the inter-
pretation is different.

3. Form the joint distribution fY,θ(y, θ). This distribution describes how Y and θ vary
jointly (remembering that θ is now regarded as random). From the definition of a
conditional distribution,

fY,θ(y, θ) = fY|θ(y|θ)g(θ) = “Likelihood × prior.”

4. Calculate the marginal distribution mY(y). This describes how Y is distributed
“marginally.” From the definition of a marginal distribution,

mY(y) =

∫
Θ

fY,θ(y, θ)dθ =

∫
Θ

fY|θ(y|θ)g(θ)dθ,

where Θ is the “support” of θ (remember, we are now viewing θ as a random variable).
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5. The posterior distribution is the conditional distribution of θ given Y = y. From
the definition of a conditional distribution,

g(θ|y) =
fY,θ(y, θ)

mY(y)
=

fY|θ(y|θ)g(θ)∫
Θ

fY|θ(y|θ)g(θ)dθ
.

This is the Bayesian’s “updated” distribution of θ, given the data Y = y. Under the
Bayesian framework, all inference regarding θ (e.g., point estimation, interval estima-
tion, etc.) is conducted by using the posterior distribution g(θ|y).

Example 11.1 (Binomial-beta). Suppose Y1, Y2, ..., Yn is an iid sample from a Bernoulli(θ)
population, where 0 < θ < 1. In turn, suppose θ is best regarded as a beta random variable
with parameters α > 0 and β > 0; i.e., θ ∼ beta(α, β). Using the five-step algorithm above,
derive the posterior distribution of θ.

1. Prior distribution. This is given in the problem. If θ ∼ beta(α, β), then the prior pdf
is

g(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1, for 0 < θ < 1.

2. Conditional distribution. If Y1, Y2, ..., Yn are iid from a Bernoulli(θ) population, then

fY|θ(y|θ) =
n∏
i=1

θyi(1− θ)1−yi = θ
∑n
i=1 yi(1− θ)n−

∑n
i=1 yi .

Mathematically, fY|θ(y|θ) is the same as the likelihood function.

3. Joint distribution. This is the conditional distribution times the prior; i.e.,

fY,θ(y, θ) = fY|θ(y|θ)g(θ)

= θ
∑n
i=1 yi(1− θ)n−

∑n
i=1 yi × Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

=
Γ(α + β)

Γ(α)Γ(β)
θ
∑n
i=1 yi+α−1(1− θ)n−

∑n
i=1 yi+β−1.

4. Marginal distribution. We get this by taking the joint distribution and integrating
over θ; i.e.,

mY(y) =

∫
Θ

fY,θ(y, θ)dθ

=

∫ 1

0

Γ(α + β)

Γ(α)Γ(β)
θ
∑n
i=1 yi+α−1(1− θ)n−

∑n
i=1 yi+β−1dθ

=
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

θ
∑n
i=1 yi+α−1(1− θ)n−

∑n
i=1 yi+β−1dθ.

The integrand in the last integral; i.e.,

θ
∑n
i=1 yi+α−1(1− θ)n−

∑n
i=1 yi+β−1
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is a beta kernel with parameters
∑n

i=1 yi + α and n−
∑n

i=1 yi + β. Therefore,∫ 1

0

θ
∑n
i=1 yi+α−1(1− θ)n−

∑n
i=1 yi+β−1dθ =

Γ(
∑n

i=1 yi + α)Γ(n−
∑n

i=1 yi + β)

Γ(n+ α + β)

and thus the marginal distribution is

mY(y) =
Γ(α + β)

Γ(α)Γ(β)

Γ(
∑n

i=1 yi + α)Γ(n−
∑n

i=1 yi + β)

Γ(n+ α + β)
.

5. Posterior distribution. This is the joint distribution divided by the marginal distri-
bution of Y; i.e.,

g(θ|y) =
fY,θ(y, θ)

mY(y)
=

Γ(α + β)

Γ(α)Γ(β)
θ
∑n
i=1 yi+α−1(1− θ)n−

∑n
i=1 yi+β−1

Γ(α + β)

Γ(α)Γ(β)

Γ(
∑n

i=1 yi + α)Γ(n−
∑n

i=1 yi + β)

Γ(n+ α + β)

=
Γ(n+ α + β)

Γ(
∑n

i=1 yi + α)Γ(n−
∑n

i=1 yi + β)
θ
∑n
i=1 yi+α−1(1− θ)n−

∑n
i=1 yi+β−1.

We recognize g(θ|y) as a beta pdf with parameters

α∗ =
n∑
i=1

yi + α

β∗ = n−
n∑
i=1

yi + β.

Therefore, when we start with a beta(α, β) prior, the posterior distribution is also beta but
with these “updated” parameters. Note that these updated parameter values are the same
ones identified in the beta kernel

θ
∑n
i=1 yi+α−1(1− θ)n−

∑n
i=1 yi+β−1

in the joint distribution fY,θ(y, θ) in Step 3.

Discussion: Several remarks are in order.

• Instead of getting distracted by the math for the moment, it is helpful to see the “big
picture” here; i.e.,

Start with θ ∼ beta(α, β) −→ Observe data y

−→ Update with θ|y ∼ beta

(
n∑
i=1

yi + α, n−
n∑
i=1

yi + β

)
.

The posterior distribution combines the information from the prior (through α and
β) with the information in the data (through the sufficient statistic

∑n
i=1 yi and the

sample size n).
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Figure 11.1: Different beta prior distributions.

• Why did we start with a beta prior distribution?

– There is nothing which mandates us to use a beta prior distribution. However, it
is certainly reasonable because

Y ∼ Bernoulli(θ) =⇒ Θ = {0 < θ < 1} = (0, 1).

In turn, the support of a beta random variable is also (0, 1). Therefore, the
parameter space for θ in the Bernoulli(θ) distribution matches the support for θ
in the prior distribution.

– Prior information regarding θ can be incorporated by selecting a prior model that
accurately reflects that information; refer to Figure 11.1 (above). In the beta
prior, values of α < β are consistent with smaller values of θ; values of α > β are
consistent with larger values of θ. Recall that the beta pdf is symmetric about
1/2 when α = β. This type of prior model might be selected when θ is thought
to be near 1/2.

• Is there a reason the prior and posterior distributions are both beta? Yes, in this
problem, the beta distribution is a conjugate prior. We will discuss this more later.
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Figure 11.2: Prior and posterior distributions for the population proportion of UofSC stu-
dents supporting the mask mandate. Prior: θ ∼ beta(2, 10). Posterior: θ|y ∼ beta(42, 70).

Application: On August 17, 2021, Dr. Pastides reinstated the mask mandate for all
faculty, staff, and students at the University of South Carolina. Let θ denote the population
proportion of UofSC students who support this decision. A random sample of n = 100
students is obtained and each student is asked if s/he supports the mandate. Suppose the
yes/no responses Y1, Y2, ..., Y100 are modeled as iid Bernoulli(θ), where θ ∼ beta(α, β) is used
to incorporate prior information. Suppose 40 students answered “yes” so that

100∑
i=1

yi = 40.

For an analyst who uses a beta(α = 2, β = 10) prior, which incorporates the a priori belief
that θ is “small,” the posterior distribution is beta with parameters

α∗ = 40 + 2 = 42

β∗ = 100− 40 + 10 = 70;

see Figure 11.2 (above). Note how the posterior distribution shifts notably to the right when
compared to the prior model; this is the due to the effect of observing 40 “successes,” which
is not consistent with a beta(2, 10) prior. In addition, note how the posterior distribution is
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Figure 11.3: Posterior distributions g(θ|y) for the different prior models in Figure 11.1.

much less variable than the prior distribution. The prior model is selected before seeing the
data y. The posterior distribution incorporates the data so it uses more information.

Observation: Out of curiosity, I went ahead and constructed the posterior distributions for
each of the prior model choices in Figure 11.1; i.e.,

• Prior: θ ∼ beta(2, 10) =⇒ Posterior: θ|y ∼ beta(42, 70)

• Prior: θ ∼ beta(3, 3) =⇒ Posterior: θ|y ∼ beta(43, 63)

• Prior: θ ∼ beta(5, 1) =⇒ Posterior: θ|y ∼ beta(45, 61),

and I plotted each one in Figure 11.3 (above). This figure shows the posterior distributions
are very similar! This begs the question, “Does the prior model choice even matter?” The
answer is “Yes, it can matter,” although there is a good reason why the posterior distributions
are similar here. In general, a posterior distribution is formed by combining the prior model
with the data (i.e., the information contained in the likelihood function). With a large sample
size like n = 100 students, the likelihood function is contributing so much information that
it is “down-weighting” the influence of the prior. Had the sample size been something like
n = 10 students, then the prior model choices would be much more influential in determining
where the posteriors reside. �
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Example 11.2 (Poisson-gamma). Suppose Y1, Y2, ..., Yn is an iid sample from a Poisson(θ)
population, where θ > 0. In turn, suppose θ is best regarded as a gamma random variable
with parameters α > 0 and β > 0; i.e., θ ∼ gamma(α, β). Using the five-step algorithm
described previously, derive the posterior distribution of θ.

1. Prior distribution. This is given in the problem. If θ ∼ gamma(α, β), then the prior
pdf is

g(θ) =
1

Γ(α)βα
θα−1e−θ/β, for θ > 0.

2. Conditional distribution. If Y1, Y2, ..., Yn are iid from a Poisson(θ) population, then

fY|θ(y|θ) =
n∏
i=1

θyie−θ

yi!
=
θ
∑n
i=1 yie−nθ∏n
i=1 yi!

.

Mathematically, fY|θ(y|θ) is the same as the likelihood function.

3. Joint distribution. This is the conditional distribution times the prior; i.e.,

fY,θ(y, θ) = fY|θ(y|θ)g(θ)

=
θ
∑n
i=1 yie−nθ∏n
i=1 yi!

× 1

Γ(α)βα
θα−1e−θ/β =

1

Γ(α)βα
∏n

i=1 yi!
θ
∑n
i=1 yi+α−1e−θ

/
(n+ 1

β )
−1

.

4. Marginal distribution. We get this by taking the joint distribution and integrating
over θ; i.e.,

mY(y) =

∫
Θ

fY,θ(y, θ)dθ

=

∫ ∞
0

1

Γ(α)βα
∏n

i=1 yi!
θ
∑n
i=1 yi+α−1e−θ

/
(n+ 1

β )
−1

dθ

=
1

Γ(α)βα
∏n

i=1 yi!

∫ ∞
0

θ
∑n
i=1 yi+α−1e−θ

/
(n+ 1

β )
−1

dθ.

The integrand in the last integral; i.e.,

θ
∑n
i=1 yi+α−1e−θ

/
(n+ 1

β )
−1

is a gamma kernel with parameters
∑n

i=1 yi + α and (n+ 1/β)−1. Therefore,

∫ ∞
0

θ
∑n
i=1 yi+α−1e−θ

/
(n+ 1

β )
−1

dθ = Γ

(
n∑
i=1

yi + α

)[(
n+

1

β

)−1
]∑n

i=1 yi+α

and thus the marginal distribution is

mY(y) =

Γ (
∑n

i=1 yi + α)

[(
n+ 1

β

)−1
]∑n

i=1 yi+α

Γ(α)βα
∏n

i=1 yi!
.
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5. Posterior distribution. This is the joint distribution divided by the marginal distri-
bution of Y; i.e.,

g(θ|y) =
fY,θ(y, θ)

mY(y)
=

1

Γ(α)βα
∏n

i=1 yi!
θ
∑n
i=1 yi+α−1e−θ

/
(n+ 1

β )
−1

Γ (
∑n

i=1 yi + α)

[(
n+ 1

β

)−1
]∑n

i=1 yi+α

Γ(α)βα
∏n

i=1 yi!

=
1

Γ (
∑n

i=1 yi + α)

[(
n+ 1

β

)−1
]∑n

i=1 yi+α
θ
∑n
i=1 yi+α−1e−θ

/
(n+ 1

β )
−1

.

We recognize g(θ|y) as a gamma pdf with parameters

α∗ =
n∑
i=1

yi + α

β∗ =

(
n+

1

β

)−1

.

Therefore, when we start with a gamma(α, β) prior, the posterior distribution is also gamma
but with these “updated” parameters. Note that these updated parameter values are the
same ones identified in the gamma kernel

θ
∑n
i=1 yi+α−1e−θ

/
(n+ 1

β )
−1

in the joint distribution fY,θ(y, θ) in Step 3.

Discussion: Several remarks are in order.

• As in Example 11.1 (binomial-beta), it is helpful to see the “big picture” here; i.e.,

Start with θ ∼ gamma(α, β) −→ Observe data y

−→ Update with θ|y ∼ gamma

(
n∑
i=1

yi + α,

(
n+

1

β

)−1
)
.

The posterior distribution combines the information from the prior (through α and
β) with the information in the data (through the sufficient statistic

∑n
i=1 yi and the

sample size n).

• Why did we start with a gamma prior distribution?

– There is nothing which mandates us to use a gamma prior distribution. However,
it is certainly reasonable because

Y ∼ Poisson(θ) =⇒ Θ = {0 < θ <∞} = (0,∞).

In turn, the support of a gamma random variable is also (0,∞). Therefore, the
parameter space for θ in the Poisson(θ) distribution matches the support for θ in
the prior distribution.
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Figure 11.4: Different gamma prior distributions.

– Prior information regarding θ can be incorporated by selecting a prior model that
accurately reflects that information; refer to Figure 11.4 (above). The gamma
prior can assume a variety of shapes depending on the values of α and β (e.g.,
when α = 1, the gamma distribution reduces to an exponential distribution with
mean β). Recall the mean of a gamma(α, β) random variable is αβ.

• Is there a reason the prior and posterior distributions are both gamma? Yes, in this
problem, the gamma distribution is a conjugate prior. We will discuss this more
later.

Application: The number of events (e.g., claims per day, accidents per year, etc.) in
property/casualty insurance is often assumed to follow a Poisson distribution. Suppose
Y1, Y2, ..., Yn is an iid sample from a Poisson(θ) population, where θ ∼ gamma(α, β) is used
to incorporate prior information. In STAT 512 (Example 9.4, pp 118), we used a Poisson
distribution to model the number of accidents per year for a sample of n = 84 policies. The
total number of accidents in the sample was

84∑
i=1

yi = 103.
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Figure 11.5: Prior and posterior distributions for the mean number of accidents per year.
Prior: θ ∼ gamma(1.5, 1). Posterior: θ|y ∼ gamma(104.5, 1/85).

For an analyst who uses a gamma(α = 1.5, β = 1) prior, which incorporates the a priori
belief that the (prior) mean is 1.5 accidents per year, the posterior distribution is gamma
with parameters

α∗ = 103 + 1.5 = 104.5

β∗ =

(
84 +

1

1

)−1

=
1

85
;

see Figure 11.5 (above). Again, note how the posterior distribution is much less variable than
the prior distribution. The posterior distribution combines the information supplied by the
prior model with the information observed in data y. As in Example 11.1, the sample size
n = 84 is pretty large, so the posterior distribution is more influenced by the contribution
from the likelihood function than by the contribution from the prior model. �

Remark: We have presented a five-step algorithm to construct the posterior distribution
g(θ|y). It turns out that Step 4, the step which painstakingly derives the marginal distri-
bution of Y, isn’t really needed to determine g(θ|y). In addition, when a sufficient statistic
T = T (Y) = T (Y1, Y2, ..., Yn) exists, there is no harm in working with the sampling distri-
bution of T from the start (this streamlines Step 2). We now discuss these issues.
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Posterior shortcut: Let’s start with the joint distribution

fY,θ(y, θ) = fY|θ(y|θ)g(θ) = “Likelihood × prior”

in Step 3. This distribution describes how the random vector Y and the random variable θ
vary jointly. Step 4 then proceeds to find the marginal distribution mY(y) so that we can
determine the posterior distribution

g(θ|y) =
fY,θ(y, θ)

mY(y)
.

However, if our only goal is to determine g(θ|y), then is Step 4 really needed? After all, we
know that mY(y) is free of θ, that is, as far as the posterior distribution g(θ|y) is concerned,
the marginal pdf/pmf mY(y) is nothing more than a proportionality constant. This means
we can write

g(θ|y) ∝ fY,θ(y, θ) = fY|θ(y|θ)g(θ) = “Likelihood × prior”.

The posterior distribution in Step 5 is proportional to the joint distribution in Step 3; i.e.,
dividing by mY(y) in Step 4 simply takes the joint distribution and makes it a bona fide
(updated) density function for θ. For example,

• In Example 11.1 (binomial-beta), we wrote in Step 3

fY,θ(y, θ) =
Γ(α + β)

Γ(α)Γ(β)
θ
∑n
i=1 yi+α−1(1− θ)n−

∑n
i=1 yi+β−1.

Dropping the constant which is free of θ, we know

g(θ|y) ∝ θ
∑n
i=1 yi+α−1(1− θ)n−

∑n
i=1 yi+β−1,

the kernel of a beta density with parameters

α∗ =
n∑
i=1

yi + α

β∗ = n−
n∑
i=1

yi + β.

Therefore, we know at this point (after Step 3) that the posterior distribution must
be beta with these parameters. Dividing the marginal distribution mY(y) in Step 4
is now unnecessary; all this step does is determine the proportionality constant which
makes g(θ|y) a bona fide density of θ.

• In Example 11.2 (Poisson-gamma), we wrote in Step 3

fY,θ(y, θ) =
1

Γ(α)βα
∏n

i=1 yi!
θ
∑n
i=1 yi+α−1e−θ

/
(n+ 1

β )
−1

.
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Dropping the constant which is free of θ, we know

g(θ|y) ∝ θ
∑n
i=1 yi+α−1e−θ

/
(n+ 1

β )
−1

,

the kernel of a gamma density with parameters

α∗ =
n∑
i=1

yi + α

β∗ =

(
n+

1

β

)−1

.

Therefore, we know at this point (after Step 3) that the posterior distribution must
be gamma with these parameters. Again, dividing by mY(y) in Step 4 is just a
normalization step.

Example 11.3. Suppose Y1, Y2, ..., Yn is an iid sample from the population-level pdf

fY (y|θ) =

{
θ2ye−θy, y > 0

0, otherwise,

a gamma distribution with shape parameter 2 and scale parameter 1/θ. In turn, suppose θ
is best regarded as random with prior pdf

g(θ) =

{
e−θ, θ > 0

0, otherwise.

Determine the posterior distribution g(θ|y).

Solution. We use this example as an opportunity to highlight our recently discovered
“streamlined approach.” The conditional distribution fY|θ(y|θ) in Step 2 is simply the like-
lihood function, that is,

fY|θ(y|θ) = fY (y1|θ)× fY (y2|θ)× · · · × fY (yn|θ)

= θ2y1e
−θy1 × θ2y2e

−θy2 × · · · × θ2yne
−θyn = θ2n

(
n∏
i=1

yi

)
e−θ

∑n
i=1 yi .

The joint distribution in Step 3 is

fY,θ(y, θ) = fY|θ(y|θ)g(θ) = θ2n

(
n∏
i=1

yi

)
e−θ

∑n
i=1 yi × e−θ ∝ θ2ne−θ(

∑n
i=1 yi+1),

a gamma kernel with parameters

α∗ = 2n+ 1

β∗ =

(
n∑
i=1

yi + 1

)−1

.

Therefore, the posterior distribution g(θ|y) must be gamma with these (updated) parame-
ters. �
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Sufficient statistics: When a sufficient statistic T = T (Y) = T (Y1, Y2, ..., Yn) exists,
determining the posterior distribution g(θ|y) becomes even easier. When T is sufficient, we
know the conditional distribution fY|θ(y|θ) can be written as

fY|θ(y|θ) = k1(t, θ)k2(y1, y2, ..., yn) = k1(t, θ)k2(y),

by the Factorization Theorem. Therefore, the posterior distribution g(θ|y) satisfies

g(θ|y) ∝ fY|θ(y|θ)g(θ) = k1(t, θ)k2(y)g(θ) ∝ k1(t, θ)g(θ).

This should convince us of the following:

1. The posterior distribution g(θ|y) must depend on the data y through the value of the
sufficient statistic T = T (y) = t.

2. We can write g(θ|t) to denote the posterior distribution instead and there is no harm
in doing so (i.e., we lose no information about the posterior).

Therefore, instead of working with the conditional distribution fY|θ(y|θ) in Step 2, we can
instead work with fT |θ(t|θ), the (sampling) distribution of T . The posterior distribution
g(θ|t) must satisfy

g(θ|t) ∝ fT |θ(t|θ)g(θ).

Example 11.1 (revisited). Suppose Y1, Y2, ..., Yn is an iid sample from a Bernoulli(θ) popu-
lation, where 0 < θ < 1. In turn, suppose θ is best regarded as a beta random variable with
parameters α > 0 and β > 0; i.e., θ ∼ beta(α, β). A sufficient statistic is

T = T (Y1, Y2, ..., Yn) =
n∑
i=1

Yi

and T ∼ b(n, θ). Therefore,

g(θ|t) ∝ fT |θ(t|θ)g(θ) =

(
n

t

)
θt(1− θ)n−t× Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 ∝ θt+α−1(1− θ)n−t+β−1.

We can immediately conclude the posterior distribution is beta with parameters t + α and
n− t+ β, where t =

∑n
i=1 yi. This was the same conclusion as before. �

Example 11.2 (revisited). Suppose Y1, Y2, ..., Yn is an iid sample from a Poisson(θ) popu-
lation, where θ > 0. In turn, suppose θ is best regarded as a gamma random variable with
parameters α > 0 and β > 0; i.e., θ ∼ gamma(α, β). A sufficient statistic is

T = T (Y1, Y2, ..., Yn) =
n∑
i=1

Yi

and T ∼ Poisson(nθ). Therefore,

g(θ|t) ∝ fT |θ(t|θ)g(θ) =
(nθ)te−nθ

t!
× 1

Γ(α)βα
θα−1e−θ/β ∝ θt+α−1e−θ

/
(n+ 1

β )
−1

.

We can immediately conclude the posterior distribution is gamma with parameters t+α and
(n+ 1/β)−1, where t =

∑n
i=1 yi. This was the same conclusion as before. �
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11.3 Prior model selection

Recall: In Example 11.2, we considered the Poisson-gamma modeling problem, that is,
Y1, Y2, ..., Yn are iid Poisson(θ) and the prior distribution θ ∼ gamma(α, β), where α and β
are known. We observed the following:

Prior: θ ∼ gamma(α, β) −→ Posterior: θ|y ∼ gamma

(
n∑
i=1

yi + α,

(
n+

1

β

)−1
)
.

That is, the prior and the posterior both reside in the same family of distributions. Suppose
instead we had selected the prior distribution

θ ∼ N (µ, σ2),

where µ and σ2 are known. Will the posterior distribution now reside in the normal family?
With a N (µ, σ2) prior, the joint distribution in Step 3 is

fY,θ(y, θ) = fY|θ(y|θ)g(θ)

=
θ
∑n
i=1 yie−nθ∏n
i=1 yi!

× 1√
2πσ

e−(θ−µ)2/2σ2

=
θ
∑n
i=1 yie−[nθ+(θ−µ)2/2σ2]

√
2πσ

∏n
i=1 yi!

.

Unfortunately, there is no easily identified normal kernel from this distribution, and in fact
the marginal distribution of Y; i.e.,

mY(y) =

∫
Θ

fY,θ(y, θ)dθ =

∫ ∞
−∞

1√
2πσ

∏n
i=1 yi!

θ
∑n
i=1 yie−[nθ+(θ−µ)2/2σ2]dθ

involves a messy integral which appears to be intractable.

Q: Why is it when θ ∼ gamma(α, β), the posterior g(θ|y) is a gamma pdf, but when
θ ∼ N (µ, σ2), the posterior is not normal?
A: Because the N (µ, σ2) family is not conjugate in this example.

Terminology: Let F = {fY (y|θ); θ ∈ Θ} denote a class of probability density (mass)
functions indexed by the parameter θ. A class G of prior distributions is said to be a
conjugate family for F if the posterior distribution g(θ|y) ∈ G, for all fY (y|θ) ∈ F
and for all priors g(θ) ∈ G. Table 11.1 (next page) gives examples of common probability
distributions and their conjugate priors.

Terminology: Parameters which index a prior distribution are called hyperparameters.

• In Example 11.1 (binomial-beta), the prior distribution θ ∼ beta(α, β). The hyperpa-
rameters are α and β.

• In Example 11.2 (Poisson-gamma), the prior distribution θ ∼ gamma(α, β). The
hyperparameters are α and β.
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Table 11.1: Common conjugate families and their hyperparameters.

Family Parameter Conjugate family Prior hyperparameters
b(n, p) p beta(α, β) α, β

nib(r, p) p beta(α, β) α, β
Poisson(λ) λ gamma(α, β) α, β
N (µ, σ2

0) µ N (η, δ2) η, δ2

N (µ0, σ
2) σ2 IG(α, β) α, β

exponential(1/θ) θ gamma(α, β) α, β
mult(n,p) p Dirichlet(α1, α2, ..., αk) α1, α2, ..., αk
Np(µ,Σ0) µ Np(η,Σ) η, Σ
Np(µ0,Σ) Σ inverse Wishart(ν,Ψ) ν, Ψ

Remark: To carry out a classical Bayes analysis (as we have done so far), the researcher
must specify the precise values of all hyperparameters which index the prior. In this light, it
is certainly reasonable to criticize (or at least be skeptical of) the Bayesian paradigm because
of this requirement. For example, in the mask mandate problem (Example 11.1), how do we
know a priori the population proportion of UofSC students favoring the mask mandate θ ∼
beta(2, 10)? Of course, we probably don’t know this. However, this is certainly a reasonable
prior model if the analyst believes θ is “small.” The beauty of the Bayesian paradigm is that
both the prior and the data (through the likelihood function) “have their say” in determining
where the posterior distribution resides. Furthermore, we know from Examples 11.1 and 11.2
that when the sample size n is large, the effect of the prior distribution is reduced anyway.
Therefore, even a “bad” prior choice may not create large problems.

Alternative approaches: In addition to classical Bayes (where hyperparameters are spec-
ified beforehand), other Bayesian approaches to inference have been developed. We will not
pursue these approaches in depth in this course, but it is helpful to have a passing familiarity
with them.

• Hierarchical Bayes. In this approach, instead of eliciting values of the hyperparameters
beforehand, one assigns probability distributions to them. For example, in Example
11.1 (binomial-beta), we could enrich the model as follows:

T |θ ∼ b(n, θ)

θ|α, β ∼ beta(α, β)

α, β ∼ exponential(1).

In this hierarchy, the exponential(1) distribution is called a hyperprior for α and
β. Adding this extra layer increases the level of complexity in deriving the posterior
distribution g(θ|t) analytically. Computational (simulation-based) Bayesian methods
are usually needed to estimate models like this.

• Empirical Bayes. In this approach, instead of eliciting values of the hyperparameters
beforehand, one uses the marginal distribution of the data (usually through a sufficient

PAGE 82



STAT 513: CHAPTER 11 JOSHUA M. TEBBS

statistic) to estimate them. For example, in Example 11.1 (binomial-beta), we assumed

T |θ ∼ b(n, θ)

θ|α, β ∼ beta(α, β).

In Step 4, we derived the marginal distribution of the data; the pmf corresponding to
this distribution can be written as

mT (t) =
Γ(α + β)

Γ(α)Γ(β)

Γ(t+ α)Γ(n− t+ β)

Γ(n+ α + β)
,

where t =
∑n

i=1 yi, for t = 0, 1, 2, ..., n. This is called the beta-binomial pmf. An

empirical Bayesian approach would first determine estimates α̂ and β̂ from this distri-
bution (using MLE, MOM, etc.) and then set the prior distribution at these estimates,

beta(α̂, β̂). An obvious criticism of empirical Bayes is that one is actually using the
data twice: once to select the prior and then again to derive the posterior. Another
criticism of empirical Bayes is that it violates the “spirit” of the Bayesian approach,
where a prior distribution should be selected on the basis of a priori knowledge−not
currently observed data.

• Nonparametric Bayes. This approach generally avoids making parametric assump-
tions altogether. Instead of using prior distributions for population-level parameters,
prior distributions are assigned to the population-level distributions themselves. For
example, in a density estimation problem, one might model

Y1, Y2, ..., Yn ∼ iid F

F ∼ DP,

where F is a cdf and “DP” stands for “Dirichlet process.” The DP is basically a
probability model for an infinite dimensional parameter, viewing F to be of “infinite”
dimension. The nonparametric Bayes approach is used in a variety of statistical prob-
lems, including regression, survival analysis, and clustering.

Q: In a classical Bayes analysis, do we have to use a conjugate prior distribution?
A: No, but it does simplify things, and conjugate priors are often used primarily for this
reason. Non-conjugate priors could be used, but then simulation-based methods would
be needed to approximate posterior distributions numerically (through a type of Monte
Carlo sampling). It should be noted that in some problems conjugate priors may not exist,
especially when the population-level parameter θ is of higher dimension.

Remark: When there is a general lack of a priori knowledge about the parameter θ, prior
models may be difficult to select. It might also be desired for the prior g(θ) to play a minimal
role in determining where the posterior distribution g(θ|y) resides. In this situation, one can
choose a noninformative prior for θ. The motivation for this is to “let the data speak
for themselves” and to have the prior distribution contribute only minimally. These are also
known as “vague,” “flat,” or “diffuse” priors.
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Figure 11.6: Noninformative beta(α, β) prior distributions. Left: α = β = 1 (uniform prior).
Right: α = β = 1/2 (Jeffreys’ prior). Note that the vertical axis scales are different in the
figures.

Example 11.1 (revisited). In the UofSC mask mandate problem, let Y1, Y2, ..., Y100 denote
the “yes/no” responses from students who are asked if they favor the mask mandate (1 = in
favor; 0 = not). Suppose we model these responses as iid Bernoulli(θ), where θ ∼ beta(α, β)
is used to incorporate prior knowledge as before.

• One example of a noninformative prior is the U(0, 1) distribution; i.e., a beta(α, β)
distribution when α = β = 1. This injects the minimal amount of information into the
prior model; in fact, it simply promises that 0 < θ < 1 and acknowledges there is no a
priori knowledge.

• Another noninformative prior is the beta(α, β) distribution when α = β = 1/2; this is
known as Jeffreys’ prior (to be discussed momentarily). This distribution is nearly
uniform (flat) over a large range of (0, 1), but allows for θ to be very small or very
large with larger probability. �

Example 11.2 (revisited). In the actuarial claims problem, let Y1, Y2, ..., Y84 denote the
number of accidents observed from a random sample of n = 84 policies, modeled as iid
counts from a Poisson(θ) distribution. As we will see later, a noninformative gamma(α, β)
prior for θ would choose α to be small and β to be large. For example, Figure 11.7 (next
page) shows this prior when α = 1/2 and β = 100. Note this prior distribution is mostly
flat over a large range of values of θ > 0. �
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Figure 11.7: Gamma(α, β) prior distribution with α = 1/2 and β = 100.

Jeffreys’ prior: A general strategy for (noninformative) prior model selection uses “Jeffreys’
principle.” Suppose Y1, Y2, ..., Yn is an iid sample from fY (y|θ), where θ ∼ g(θ) is a prior
distribution. When θ is a scalar parameter (one-dimensional), Jeffreys’ principle says to
choose

g(θ) ∝ [I(θ)]1/2,

where

I(θ) = E

[
− ∂2

∂θ2 ln fY (Y |θ)
]

is the Fisher information. The mathematical reasoning behind Jeffreys’ principle (and
hence this choice of prior model) is that it respects parameter invariance under all mono-
tone transformations. That is, whether one models θ ∼ g(θ) or some monotone function of
θ, say h(θ), the prior model should be chosen to respect both scales; i.e., if θ ∼ g(θ), then
the prior for ξ = h(θ) should satisfy

g(h−1(ξ))

∣∣∣∣ ddξh−1(ξ)

∣∣∣∣ .
Jeffreys showed that choosing g(θ) ∝ [I(θ)]1/2 leads to this type of parameter invariance
property.
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Recall: We have seen the Fisher information before. In STAT 512 (Chapter 9), we learned
the Fisher information appears when studying the large-sample properties of maximum likeli-
hood estimators. Back in our classical (i.e., non-Bayesian) paradigm where θ is best regarded
as fixed, suppose Y1, Y2, ..., Yn is an iid sample from a population distribution described by
pY (y|θ) or fY (y|θ), and suppose θ̂ is the MLE for θ. Under certain “regularity conditions,”

θ̂
p−→ θ,

as n→∞; i.e., θ̂ is a consistent estimator of θ. In addition,

θ̂ − θ√
v(θ)

n

d−→ N (0, 1) ⇐⇒
√
n(θ̂ − θ) d−→ N (0, v(θ)),

as n→∞, where

v(θ) =
1

E
[
− ∂2

∂θ2 ln pY (Y |θ)
] (discrete case)

v(θ) =
1

E
[
− ∂2

∂θ2 ln fY (Y |θ)
] (continuous case).

In other words, the “large-sample variance” v(θ) in asymptotic distributions for MLEs is the
reciprocal of the Fisher information.

Example 11.4. Suppose Y1, Y2, ..., Yn is an iid sample from a Bernoulli(p) population dis-
tribution, where p ∼ g(p). Show that applying Jeffreys’ principle leads to a beta prior
distribution with α = β = 1/2.

Solution. We first calculate the Fisher information I(p). The pmf of Y ∼ Bernoulli(p),
where nonzero, is

fY (y|p) = py(1− p)1−y =⇒ ln fY (y|p) = y ln p+ (1− y) ln(1− p).

The first derivative of ln fY (y|p) is

∂

∂p
ln fY (y|p) =

y

p
− 1− y

1− p
.

The second derivative of ln fY (y|p) is

∂2

∂p2
ln fY (y|p) = − y

p2
− 1− y

(1− p)2
.

Recalling E(Y ) = p, the Fisher information is

I(p) = E

[
− ∂2

∂p2
ln fY (Y |p)

]
= E

[
Y

p2
+

1− Y
(1− p)2

]
=

E(Y )

p2
+

1− E(Y )

(1− p)2
=

1

p
+

1

1− p
=

1

p(1− p)
.
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Jeffreys’ principle says

g(p) ∝ [I(p)]1/2 =

[
1

p(1− p)

]1/2

= p
1
2
−1(1− p)

1
2
−1,

which we recognize as the kernel of a beta pdf with α = β = 1/2. Therefore, Jeffreys’ prior
for p is beta(1/2, 1/2); see Figure 11.6. �

Example 11.5. Suppose Y1, Y2, ..., Yn is an iid sample from a Poisson(λ) population distri-
bution, where λ ∼ g(λ). Derive Jeffreys’ prior distribution for λ.

Solution. We first calculate the Fisher information I(λ). The pmf of Y ∼ Poisson(λ), where
nonzero, is

fY (y|λ) =
λye−λ

y!
=⇒ ln fY (y|λ) = y lnλ− λ− ln y!.

The first derivative of ln fY (y|λ) is

∂

∂λ
ln fY (y|λ) =

y

λ
− 1.

The second derivative of ln fY (y|λ) is

∂2

∂λ2
ln fY (y|λ) = − y

λ2
.

Recalling E(Y ) = λ, the Fisher information is

I(λ) = E

[
− ∂2

∂λ2
ln fY (Y |λ)

]
= E

(
Y

λ2

)
=
E(Y )

λ2
=

1

λ
.

Jeffreys’ principle says

g(λ) ∝ [I(λ)]1/2 =

(
1

λ

)1/2

=
1√
λ
.

Interesting: Using Jeffreys’ principle for prior selection in this problem leads to a prior
distribution g(λ) which is not even a legitimate pdf! Letting c denote a constant which is
free of λ, note that ∫ ∞

0

g(λ)dλ =

∫ ∞
0

c√
λ
dλ = 2c

√
λ
∣∣∣∞
0

= +∞.

This is an example of an improper prior. What’s more interesting is that even though the
prior is improper here, the posterior is still proper (i.e., it is a valid pdf). To see why, note
that

1√
λ

= lim
β→∞

λ
1
2
−1e−λ/β.

We recognize λ
1
2
−1e−λ/β as the kernel of a gamma pdf with shape α = 1/2 and scale β.

Therefore, we can think of 1/
√
λ as the kernel of the “gamma(1/2,∞)” distribution. Of
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course, this isn’t a real distribution, but it is the noninformative prior that arises when using
Jeffreys’ principle. Now, recall that in the Poisson-gamma problem:

Prior: λ ∼ gamma(α, β) −→ Posterior: λ|y ∼ gamma

(
n∑
i=1

yi + α,

(
n+

1

β

)−1
)

;

see Example 11.2. Letting α = 1/2 and “β =∞,” the posterior becomes

λ|y ∼ gamma

(
n∑
i=1

yi +
1

2
,

1

n

)
,

which is a valid pdf. Therefore, even though the prior distribution is not proper, the posterior
still is. �

11.4 Point estimation

Preview: Bayesians usually report point estimates for population-level parameters by using
commonly known measures of central tendency from posterior distributions. Because a
posterior distribution combines information from the prior distribution g(θ) and the observed
data y (through the likelihood function), these functionals of g(θ|y) will also incorporate
both sources of information. Bayesian interval estimators and hypothesis tests also use the
posterior distribution as we will see in due course.

Background: Bayesian point estimation theory relies on advanced topics like loss functions
and decision theory. A rigorous treatment of these topics is slightly beyond the scope of this
course. However, it does suffice to note that determining a Bayesian point estimator, say
δ(Y), involves making a decision in light of the penalty (loss) incurred for making a wrong
choice. Therefore, it is helpful to think of point estimation as a “decision problem” in the
following way:

θ ←− parameter we want to estimate

δ(Y) ←− point estimator we will use (choosing which one is a “decision”).

For example, suppose we would like to penalize overestimation of θ and underestimation of
θ equally. Two loss functions which capture this notion beautifully are

L1(θ, δ(y)) = [θ − δ(y)]2

L2(θ, δ(y)) = |θ − δ(y)|.

Both loss functions increase as the distance between θ and δ(y) increases (and hence a
larger “penalty” is incurred), and L1(θ, δ(y)) penalizes larger distances more severely than
L2(θ, δ(y)). The Bayesian will report different point estimates for θ under each loss function,
as we are now ready to describe.
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Terminology: A Bayesian point estimate δ(y) is the “decision” which minimizes the
expected loss

E[L(θ, δ(Y))] =

∫
Θ

L(θ, δ(y))g(θ|y)dθ,

where g(θ|y) is the posterior distribution. Another way to say this is

δ(y) = arg min

∫
Θ

L(θ, δ(y))g(θ|y)dθ.

This definition shows us that Bayesians will use the point estimate δ(y) which makes the
expected (average) loss as small as possible, and the form of the estimate will change de-
pending on what type of loss function is used. The corresponding random version δ(Y) is
called a Bayesian point estimator.

Common estimates: We now summarize common Bayesian point estimates and identify
which loss functions correspond to each one.

• When squared-error loss L1(θ, δ(y)) = [θ− δ(y)]2 is used, the Bayesian point estimate
of θ is the posterior mean

δ(y) = θ̂B = E(θ|Y = y),

i.e., θ̂B is the mean of the posterior distribution.

• When absolute-error loss L2(θ, δ(y)) = |θ − δ(y)| is used, the Bayesian point estimate
of θ is the posterior median

δ(y) = θ̃B = median(θ|Y = y),

i.e., θ̃B is the median of the posterior distribution.

• When the loss function is

L3(θ, δ(y)) =

{
1, θ 6= δ(y)

0, θ = δ(y),

which is also known as the “0-1 loss function,” the Bayesian point estimate of θ is the
posterior mode

δ(y) = θ̂∗B = mode(θ|Y = y),

i.e., θ̂∗B is the mode of the posterior distribution. This is simply the value of θ which
maximizes g(θ|y).

Q: When will the posterior mean, median, and mode be equal?
A: When the posterior distribution g(θ|y) is symmetric.
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Example 11.1 (revisited). Suppose Y1, Y2, ..., Yn is an iid sample from a Bernoulli(p) pop-
ulation, where the prior distribution is p ∼ beta(α, β). We have learned that

p ∼ beta(α, β)︸ ︷︷ ︸
prior distribution

−→ Observe data y −→ p|y ∼ beta

(
n∑
i=1

yi + α, n−
n∑
i=1

yi + β

)
︸ ︷︷ ︸

posterior distribution

.

Under squared-error loss, the Bayesian would report

p̂B = E(p|Y = y) =

n∑
i=1

yi + α

n∑
i=1

yi + α + n−
n∑
i=1

yi + β

=

n∑
i=1

yi + α

n+ α + β
,

which is simply the mean of the beta posterior distribution identified above. An interesting
observation in this example is that the posterior mean p̂B can be written as

p̂B =

∑n
i=1 yi + α

n+ α + β
=

(
n

n+ α + β

)∑n
i=1 yi
n

+

(
α + β

n+ α + β

)
α

α + β
,

a weighted average of the MLE y =
∑n

i=1 yi/n and the prior mean α/(α + β). Note that
when the sample size n is large, the prior mean receives less weight in its contribution to
posterior mean p̂B. This makes sense intuitively. When the sample size is large, we should
weight the MLE more and the prior mean less. The opposite is true when n is small; the
prior mean will then play a larger role in determining the value of the posterior mean p̂B.

Application: Among prematurely born infants at Richland Hospital, researchers would like
to estimate p, the probability of developing necrotizing enterocolitis (NEC) for a “high-risk”
group (< 1500 g birth weight and < 32 weeks gestational age). Over a 6-month period,
there were n = 37 infants who were classified as high risk. Denote the NEC statuses (1/0)
by Y1, Y2, ..., Y37 and assume these are iid Bernoulli(p), where p is modeled noninformatively
as p ∼ beta(1/2, 1/2). Among the 37 infants,

t =
37∑
i=1

yi = 9

developed NEC during their stay in the neonatal intensive care unit. The posterior distri-
bution based on these data is

p|y ∼ beta

(
37∑
i=1

yi +
1

2
, 37−

37∑
i=1

yi +
1

2

)
=⇒ p|y ∼ beta(9.5, 28.5)

and is shown in Figure 11.8 (next page). The posterior mean is

p̂B = E(p|Y = y) =
9.5

9.5 + 28.5
= 0.25.

The posterior median is
p̃B = median(p|Y = y) ≈ 0.246.
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Figure 11.8: Premature infant data. Posterior distribution p|y ∼ beta(9.5, 28.5). The
posterior mean, median, and mode are shown by using dark circles.

> qbeta(0.5,9.5,28.5)

[1] 0.2455784

To find the posterior mode, we need to maximize the posterior g(p|y) as a function of p.
Note that

g(p|y) =
Γ(38)

Γ(9.5)Γ(28.5)
p9.5−1(1− p)28.5−1 = cp8.5(1− p)27.5,

where c is a constant free of p. The value of p which maximizes g(p|y) is the same as the
value of p which maximizes ln g(p|y). We have

ln g(p|y) = ln c+ 8.5 ln p+ 27.5 ln(1− p) =⇒ d

dp
ln g(p|y) =

8.5

p
− 27.5

1− p
.

Setting (d/dp) ln g(p|y) equal to 0 and solving for p gives

p̂∗B = mode(p|Y = y) =
8.5

36
≈ 0.236.

Figure 11.8 (above) shows the locations of the posterior mean, median, and mode in this
example. These point estimates are similar because the posterior distribution g(p|y) is fairly
symmetrical in shape. �

PAGE 91



STAT 513: CHAPTER 11 JOSHUA M. TEBBS

11.5 Interval estimation

Recall: A 1−α interval estimator is an interval (θL, θU) that contains a population-level
parameter θ with probability 1− α; i.e.,

P (θL < θ < θU) = 1− α.

In the classical (i.e., non-Bayesian) paradigm, a 1−α interval estimator is also called a 100(1−
α)% confidence interval. Because the non-Bayesian regards θ to be fixed, we remember
it is the endpoints θL and θU that are random in the probability equation above−not θ.

Illustration: If Y1, Y2, ..., Yn is an iid sample from aN (µ, σ2
0) population, where σ2

0 is known,
we can derive a confidence interval for µ by using the pivotal quantity

Z =
Y − µ
σ0/
√
n
∼ N (0, 1).

This leads to

1− α = P (−zα/2 < Z < zα/2) = P

(
Y − zα/2

σ0√
n︸ ︷︷ ︸

µL

< µ < Y + zα/2
σ0√
n︸ ︷︷ ︸

µU

)

so that (
Y − zα/2

σ0√
n
, Y + zα/2

σ0√
n

)
is a 100(1− α)% confidence interval for µ.

Q: What does the term “confidence” really mean?
A: This is a term widely used in statistical inference but is widely misunderstood. The
interval for µ above is a random interval; i.e., the endpoints depend on the random variable
Y so the endpoints are random. Therefore, the statement

1− α = P

(
Y − zα/2

σ0√
n
< µ < Y + zα/2

σ0√
n

)
makes perfect sense, and I prefer to use the term “interval estimator” to reinforce this point.
Where things start to get murky in the interpretation is when we observe a realization of
this random interval; e.g.,(

0.54− 1.96× 7.3√
20
, 0.54 + 1.96× 7.3√

20

)
−→ (−2.66, 3.74).

Now, the interval (−2.66, 3.74) is no longer random so the probability equation

0.95 = P (−2.66 < µ < 3.74)

no longer makes sense. Therefore, in an attempt to explain what the realized interval
(−2.66, 3.74) means, we are forced to dream up the following hypothetical scenario. Suppose
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we took many iid N (µ, σ2
0 = 7.3) samples, each one of size n = 20, and we calculated the

95% confidence interval estimate(
y − 1.96× 7.3√

20
, y + 1.96× 7.3√

20

)
with each sample. Then, acknowledging the variation in the sampling distribution of Y ,
we would expect 95% of the intervals in this collection to contain the population parameter
µ. The one we calculated, (−2.66, 3.74), is one of these possible intervals. We say “95%
confident,” but the confidence coefficient 95% refers to the long-run percentage of the intervals
that would contain µ, noting that in different iid samples we would get different values of y.
Interestingly, the coefficient 95% has little or nothing to do with the interval we calculated,
and, of course, we never get to know if our interval (−2.66, 3.74) contains µ or not.

Note: We now describe how Bayesians do interval estimation. Their approach is far simpler,
and it leads to easy interpretation as we will now see.

Terminology: If g(θ|y) is the posterior pdf of θ (a scalar parameter), the credible prob-
ability of the interval A = (θL, θU) is

P (θL < θ < θU |y) =

∫ θU

θL

g(θ|y)dθ.

If g(θ|y) is a discrete pmf, then the integral above is replaced with a sum. If the interval
A = (θL, θU) has credible probability equal to 1− α, that is,

1− α = P (θL < θ < θU |y),

we call A a 100(1 − α)% credible interval for θ. Another name for “credible interval” is
“posterior probability interval.”

Interpretation: Because g(θ|y) is a valid pdf (pmf) of θ, the interpretation of a 100(1−α)%
credible interval is strikingly simple:

“The probability θ is between θL and θU is 1− α.”

This is far simpler than the interpretation of a classical confidence interval. Of course, the
Bayesian requires an elicitation of the prior distribution θ ∼ g(θ), whereas the classical
statistician does not.

Construction: A 100(1 − α)% credible interval for θ is any interval A = (θL, θU) with
credible probability equal to 1− α. Here are two common ways to construct them:

• Equal-tail. Simply take the endpoints θL and θU to be the lower and upper α/2 quantiles
of g(θ|y), respectively. Clearly, these choices satisfy

1− α = P (θL < θ < θU |y) =

∫ θU

θL

g(θ|y)dθ.
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Figure 11.9: Premature infant data. Posterior distribution p|y ∼ beta(9.5, 28.5). The lower
and upper 0.025 quantiles are shown by using dark circles.

• Highest posterior density. Select A to be the interval so that the posterior pdf g(θ|y)
within the region A is never lower than outside A. This method will produce an interval
consisting of the “most likely” values of θ (as determined by the posterior distribution).

Remark: These two approaches will provide the same interval when the posterior distri-
bution g(θ|y) is symmetric. Even though highest posterior density intervals seem more
sophisticated, equal-tail intervals are often preferred in practice because they are easier to
compute; e.g., a 95% equal-tail credible interval for θ is formed simply by taking the 0.025
and 0.975 quantiles of g(θ|y).

Illustration: In the premature infant study, recall the probability p of developing NEC
among high-risk infants was modeled as

Prior: p ∼ beta(1/2, 1/2) −→ Posterior: p|y ∼ beta(9.5, 28.5).

The posterior distribution g(p|y) is shown in Figure 11.9 (above). A 95% equal-tail credible
interval for p is (0.128, 0.397), which is formed by identifying the 0.025 and 0.975 quantiles of
the beta(9.5, 28.5) distribution. Therefore, the population proportion p of high-risk infants
developing NEC is between 0.128 and 0.397 with probability 0.95.
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> qbeta(0.025,9.5,28.5)

[1] 0.1277291

> qbeta(0.975,9.5,28.5)

[1] 0.39715

HPD interval: I used the R package HDInterval to construct a 95% highest posterior
density interval for p:

> post = rbeta(1e6,9.5,28.5)

> hdi(post,credMass=0.95)

lower upper

0.1211636 0.3882725

It is not surprising both methods produce very similar answers as the posterior distribution
g(p|y) is fairly symmetric; see Figure 11.9. �

Example 11.6. Suppose Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2
0) population, where

σ2
0 is known. In turn, suppose the population mean µ is modeled a priori using a conjugate
N (η, δ2) distribution, where the hyperparameters η and δ2 are known. Derive an equal-
tail 100(1 − α)% credible interval for µ. Note this will be the Bayesian analogue of the
100(1− α)% confidence interval for µ we discussed at the beginning of this subsection.

Solution. The first step is to derive the posterior distribution. It is easy to show

T = T (Y1, Y2, ..., Yn) = Y

is a sufficient statistic in the N (µ, σ2
0) family (when σ2

0 is known). Therefore, we know
immediately the posterior distribution

g(µ|t) ∝ fT |µ(t|µ)g(µ),

where fT |µ(t|µ) is the pdf corresponding to the (sampling) distribution of T = Y , t = y, and
g(µ) is the N (η, δ2) prior pdf. Recall that

T ∼ N
(
µ,
σ2

0

n

)
=⇒ fT |µ(t|µ) =

1√
2π(σ2

0/n)
e−(t−µ)2/2(σ2

0/n),

and the N (η, δ2) prior pdf is

g(µ) =
1√

2πδ2
e−(µ−η)2/2δ2 .

Therefore,

g(µ|t) ∝ 1√
2π(σ2

0/n)
e−(t−µ)2/2(σ2

0/n) × 1√
2πδ2

e−(µ−η)2/2δ2 ∝ exp

{
−
[

(t− µ)2

2(σ2
0/n)

+
(µ− η)2

2δ2

]}
.

The tedious part is now working algebraically with

exp

{
−
[

(t− µ)2

2(σ2
0/n)

+
(µ− η)2

2δ2

]}
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which, when viewed as a function of µ, I claim is proportional to

exp

{
−(µ− something)2

2× something

}
.

Therefore, all we have to do is figure out what these “something’s” are. If we can, then we
know the posterior distribution is proportional to a normal kernel with these quantities as
the (updated) mean and variance, and hence we have the posterior distribution. Expanding
the squares and getting a common denominator, we have

(t− µ)2

2(σ2
0/n)

+
(µ− η)2

2δ2
=

(t2 − 2µt+ µ2)δ2 + (µ2 − 2µη + η2)(σ2
0/n)

2(σ2
0/n)δ2

=
[δ2 + (σ2

0/n)]µ2 − 2[δ2t+ (σ2
0/n)η]µ+ [δ2t2 + (σ2

0/n)η2]

2(σ2
0/n)δ2

.

Dividing the numerator and denominator by the leading coefficient [δ2 + (σ2
0/n)], the last

expression equals

µ2 − 2

[
δ2t+ (σ2

0/n)η

δ2 + (σ2
0/n)

]
µ+

[
δ2t2 + (σ2

0/n)η2

δ2 + (σ2
0/n)

]
2(σ2

0/n)δ2

δ2 + (σ2
0/n)

=

µ2 − 2

[
δ2t+ (σ2

0/n)η

δ2 + (σ2
0/n)

]
µ

2(σ2
0/n)δ2

δ2 + (σ2
0/n)

+

δ2t2 + (σ2
0/n)η2

δ2 + (σ2
0/n)

2(σ2
0/n)δ2

δ2 + (σ2
0/n)︸ ︷︷ ︸

constant free of µ

.

Completing the square in the numerator of the first term, we have

µ2 − 2

[
δ2t+ (σ2

0/n)η

δ2 + (σ2
0/n)

]
µ = µ2 − 2

[
δ2t+ (σ2

0/n)η

δ2 + (σ2
0/n)

]
µ+

[
δ2t+ (σ2

0/n)η

δ2 + (σ2
0/n)

]2

︸ ︷︷ ︸
perfect square

−
[
δ2t+ (σ2

0/n)η

δ2 + (σ2
0/n)

]2

=

(
µ−

[
δ2t+ (σ2

0/n)η

δ2 + (σ2
0/n)

])2

−
[
δ2t+ (σ2

0/n)η

δ2 + (σ2
0/n)

]2

.

Therefore, we have shown

(t− µ)2

2(σ2
0/n)

+
(µ− η)2

2δ2
=

(
µ−

[
δ2t+ (σ2

0/n)η

δ2 + (σ2
0/n)

])2

2(σ2
0/n)δ2

δ2 + (σ2
0/n)

−

[
δ2t+ (σ2

0/n)η

δ2 + (σ2
0/n)

]2

2(σ2
0/n)δ2

δ2 + (σ2
0/n)

+

δ2t2 + (σ2
0/n)η2

δ2 + (σ2
0/n)

2(σ2
0/n)δ2

δ2 + (σ2
0/n)︸ ︷︷ ︸

constant free of µ; call this c
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and hence

exp

{
−
[

(t− µ)2

2(σ2
0/n)

+
(µ− η)2

2δ2

]}
= exp

−
(
µ−

[
δ2t+ (σ2

0/n)η

δ2 + (σ2
0/n)

])2

2(σ2
0/n)δ2

δ2 + (σ2
0/n)

 exp(−c)

∝ exp

−
(
µ−

[
δ2t+ (σ2

0/n)η

δ2 + (σ2
0/n)

])2

2(σ2
0/n)δ2

δ2 + (σ2
0/n)

 .

We have shown the posterior distribution g(µ|t) is proportional to a normal kernel with mean

δ2t+ (σ2
0/n)η

δ2 + (σ2
0/n)

and variance
(σ2

0/n)δ2

δ2 + (σ2
0/n)

.

Therefore, we have shown

Prior: µ ∼ N (η, δ2) −→ Posterior: µ|t ∼ N
(
δ2t+ (σ2

0/n)η

δ2 + (σ2
0/n)

,
(σ2

0/n)δ2

δ2 + (σ2
0/n)

)
,

where t = y. Having just derived the posterior distribution, it is interesting to note the
posterior mean (i.e., the Bayesian point estimate under squared-error loss) can be written as

δ2t+ (σ2
0/n)η

δ2 + (σ2
0/n)

=

[
δ2

δ2 + (σ2
0/n)

]
t+

[
σ2

0/n

δ2 + (σ2
0/n)

]
η,

a weighted average of the MLE t = y and the prior mean η. An 100(1 − α)% equal-
tail credible interval for µ is formed by selecting the lower and upper α/2 quantiles of the
posterior distribution g(µ|t). Because g(µ|t) is a normal pdf, this interval is(

δ2t+ (σ2
0/n)η

δ2 + (σ2
0/n)

− zα/2

√
(σ2

0/n)δ2

δ2 + (σ2
0/n)

,
δ2t+ (σ2

0/n)η

δ2 + (σ2
0/n)

+ zα/2

√
(σ2

0/n)δ2

δ2 + (σ2
0/n)

)
.

On the basis of the observed data (through the sufficient statistic t = y) and the N (η, δ2)
prior model, this interval contains µ with probability 1− α. �

11.6 Hypothesis testing

Remark: Our treatment of hypothesis testing under the Bayesian paradigm will be far less
formal than it was in Chapter 10 under the classical one. There is a good reason for this. Most
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Bayesians do not endorse the role hypothesis testing plays in statistical inference. Instead,
on a practical level, they are much happier simply summarizing posterior distributions with
(Bayesian) point estimates and interval estimates. More generally, Bayesians are usually not
interested in population-level parameters themselves but rather the statistical models that
contain them. Therefore, Bayesians are more focused on comparing one or more statistical
models between or among each other, and they use different criteria to do this.

Bayesian tests: There is certainly nothing to prevent us from framing a hypothesis testing
problem within the Bayesian paradigm. Suppose we are interested in testing

H0 : θ ∈ Θ0

versus
Ha : θ ∈ Θa,

where Θ = Θ0 ∪ Θa. As we have already learned, all inference for the Bayesian flows
from using the posterior distribution g(θ|y). This is a valid probability distribution, so the
probabilities

P (H0 is true|y) = P (θ ∈ Θ0|y) =

∫
Θ0

g(θ|y)dθ

and

P (Ha is true|y) = P (θ ∈ Θa|y) =

∫
Θa

g(θ|y)dθ

make perfect sense and can be computed directly. As for a decision rule, one can simply
choose to reject H0 when

P (θ ∈ Θ0|y) < P (θ ∈ Θa|y),

that is, when the probability of H0 is less than that of Ha. One could use a more stringent
criterion; e.g., rejecting H0 when the posterior probability P (θ ∈ Θ0|y) is small, say less
than 0.01 or 0.05.

Remark: It is worth emphasizing that statements like

P (H0 is true|y) and P (Ha is true|y)

make absolutely no sense in the classical hypothesis testing framework described in the last
chapter. To the classical statistician, the population-level parameter θ is best regarded as
fixed, so {H0 is true} and {Ha is true} are not even random events to which probability can
be assigned. In a casual sense, these probabilities are either 0 or 1; e.g.,

if θ ∈ Θ0 =⇒ P (H0 is true|y) = 1 and P (Ha is true|y) = 0

if θ ∈ Θa =⇒ P (H0 is true|y) = 0 and P (Ha is true|y) = 1.

The problem is one never gets to know which probability is which. This is why the clas-
sical framework introduces concepts like “Type I Error” and “Type II Error” so that one
can quantify the chance that certain errors will be made. However, these probabilities are
calculated from the sampling distribution of a test statistic T . The test statistic is a random
variable because it depends on the sample Y1, Y2, ..., Yn.

PAGE 98



STAT 513: CHAPTER 11 JOSHUA M. TEBBS

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

λ

P
os

te
rio

r 
di

st
rib

ut
io

n

Figure 11.10: Accident data. Posterior distribution g(λ|y) for the mean number of accidents
per year. The posterior probability P (λ ≤ 1|y) is shown shaded.

Illustration: Suppose Y1, Y2, ..., Yn is an iid sample from a Poisson(λ) distribution, where
λ ∼ gamma(α, β). In Example 11.2 (notes, pp 76-77), we used a Poisson distribution to
model the number of accidents per year for a sample of n = 84 policies, and we regarded the
population mean λ to be random with a gamma(1.5, 1) prior distribution. On the basis of
the observed data (103 total accidents), we determined

Prior: λ ∼ gamma(1.5, 1) −→ Posterior: λ|y ∼ gamma(104.5, 1/85).

Suppose we would like to perform a Bayesian test for

H0 : λ ≤ 1
versus

Ha : λ > 1.

From the gamma(104.5, 1/85) posterior distribution (see Figure 11.10 above), we calculate

P (H0 is true|y) = P (λ ≤ 1|y) ≈ 0.022.

Therefore, it is unlikely H0 is true. The posterior evidence highly favors Ha.

> pgamma(1,104.5,85)

[1] 0.02232586
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12 Linear Models

12.1 Introduction

Discussion: A problem that often arises in economics, engineering, medicine, and other
areas is that of investigating the mathematical relationship between two (or more) variables.
The goal is often to model a continuous random variable Y as a function of one or more
independent variables, say, x1, x2, ..., xk. One can express this model as

Y = g(x1, x2, ..., xk) + ε,

where g : Rk → R and ε is a random error term that satisfies certain conditions. This is
called a regression model.

• The presence of the error term ε conveys that the relationship between Y and the
independent variables through g(x1, x2, ..., xk) is likely not perfect (if it was perfect,
this would be a deterministic model).

• The independent variables x1, x2, ..., xk are assumed to be fixed (not random), and they
are measured without error.

There are different types of regression models. A nonparametric model would leave the
form of g unspecified, essentially regarding the relationship between Y and the independent
variables x1, x2, ..., xk to be characterized by some function. A parametric model would
dictate the specific form of g, for example,

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk︸ ︷︷ ︸
g(x1,x2,...,xk)

+ε,

where β0, β1, ..., βk are unknown regression parameters. This is called a linear regression
model. The adjective “linear” does not refer to the shape of g(x1, x2, ..., xk). Instead,
it refers to the manner in which the regression parameters β0, β1, ..., βk appear in the g
function. With the g function above, note that

∂g(x1, x2, ..., xk)

∂β0

= 1

∂g(x1, x2, ..., xk)

∂β1

= x1

...
∂g(x1, x2, ..., xk)

∂βk
= xk.

All of these partial derivatives are free of β0, β1, ..., βk, meaning that g is a linear function
of the regression parameters. With this definition in mind, we see that all of the following
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models are linear in the regression parameters:

Y = β0 + β1x︸ ︷︷ ︸
g(x)

+ε

Y = β0 + β1x+ β2x
2︸ ︷︷ ︸

g(x)

+ε

Y = β0 + β1x1 + β2x2︸ ︷︷ ︸
g(x1,x2)

+ε

Y = β0 + β1x1 + β2x2 + β3x1x2︸ ︷︷ ︸
g(x1,x2)

+ε.

These are all examples of linear regression models. This is true even though only two of
these models are linear functions of the independent variables (the first one and the third
one). An example of a nonlinear model is

Y =
β0

1 + β1eβ2x︸ ︷︷ ︸
g(x)

+ε.

This model is not linear in its parameters. For example,

∂g(x)

∂β0

=
1

1 + β1eβ2x
,

which is not free of β1 and β2.

Preview: This chapter is about linear models, which includes linear regression models
and other types of linear models (e.g., ANOVA models, etc.). We will start by studying the
underlying theory of simple linear regression (one independent variable) and then move to
multiple linear regression (multiple independent variables). Multiple linear regression models
are best presented by using vector and matrix notation.

12.2 Simple linear regression

Terminology: A simple linear regression model is of the form

Y = β0 + β1x+ ε.

If E(ε) = 0, then
E(Y ) = E(β0 + β1x+ ε) = β0 + β1x.

Therefore, the (population-level) regression parameter β1 quantifies the change in E(Y )
brought about by a one-unit change in x. The (population-level) regression parameter β0

represents the mean of Y when the independent variable x = 0.
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Figure 12.1: Exercise data. Scatterplot of n = 24 observations from middle-aged men. The
response variable is Y = maximum O2 uptake. The independent variable is x = time.

Example 12.1. A study was conducted involving a random sample of n = 24 middle-
aged men to determine the relationship between maximum oxygen uptake (Y , measured in
mL/kg/min) and the time required to complete a two-mile run (x, measured in seconds).
Maximum oxygen uptake was measured with standard laboratory methods as the subjects
performed on a treadmill. Here are the data from the study:

Max O2 Time Max O2 Time Max O2 Time
42.33 918 36.23 1045 53.29 743
53.10 805 49.66 810 47.18 803
42.08 891 41.49 927 56.91 683
50.06 962 46.17 813 47.80 844
42.45 968 46.18 858 48.65 755
42.46 907 43.21 860 53.67 700
47.82 770 51.81 760 60.62 748
49.92 743 53.28 747 56.76 775

A scatterplot of the observations is shown in Figure 12.1 (above). Based on the empirical
evidence in this figure, a simple linear regression model (for the population of “middle-aged”
men) seems appropriate.
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12.2.1 Estimation and sampling distributions

Terminology: When we say “fit a model” or “estimate a model,” we mean we would like
to estimate the population-level model parameters (e.g., β0 and β1) with the observed data.
Suppose we observe a random sample of individuals from a larger population and the pairs

(x1, Y1), (x2, Y2), ..., (xn, Yn)

are obtained which follow
Yi = β0 + β1xi + εi,

for i = 1, 2, ..., n. Our first goal is to estimate β0 and β1. Formal assumptions for the error
terms εi will be needed when we investigate sampling distributions of the estimators.

Side note: Later in this chapter we will learn that linear models can be written more
generally as

Y = Xβ + ε.

The simple linear regression model

Yi = β0 + β1xi + εi, i = 1, 2, ..., n,

is a special case in this class of models with

Yn×1 =


Y1

Y2
...
Yn

 , Xn×2 =


1 x1

1 x2
...

...
1 xn

 , β2×1 =

(
β0

β1

)
, εn×1 =


ε1
ε2
...
εn

 .

Estimation: A widely accepted method of estimating the population parameters β0 and
β1 is to use least squares, which says to choose the values of β0 and β1 that minimize the
objective function

Q(β0, β1) =
n∑
i=1

[Yi − (β0 + β1xi)]
2.

Denote the least squares estimators by β̂0 and β̂1, respectively. These are the values of β0

and β1 that minimize Q(β0, β1). Taking partial derivatives of Q(β0, β1), we obtain

∂Q(β0, β1)

∂β0

= −2
n∑
i=1

(Yi − β0 − β1xi)
set
= 0

∂Q(β0, β1)

∂β1

= −2
n∑
i=1

(Yi − β0 − β1xi)xi
set
= 0.

Solving for β0 and β1 gives
β̂0 = Y − β̂1x

and

β̂1 =

∑n
i=1(xi − x)(Yi − Y )∑n

i=1(xi − x)2
.

These are the least-squares estimators of β0 and β1, respectively.
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Assumptions: We wish to investigate the sampling properties of β̂0 and β̂1 as estimators
of β0 and β1 in the simple linear regression model

Yi = β0 + β1xi + εi,

for i = 1, 2, ..., n. To do this thoroughly, we will assume εi ∼ iid N (0, σ2). This means

• E(εi) = 0

• V (εi) = σ2, that is, the variance is constant

• the random variables εi are independent

• the random variables εi are normally distributed.

Remark: Under the assumption that εi ∼ iid N (0, σ2), it is easy to see

Yi ∼ N (β0 + β1xi, σ
2).

This means

• E(Yi) = β0 + β1xi, for i = 1, 2, ..., n

• V (Yi) = σ2, that is, the variance is constant

• the random variables Yi are independent (because they are functions of εi)

• the random variables Yi are normally distributed.

Fact 1. The least squares estimators β̂0 and β̂1 are unbiased estimators of β0 and β1,
respectively, that is,

E(β̂0) = β0

E(β̂1) = β1.

Proof. Algebraically,

β̂1 =

∑n
i=1(xi − x)(Yi − Y )∑n

i=1(xi − x)2
=

∑n
i=1(xi − x)Yi∑n
i=1(xi − x)2

,

because

n∑
i=1

(xi − x)(Yi − Y ) =
n∑
i=1

(xi − x)Yi −
n∑
i=1

(xi − x)Y

=
n∑
i=1

(xi − x)Yi − Y
n∑
i=1

(xi − x)

and
∑n

i=1(xi − x) = 0. Therefore, if we let

ci =
xi − x∑n

i=1(xi − x)2
,
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for i = 1, 2, ..., n, we see the least-squares slope estimator β̂1 can be written as

β̂1 =

∑n
i=1(xi − x)Yi∑n
i=1(xi − x)2

=
n∑
i=1

ciYi,

a linear combination of Y1, Y2, ..., Yn. Taking expectations, we have

E(β̂1) = E

(
n∑
i=1

ciYi

)
=

n∑
i=1

ciE(Yi) =
n∑
i=1

ci(β0 + β1xi) = β0

n∑
i=1

ci + β1

n∑
i=1

cixi.

However, note that

n∑
i=1

ci =
n∑
i=1

[
xi − x∑n

i=1(xi − x)2

]
=

∑n
i=1(xi − x)∑n
i=1(xi − x)2

= 0

and
n∑
i=1

cixi =
n∑
i=1

[
(xi − x)xi∑n
i=1(xi − x)2

]
=

∑n
i=1(xi − x)2∑n
i=1(xi − x)2

= 1.

Therefore, E(β̂1) = β1 as claimed. To show β̂0 is unbiased, we first note

E(β̂0) = E(Y − β̂1x) = E(Y )− xE(β̂1).

However, E(β̂1) = β1 and

E(Y ) = E

(
1

n

n∑
i=1

Yi

)
=

1

n

n∑
i=1

E(Yi) =
1

n

n∑
i=1

(β0 +β1xi) =
1

n

n∑
i=1

β0 +
1

n

n∑
i=1

β1xi = β0 +β1x.

Therefore,
E(β̂0) = E(Y )− xE(β̂1) = β0 + β1x− β1x = β0,

as claimed. �

Important: The only assumption we used in the preceding argument (to establish unbi-
asedness) was that E(εi) = 0, for i = 1, 2, ..., n. This is a sufficient condition. The other
three assumptions (constant variance, independence, normality) are not needed to establish
unbiasedness.

Fact 2. The least squares estimators β̂0 and β̂1 have the following characteristics:

V (β̂0) = σ2

[ ∑n
i=1 x

2
i

n
∑n

i=1(xi − x)2

]
V (β̂1) = σ2

[
1∑n

i=1(xi − x)2

]
Cov(β̂0, β̂1) = σ2

[
−x∑n

i=1(xi − x)2

]
.

PAGE 105



STAT 513: CHAPTER 12 JOSHUA M. TEBBS

Important: To derive these expressions, we will use the second and third assumptions, that
is, V (εi) = σ2 and εi independent. The fourth assumption (normality) is not needed.

Proof. Recall that β̂1 can be written as

β̂1 =
n∑
i=1

ciYi,

where the constant

ci =
xi − x∑n

i=1(xi − x)2
,

for i = 1, 2, ..., n. Therefore,

V (β̂1) = V

(
n∑
i=1

ciYi

)
=

n∑
i=1

c2
iV (Yi)

= σ2

n∑
i=1

[
xi − x∑n

i=1(xi − x)2

]2

=
σ2

[
∑n

i=1(xi − x)2]2

[
n∑
i=1

(xi − x)2

]
= σ2

[
1∑n

i=1(xi − x)2

]
,

as claimed. The variance of β̂0 is

V (β̂0) = V (Y − β̂1x) = V (Y ) + x2V (β̂1)− 2xCov(Y , β̂1).

Note that

V (Y ) = V

(
1

n

n∑
i=1

Yi

)
=

1

n2

n∑
i=1

V (Yi) =
1

n2

n∑
i=1

σ2 =
nσ2

n2
=
σ2

n
.

Also,

Cov(Y , β̂1) = Cov

(
1

n

n∑
i=1

Yi,
n∑
i=1

ciYi

)

=
1

n

[
n∑
i=1

Cov(Yi, ciYi) +
∑
i 6=j

Cov(Yi, cjYj)

]
=

1

n

n∑
i=1

ciV (Yi) =
σ2

n

n∑
i=1

ci = 0.

Therefore,

V (β̂0) =
σ2

n
+ σ2

[
x2∑n

i=1(xi − x)2

]
= σ2

[
1

n
+

x2∑n
i=1(xi − x)2

]
= σ2

[∑n
i=1(xi − x)2 + nx2

n
∑n

i=1(xi − x)2

]
= σ2

[∑n
i=1 x

2
i − nx2 + nx2

n
∑n

i=1(xi − x)2

]
= σ2

[ ∑n
i=1 x

2
i

n
∑n

i=1(xi − x)2

]
,
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as claimed. Finally, the covariance between β̂0 and β̂1 is

Cov(β̂0, β̂1) = Cov(Y − β̂1x, β̂1) = Cov(Y , β̂1)− xV (β̂1).

We have already shown that Cov(Y , β̂1) = 0. Therefore,

Cov(β̂0, β̂1) = −xV (β̂1) = σ2

[
−x∑n

i=1(xi − x)2

]
,

as claimed. �

Fact 3. The least squares estimators β̂0 and β̂1 are normally distributed.

Proof. Recall β̂1 can be written as

β̂1 =
n∑
i=1

ciYi,

where

ci =
xi − x∑n

i=1(xi − x)2
,

for i = 1, 2, ..., n. Under our model assumptions,

Yi ∼ N (β0 + β1xi, σ
2).

Therefore, β̂1 is normally distributed because it is a linear combination of Y1, Y2, ..., Yn. That
β̂0 is also normally distributed follows because

β̂0 = Y − β̂1x,

a linear combination of Y and β̂1, both of which are normally distributed. �

Note: In this argument (to establish normality), we have used the final assumption that
the errors εi are normally distributed.

Summary: In the simple linear regression model

Yi = β0 + β1xi + εi,

for i = 1, 2, ..., n, where εi ∼ iid N (0, σ2), so far we have shown the least squares estimators
satisfy

β̂0 ∼ N (β0, c00σ
2) and β̂1 ∼ N (β1, c11σ

2),

where

c00 =

∑n
i=1 x

2
i

n
∑n

i=1(xi − x)2
and c11 =

1∑n
i=1(xi − x)2

.

We have also shown β̂0 and β̂1 are negatively correlated and have derived the covariance
between them. This covariance will be needed when we derive confidence intervals and
prediction intervals later.
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Terminology: In the simple linear regression model

Yi = β0 + β1xi + εi,

for i = 1, 2, ..., n, where εi ∼ iid N (0, σ2), we have just derived the sampling distributions

of the least squares estimators β̂0 and β̂1. We now turn our attention to estimating σ2, the
error variance. Define the ith fitted value by

Ŷi = β̂0 + β̂1xi,

where β̂0 and β̂1 are the least squares estimators. Define the ith residual by

ei = Yi − Ŷi.

The error (residual) sum of squares by

SSE =
n∑
i=1

e2
i =

n∑
i=1

(Yi − Ŷi)2.

We now state the following distributional results which hold for the simple linear regression
model under our model assumptions. Unfortunately, the proofs of some of these results are
beyond the scope of this course (at least at this point).

Fact 4. The mean-squared error

σ̂2 =
SSE

n− 2

is an unbiased estimator of the error variance σ2, that is,

E(σ̂2) = E

(
SSE

n− 2

)
= σ2.

Remark: We could actually prove this now, but it is rather messy. To see how we would,
note that

E(SSE) = E

[
n∑
i=1

(Yi − Ŷi)2

]
=

n∑
i=1

E[(Yi − Ŷi)2] =
n∑
i=1

V (Yi − Ŷi),

because E(Yi− Ŷi) = 0. Therefore, all we need to do is work with V (Yi− Ŷi). We will prove
this result later under the more general linear model setting.

Fact 5. The pivotal quantity

SSE

σ2
=

(n− 2)σ̂2

σ2
∼ χ2(n− 2).

Fact 6. The mean-squared error σ̂2 is independent of both β̂0 and β̂1.

Remark: The last two facts will be needed when we pursue statistical inference for β0, β1,
and other relevant quantities.
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12.2.2 Statistical inference

Relevance: In the simple linear regression model

Yi = β0 + β1xi + εi,

for i = 1, 2, ..., n, where εi ∼ iid N (0, σ2), the population-level regression parameters β0 and
β1 and the error variance σ2 are unknown. It is therefore of interest to perform statistical
inference for these parameters (i.e., write an interval estimator or perform a hypothesis test).
In most settings, statistical inference for the slope parameter β1 is of primary interest because
of its connection to the independent variable x in the model. Inference for β0 is often less
relevant, unless one is explicitly interested in the mean of Y when x = 0.

Inference for β1: Under our model assumptions, recall the least squares estimator

β̂1 ∼ N (β1, c11σ
2) =⇒ Z =

β̂1 − β1√
c11σ2

∼ N (0, 1),

where c11 = 1/
∑n

i=1(xi − x)2. Recall Fact 5, which says

W =
(n− 2)σ̂2

σ2
∼ χ2(n− 2).

Because σ̂2 is independent of β̂1 (Fact 6), it follows that Z and W are also independent.
Therefore,

T =
β̂1 − β1√
c11σ̂2

=

β̂1 − β1√
c11σ2√

(n− 2)σ̂2

σ2

/
(n− 2)

∼ t(n− 2).

Because T is pivotal, we can write

P (−tn−2,α/2 < T < tn−2,α/2) = P

(
−tn−2,α/2 <

β̂1 − β1√
c11σ̂2

< tn−2,α/2

)
= 1− α,

where tn−2,α/2 is the upper α/2 quantile of the t(n − 2) distribution. Rewriting the event
above using algebra leads to

P
(
β̂1 − tn−2,α/2

√
c11σ̂2 < β1 < β̂1 + tn−2,α/2

√
c11σ̂2

)
= 1− α,

showing that

β̂1 ± tn−2,α/2

√
c11σ̂2

is a 100(1− α)% confidence interval for β1. To perform a hypothesis test for

H0 : β1 = β1,0

versus
Ha : β1 6= β1,0,
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where β1,0 is a specified value (often, β1,0 = 0), we would use

T =
β̂1 − β1,0√
c11σ̂2

as a test statistic and
RR = {t : |t| > tn−2,α/2}

as a level α rejection region. One sided tests would use a suitably adjusted rejection region.
Probability values are computed as areas under the t(n− 2) distribution.

Inference for β0: Confidence intervals and hypothesis tests for β0 would be constructed
similarly by using the pivotal quantity

T =
β̂0 − β0√
c00σ̂2

∼ t(n− 2).

The derivations are analogous, and the forms of the confidence interval and rejection region
are analogous.

Confidence interval for E(Y ) when x = x∗: In the simple linear regression model

Y = β0 + β1x+ ε,

where ε ∼ N (0, σ2), the quantity

θ = E(Y |x∗) = β0 + β1x
∗

is the population mean of Y when x = x∗. In other words, among all individuals in the
population whose independent variable is x = x∗, the parameter θ = E(Y |x∗) = β0 + β1x

∗

is the mean corresponding to this group of individuals. We now describe inference for this
population mean. An obvious point estimator for θ is

θ̂ = Ê(Y |x∗) = β̂0 + β̂1x
∗.

This is an unbiased estimator of θ because both β̂0 and β̂1 are unbiased estimators; i.e.,

E(θ̂) = E(β̂0 + β̂1x
∗) = E(β̂0) + E(β̂1x

∗) = β0 + β1x
∗ = θ.

The variance of θ̂ is

V (θ̂) = V (β̂0 + β̂1x
∗) = σ2

[
1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
.

Because θ̂ = β̂0 + β̂1x
∗ is a linear combination of β̂0 and β̂1, both of which are normally

distributed (Fact 3), we have

θ̂ ∼ N
(
θ, σ2

[
1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

])
=⇒ Z =

θ̂ − θ√
σ2

[
1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

] ∼ N (0, 1).
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Recall Fact 5, which says

W =
(n− 2)σ̂2

σ2
∼ χ2(n− 2).

Because σ̂2 is independent of β̂0 and β̂1 (Fact 6), it follows that Z andW are also independent.
Therefore,

T =
θ̂ − θ√

σ̂2

[
1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

] =

θ̂ − θ√
σ2

[
1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
√

(n− 2)σ̂2

σ2

/
(n− 2)

∼ t(n− 2).

Because T is pivotal, we can write

P

−tn−2,α/2 <
θ̂ − θ√

σ̂2

[
1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

] < tn−2,α/2

 = 1− α,

where tn−2,α/2 is the upper α/2 quantile of the t(n − 2) distribution. Rewriting the event
above using algebra leads to

P

(
θ̂ − tn−2,α/2

√
σ̂2

[
1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
< θ <

θ̂ + tn−2,α/2

√
σ̂2

[
1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

])
= 1− α,

showing that

(β̂0 + β̂1x
∗)± tn−2,α/2

√
σ̂2

[
1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
is a 100(1− α)% confidence interval for the population mean θ = β0 + β1x

∗.

Remark: The confidence interval for θ = β0 + β1x
∗ will be different for different values of

x∗. The length of the confidence interval will be smallest when x∗ = x and will increase as
the distance between x∗ and x increases. Therefore, more precise inference for θ = β0 +β1x

∗

will result when x∗ is close to x. It is sometimes desired to estimate the population mean
θ = β0 + β1x

∗ for a value of x∗ outside the range of x values in the observed data. This is
called extrapolation. In order for this inference to be valid, one must believe the simple
linear regression model is reasonable even for values of x∗ outside the range where we have
observed data. In some situations, this may be reasonable. In others, it may not.
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Discussion: In the simple linear regression model

Y = β0 + β1x+ ε,

suppose we want to predict a future value of Y when x = x∗. On the surface, this sounds
like the last problem where we were estimating E(Y |x∗). However, they are very different
problems. For example, suppose Y = 1st year final course percentage in MATH 141 and x =
SAT MATH score. Consider these (very different) questions:

• What is an estimate of the mean MATH 141 course percentage for all students who
made a SAT math score of x = 700?

• What MATH 141 course percentage would you predict for your friend Joe, who made
a SAT math score of x = 700?

The first question deals with estimating E(Y |x∗ = 700), a population mean. The second
question deals with predicting the value of a random variable Y that comes from a population
distribution with mean E(Y |x∗ = 700). Estimating the mean of a population distribution is
much easier (to do precisely) than predicting where one value from the distribution will be.

Prediction interval for Y when x = x∗: Our goal is to construct a 100(1−α)% prediction
interval for Y ∗, a new value of Y when x = x∗. An obvious point predictor is

Ŷ ∗ = β̂0 + β̂1x
∗.

This is the same as Ê(Y |x∗), the point estimator we used to estimate E(Y |x∗) = β0 + β1x
∗.

However, we use a different symbol in this context to remind ourselves that we are predicting
the random variable Y ∗, not estimating E(Y |x∗). Define the random variable

U = Y ∗ − Ŷ ∗.

We call U the prediction error. Note that

E(U) = E(Y ∗)− E(Ŷ ∗) = (β0 + β1x
∗)− E(β̂0 + β̂1x

∗) = (β0 + β1x
∗)− (β0 + β1x

∗) = 0.

The variance of U is

V (U) = V (Y ∗ − Ŷ ∗) = V (Y ∗) + V (Ŷ ∗)− 2Cov(Y ∗, Ŷ ∗).

Under our simple linear regression model assumptions, we know V (Y ∗) = σ2. In addition,

V (Ŷ ∗) = V (β̂0 + β̂1x
∗) = σ2

[
1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
,

which is the same as the variance of Ê(Y |x∗). Finally, Cov(Y ∗, Ŷ ∗) = 0 because of the

independence assumption. More specifically, Ŷ ∗ is a function of Y1, Y2, ..., Yn, the observed
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data. The random variable Y ∗ is a new value of Y , and hence is independent of Y1, Y2, ..., Yn.
Therefore,

V (U) = σ2 + σ2

[
1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
= σ2

[
1 +

1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
.

Finally, the prediction error U = Y ∗ − Ŷ ∗ is normally distributed because it is a linear
combination of Y ∗ and Ŷ ∗, both of which are normally distributed. Therefore,

Y ∗ − Ŷ ∗ ∼ N
(

0, σ2

[
1 +

1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

])
=⇒ Z =

Y ∗ − Ŷ ∗√
σ2

[
1 +

1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

] ∼ N (0, 1).

Recall Fact 5, which says

W =
(n− 2)σ̂2

σ2
∼ χ2(n− 2).

Because σ̂2 is independent of Y ∗ (why?) and Ŷ ∗ (Fact 6), it follows that Z and W are also
independent. Therefore,

T =
Y ∗ − Ŷ ∗√

σ̂2

[
1 +

1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

] =

Y ∗ − Ŷ ∗√
σ2

[
1 +

1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
√

(n− 2)σ̂2

σ2

/
(n− 2)

∼ t(n− 2).

Because T is pivotal, we can write

P

−tn−2,α/2 <
Y ∗ − Ŷ ∗√

σ̂2

[
1 +

1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

] < tn−2,α/2

 = 1− α,

where tn−2,α/2 is the upper α/2 quantile of the t(n − 2) distribution. Rewriting the event
above using algebra leads to

P

(
Ŷ ∗ − tn−2,α/2

√
σ̂2

[
1 +

1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
< Y ∗ <

Ŷ ∗ + tn−2,α/2

√
σ̂2

[
1 +

1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

])
= 1− α,
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showing that

(β̂0 + β̂1x
∗)± tn−2,α/2

√
σ̂2

[
1 +

1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
is a 100(1− α)% prediction interval for the random variable Y ∗.

Remark: It is of interest to compare the confidence interval for E(Y |x∗),

(β̂0 + β̂1x
∗)± tn−2,α/2

√
σ̂2

[
1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
,

to the prediction interval for Y ∗,

(β̂0 + β̂1x
∗)± tn−2,α/2

√
σ̂2

[
1 +

1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
.

The prediction interval when x = x∗ will always be wider than the corresponding confidence
interval for E(Y |x∗). This is a result of the additional uncertainty which arises from having
to predict the value of a new random variable.

Example 12.1 (continued). We use R to estimate the simple linear regression model

Y = β0 + β1x+ ε ⇐⇒ max.O2 = β0 + β1(time) + ε

for the exercise data in Example 12.1 (notes, pp 102) under the assumptions for ε stated in
this section. Here is the output:

> fit = lm(max.O2 ~ time)

> summary(fit)

Call:

lm(formula = max.O2 ~ time)

Residuals:

Min 1Q Median 3Q Max

-3.5425 -2.5733 -0.8386 0.8226 8.5555

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 90.897200 6.542737 13.893 2.27e-12 ***

time -0.051344 0.007869 -6.525 1.46e-06 ***

Residual standard error: 3.497 on 22 degrees of freedom

Multiple R-squared: 0.6593, Adjusted R-squared: 0.6438

F-statistic: 42.57 on 1 and 22 DF, p-value: 1.458e-06
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Figure 12.2: Exercise data. Scatterplot of n = 24 observations from middle-aged men. The
least-squares regression line is superimposed.

R output: The Estimate output gives the least squares estimates

β̂0 ≈ 90.897

β̂1 ≈ −0.051.

The estimated model is

Ŷ = 90.897− 0.051x ⇐⇒ m̂ax.O2 = 90.897− 0.051(time).

This line is shown superimposed over the exercise data in Figure 12.2 (above). The Std.Error
output gives

ŝe(β̂0) =
√
c00σ̂2 = 6.542737

ŝe(β̂1) =
√
c11σ̂2 = 0.007869.

These are the estimated standard errors of β̂0 and β̂1, respectively. These are point estimates
of the true standard errors

se(β̂0) =
√
c00σ2 and se(β̂1) =

√
c11σ2.
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The output

Residual standard error: 3.497 on 22 degrees of freedom

gives the square root of the mean-squared error σ̂2; i.e.,

σ̂2 =
SSE

24− 2
= (3.497)2 ≈ 12.229.

The output

t value Pr(>|t|)

(Intercept) 13.893 2.27e-12 ***

time -6.525 1.46e-06 ***

gives the test statistics

t =
β̂0 − 0√
c00σ̂2

= 13.893

t =
β̂1 − 0√
c11σ̂2

= −6.525.

The first test statistic is used to test

H0 : β0 = 0
versus

Ha : β0 6= 0,

which is nonsensical. Recall that β0 equals E(Y ) when x = 0. This is the population mean
maximum O2 uptake for all middle-aged men who run two miles in 0 seconds. Therefore, the
population-level intercept term β0 has no practical meaning here. The second test statistic
is used to test

H0 : β1 = 0
versus

Ha : β1 6= 0,

which can be used to assess whether maximum O2 uptake (Y ) and time (x) are linearly re-
lated in the population of all middle-aged men. Two-sided probability values are in Pr(>|t|).
The probability value for this test is

p-value = PH0(|T | > 6.525) < 1.5× 10−6,

indicating the evidence against H0 is overwhelming. The random variable T above satisfies

T
H0∼ t(22); see Figure 12.3 (next page).
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Figure 12.3: t(22) pdf; the test statistic t = −6.525 is shown by using a dark circle. This
pdf represents the sampling distribution of T when H0 : β1 = 0 is true.

Confidence intervals for the population-level regression parameters β0 and β1 are not pro-
vided in the fit summary output, but they can be calculated easily. Because the intercept
parameter β0 has no practical relevance in this problem, we focus only on the slope parameter
β1. A 95% confidence interval for β1 is calculated as

β̂1 ± t22,0.025ŝe(β̂1) −→ − 0.051± 2.074(0.008) −→ (−0.068,−0.035).

Interpretation: For the population of middle-aged men, we would expect the maximum
O2 uptake to decrease between 0.035 and 0.068 mL/kg/min for each one second increase in
the time it takes to run two miles.

Estimating E(Y |x∗) and predicting Y ∗: Suppose we are interested in the population
of middle-aged men who run a two-minute mile in 900 seconds (i.e., x∗ = 900). It is first
interesting to observe that no one from this population is in the sample of n = 24 men
observed. However, we can still make inferential statements about this population by making
use of the assumed relationship between maximum O2 uptake and time across all times. In
R, calculating a confidence interval for E(Y |x∗ = 900) and a prediction interval for Y ∗ is
done as follows:
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Figure 12.4: Exercise data. Scatterplot of n = 24 observations from middle-aged men. The
least-squares regression line is superimposed; 95% confidence intervals for E(Y |x∗) and 95%
prediction intervals for Y ∗ are shown for each x∗ ∈ {600, 601, ..., 1100}.

> predict(fit,data.frame(time=900),level=0.95,interval="confidence")

fit lwr upr

44.68785 42.78192 46.59377

> predict(fit,data.frame(time=900),level=0.95,interval="prediction")

fit lwr upr

44.68785 37.18834 52.18735

The output fit gives the point estimate/point prediction

β̂0 + β̂1x
∗ ≈ 90.897− 0.051(900) ≈ 44.688.

We now interpret the intervals shown above:

• Among all middle-aged men who run two miles in 900 seconds, we are 95% confident
the population mean maximum O2 uptake is between 42.782 and 46.584 mL/kg/min.

• For an individual middle-aged man who runs two miles in 900 seconds, his maximum
O2 uptake will fall between 37.188 and 52.187 mL/kg/min with probability 0.95.
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12.3 Random vectors, quadratic forms, and the multivariate nor-
mal distribution

Recall: A general linear model can be written as

Y = Xβ + ε,

where Y is a random vector; i.e.,

Y =


Y1

Y2
...
Yn

 ,

X is a design matrix (fixed), β is a vector of parameters (fixed and unknown; to be estimated),
and ε is a random vector; i.e.,

ε =


ε1
ε2
...
εn

 .

We have already seen the simple linear regression model

Yi = β0 + β1xi + εi,

for i = 1, 2, ..., n, is a special case of the general linear model with

X =


1 x1

1 x2
...

...
1 xn


n×2

and β =

(
β0

β1

)
2×1

.

The class of general linear models includes simple linear regression, multiple linear regression,
analysis of variance (ANOVA), and other well known statistical models.

Importance: We have just discussed simple linear regression at length, focusing on

• estimation via least squares

• sampling distributions of least squares estimators

• statistical inference for regression parameters, confidence intervals, and prediction in-
tervals.

We now pursue these same goals but more generally. To accomplish this, we first need to
discuss random vectors and present results for expectations, variance and covariance, and
their multivariate probability distributions (especially the multivariate normal distribution).
Much of this is a review of STAT 511 concepts, but it is presented more generally to facilitate
our discussion with linear models.
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Terminology: Suppose Y1, Y2, ..., Yn are random variables. We call

Y =


Y1

Y2
...
Yn


n×1

a random vector. The multivariate probability density function (pdf) of Y is denoted by
fY(y). The function fY(y) describes probabilistically how the random variables Y1, Y2, ..., Yn
are jointly distributed.

• If Y1, Y2, ..., Yn are independent variables, then

fY(y) =
n∏
i=1

fYi(yi),

where fYi(yi) is the marginal pdf of Yi.

• If Y1, Y2, ..., Yn are iid from a common marginal pdf, say fY (y), then

fY(y) =
n∏
i=1

fY (yi).

Terminology: Suppose Y1, Y2, ..., Yn are random variables with means E(Yi) = µi and
variances V (Yi) = σ2

i , for i = 1, 2, ..., n, and covariances Cov(Yi, Yj) = σij for i 6= j. The
mean of a random vector Y is

E(Y) =


E(Y1)
E(Y2)

...
E(Yn)

 =


µ1

µ2
...
µn

 = µ.

That is, the mean of a random vector Y is the vector of the marginal means E(Yi). The
variance-covariance matrix of Y is

Cov(Y) = E[(Y − µ)(Y − µ)′] =


V (Y1) Cov(Y1, Y2) · · · Cov(Y1, Yn)

Cov(Y2, Y1) V (Y2) · · · Cov(Y2, Yn)
...

...
. . .

...
Cov(Yn, Y1) Cov(Yn, Y2) · · · V (Yn)


n×n

=


σ2

1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σ2
n


n×n

= V.
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• The variance-covariance matrix V contains the variances σ2
1, σ

2
2, ..., σ

2
n on the diagonal

of the matrix and the 2
(
n
2

)
covariance terms Cov(Yi, Yj) = σij, for i 6= j, on the

off-diagonal.

• Because Cov(Yi, Yj) = Cov(Yj, Yi), the variance-covariance matrix V is symmetric;
i.e., V′ = V.

• If Y1, Y2, ..., Yn are pairwise independent; i.e., Yi ⊥⊥ Yj, i 6= j, then all the covariances
are zero and V is a diagonal matrix. That is,

V =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

n


n×n

.

Terminology: Suppose

Y =


Y1

Y2
...
Yn


n×1

and Z =


Z1

Z2
...
Zm


m×1

are random vectors. The covariance of Y and Z is

Cov(Y,Z) =


Cov(Y1, Z1) Cov(Y1, Z2) · · · Cov(Y1, Zm)
Cov(Y2, Z1) Cov(Y2, Z2) · · · Cov(Y2, Zm)

...
...

. . .
...

Cov(Yn, Z1) Cov(Yn, Z2) · · · Cov(Yn, Zm)


n×m

.

We say the random vectors Yn×1 and Zm×1 are uncorrelated if Cov(Y,Z) = 0n×m.

Results: Suppose Yn×1 is a random vector with mean E(Y) = µn×1 and variance-covariance
matrix Cov(Y) = Vn×n. Suppose cm×1 is a non-random (constant) vector and Am×n is a
non-random matrix. Then

E(c + AY) = c + AE(Y) = c + Aµ

Cov(c + AY) = ACov(Y)A′ = AVA′.

Result: Suppose Yn×1 and Zm×1 are random vectors and Aq×n and Bp×m are non-random
matrices. Then

Cov(AY,BZ) = ACov(Y,Z)B′.

Terminology: Suppose Yn×1 is a random vector with mean E(Y) = µn×1 and variance-
covariance matrix Cov(Y) = Vn×n. Suppose An×n is a non-random matrix. We call Y′AY
a quadratic form. The mean of a quadratic form is

E(Y′AY) = µ′Aµ + tr(AV),

where tr(·) means “trace,” that is, tr(AV) is the sum of the diagonal elements of AV.
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Remark: It is important to note that a quadratic form Y′AY is a univariate random
variable. Therefore, its mean E(Y′AY) is a scalar constant. Quadratic forms are important
in the theory of linear models. We will see later that sums of squares from regression and
analysis of variance can be written as quadratic forms like Y′AY and degrees of freedom are
determined by the matrix A.

Remark: To derive the expression for E(Y′AY), we need to recall properties about the
trace operator from linear algebra. For matrices A and B of conformable dimensions,

1. tr(cA) = c tr(A), for any constant c

2. tr(A + B) = tr(A) + tr(B)

3. tr(AB) = tr(BA).

Properties (1) and (2) above identify that the trace operator tr(·) is linear (just as mathe-
matical expectation is a linear operator). We have

E(Y′AY) = E[tr(Y′AY)] = E[tr(AYY′)]

= tr[E(AYY′)]

= tr[AE(YY′)]

= tr[A(V + µµ′)]

= tr(AV) + tr(Aµµ′)

= tr(AV) + tr(µ′Aµ) = tr(AV) + µ′Aµ. �

Terminology: Suppose Z1, Z2, ..., Zn are iid N (0, 1) random variables. The joint pdf of

Z =


Z1

Z2
...
Zn


is given by

fZ(z) =
n∏
i=1

fZ(zi) =
n∏
i=1

1√
2π
e−z

2
i /2 =

(
1√
2π

)n
e−

∑n
i=1 z

2
i /2 = (2π)−n/2 exp(−z′z/2),

for all z ∈ Rn. We say Z has a standard multivariate normal distribution and write
Z ∼ Nn(0, I). In this distribution, note that

E(Z) =


E(Z1)
E(Z2)

...
E(Zn)

 =


0
0
...
0

 = 0n×1
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and

Cov(Z) =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


n×n

= In×n.

This is the multivariate analogue of a standard normal distribution; i.e., Z ∼ N (0, 1). Note
that

Z1, Z2, ..., Zn ∼ iid N (0, 1) ⇐⇒ Z ∼ Nn(0, I).

Terminology: The random vector

Y =


Y1

Y2
...
Yn


has a multivariate normal distribution with mean µn×1 and variance-covariance matrix
Vn×n if its pdf is given by

fY(y) = (2π)−n/2|V|−1/2 exp

{
−1

2
(y − µ)′V−1(y − µ)

}
,

for all y ∈ Rn. We write Y ∼ Nn(µ,V).

Notes: A few remarks are in order about this distribution and the associated pdf.

• The notation | · | above means “determinant.”

• Writing V−1 assumes V is a full rank matrix; i.e., rank(V) = n. Recall if a square
matrix is of full rank, then its inverse exists.

• In the univariate normal case (i.e., n = 1), recall the following relationship:

Z ∼ N (0, 1) =⇒ Y = σZ + µ ∼ N (µ, σ2).

A similar relationship holds in the multivariate case; i.e.,

Z ∼ Nn(0, I) =⇒ Y = V1/2Z + µ ∼ Nn(µ,V),

where the (symmetric square root) matrix V1/2 satisfies V1/2V1/2 = V.

• Note that
Y ∼ Nn(µ,V) =⇒ Yi ∼ N (µi, σ

2
i ), for i = 1, 2, ..., n.

That is, joint normality implies marginal normality. The relationship does not neces-
sarily go the other way.

Result: Suppose Y ∼ Nn(µ,V). Let cm×1 denote a non-random (constant) vector and
Am×n denote a non-random matrix. Then

U = c + AY ∼ Nm(c + Aµ,AVA′).
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12.4 Multiple linear regression

Preview: We have already considered the simple linear regression model

Yi = β0 + β1xi + εi,

for i = 1, 2, ..., n. Our interest now is to extend this model to include multiple independent
variables x1, x2, ..., xk. Specifically, we consider models of the form

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi,

for i = 1, 2, ..., n. We call this a multiple linear regression model.

• There are now p = k+1 population-level regression parameters β0, β1, β2, ..., βk. These
are unknown (and fixed) and are to be estimated with the observed data.

• Schematically, we can envision the observed data as follows:

Individual Y x1 x2 · · · xk
1 Y1 x11 x12 · · · x1k

2 Y2 x21 x22 · · · x2k
...

...
...

...
. . .

...
n Yn xn1 xn2 · · · xnk

That is, each of the n individuals in the sample contributes a response Y and a value
of each of the independent variables x1, x2, ..., xk.

Remark: To estimate the model, we will continue to use least squares. After we estimate
the model, we then will pursue similar topics as we did in the simple linear regression case;
e.g., determining the sampling distributions of the least squares estimators, writing confi-
dence intervals and performing hypothesis tests for (population-level) regression parameters,
and writing confidence intervals and prediction intervals for E(Y |x1, x2, ..., xk) and Y ∗, re-
spectively. Not surprisingly, these topics are best presented by making use of notation for
random vectors we have described previously.

Matrix representation: Consider the multiple linear regression model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi,

for i = 1, 2, ..., n. Define

Y =


Y1

Y2
...
Yn


n×1

, X =


1 x11 x12 · · · x1k

1 x21 x22 · · · x2k
...

...
...

. . .
...

1 xn1 xn2 · · · xnk


n×p

, β =


β0

β1

β2
...
βk


p×1

, ε =


ε1
ε2
...
εn


n×1

.
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With these definitions, the multiple linear regression model on the previous page can be
expressed equivalently as

Y = Xβ + ε.

In this representation,

• Y is an n× 1 (random) vector of responses

• X is an n× p (fixed) matrix of independent variable measurements (p = k + 1)

• β is a p × 1 (fixed) vector of unknown population-level regression parameters (to be
estimated)

• ε is an n × 1 (random) vector of unobserved errors. Formal assumptions on ε will be
stated later when needed.

Illustration: Consider the four linear models presented at the beginning of this chapter
(see pp 101, notes). For i = 1, 2, ..., n, consider

Yi = β0 + β1xi + εi

Yi = β0 + β1xi + β2x
2
i + εi

Yi = β0 + β1xi1 + β2xi2 + εi

Yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + εi.

Each of these models can be written as a general linear model Y = Xβ + ε with

Y =


Y1

Y2
...
Yn


n×1

and ε =


ε1
ε2
...
εn


n×1

.

The differences among the models are in how X and β are defined. Of course, for the first
model (simple linear regression), we have

X =


1 x1

1 x2
...

...
1 xn


n×2

and β =

(
β0

β1

)
2×1

.

For the second model (quadratic regression), we have

X =


1 x1 x2

1

1 x2 x2
2

...
...

1 xn x2
n


n×3

and β =

 β0

β1

β2


3×1

.
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For the third model (regression plane in R3), we have

X =


1 x11 x12

1 x21 x22
...

...
1 xn1 xn2


n×3

and β =

 β0

β1

β2


3×1

.

For the fourth model (curvilinear surface in R3), we have

X =


1 x11 x12 x11x12

1 x21 x22 x21x22
...

...
1 xn1 xn2 xn1xn2


n×4

and β =


β0

β1

β2

β3


4×1

.

Observations: It is interesting to note that the first model above

Yi = β0 + β1xi + εi

is a special case of the second model

Yi = β0 + β1xi + β2x
2
i + εi

with β2 = 0. Also, the third model above

Yi = β0 + β1xi1 + β2xi2 + εi

is a special case of the fourth model

Yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + εi

with β3 = 0. The third and fourth models are both special cases of the fifth model

Yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + β4xi3 + β5xi1xi3 + β6xi2xi3 + β7xi1xi2xi3 + εi,

(a curvilinear surface in R4). The third model is a special case with β3 = β4 = β5 = β6 =
β7 = 0. The fourth model is a special case with β4 = β5 = β6 = β7 = 0. The fifth model
above has

X =


1 x11 x12 x11x12 x13 x11x13 x12x13 x11x12x13

1 x21 x22 x21x22 x23 x21x23 x22x23 x21x22x23
...

...
...

...
...

...
...

...
1 xn1 xn2 xn1xn2 xn3 xn1xn3 xn2xn3 xn1xn2xn3


n×8

and β =



β0

β1

β2

β3

β4

β5

β6

β7


8×1

.
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Preview: We will learn later how to perform statistical inference for population-level re-
gression parameters in multiple linear regression. For example, testing

H0 : β2 = 0

allows us to “test” the first model versus the second. Testing

H0 : β3 = β4 = β5 = β6 = β7 = 0

allows us to “test” the third model versus the fifth.

Example 12.2. A recent article in the Journal of Air and Waste Management Association
described an observational study in Kaohsiung City, Taiwan. The goal was to develop a
multiple linear regression model to explain how the response variable

Y = energy content of solid waste specimen

was related to four independent variables

x1 = plastic by weight (measured as % of total weight)

x2 = paper by weight (measured as % of total weight)

x3 = garbage by weight (measured as % of total weight)

x4 = moisture percentage.

The authors describe how a random sample of n = 30 solid waste specimens were available
to estimate the multiple linear regression model

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + εi,

for i = 1, 2, ..., 30. The energy content Y (kcal/kg) was measured on each waste specimen
after it was incinerated. This model can be written as

Y = Xβ + ε,

where

Y =


Y1

Y2
...
Y30


30×1

, X =


1 x11 x12 x13 x14

1 x21 x22 x23 x24
...

...
...

...
...

1 x30,1 x30,2 x30,3 x30,4


30×5

,

β =


β0

β1

β2

β3

β4


5×1

, ε =


ε1
ε2
...
ε30


30×1

.

The data from this study are on the course web site; I used R to construct the design matrix
X30×5 (shown on the next page). �
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> X = cbind(intercept,plastic,paper,garbage,moisture)

> X

intercept plastic paper garbage moisture

[1,] 1 18.69 15.65 45.01 58.21

[2,] 1 19.43 23.51 39.69 46.31

[3,] 1 19.24 24.23 43.16 46.63

[4,] 1 22.64 22.20 35.76 45.85

[5,] 1 16.54 23.56 41.20 55.14

[6,] 1 21.44 23.65 35.56 54.24

[7,] 1 19.53 24.45 40.18 47.20

[8,] 1 23.97 19.39 44.11 43.82

[9,] 1 21.45 23.84 35.41 51.01

[10,] 1 20.34 26.50 34.21 49.06

[11,] 1 17.03 23.46 32.45 53.23

[12,] 1 21.03 26.99 38.19 51.78

[13,] 1 20.49 19.87 41.35 46.69

[14,] 1 20.45 23.03 43.59 53.57

[15,] 1 18.81 22.62 42.20 52.98

[16,] 1 18.28 21.87 41.50 47.44

[17,] 1 21.41 20.47 41.20 54.68

[18,] 1 25.11 22.59 37.02 48.74

[19,] 1 21.04 26.27 38.66 53.22

[20,] 1 17.99 28.22 44.18 53.37

[21,] 1 18.73 29.39 34.77 51.06

[22,] 1 18.49 26.58 37.55 50.66

[23,] 1 22.08 24.88 37.07 50.72

[24,] 1 14.28 26.27 35.80 48.24

[25,] 1 17.74 23.61 37.36 49.92

[26,] 1 20.54 26.58 35.40 53.58

[27,] 1 18.25 13.77 51.32 51.38

[28,] 1 19.09 25.62 39.54 50.13

[29,] 1 21.25 20.63 40.72 48.67

[30,] 1 21.62 22.71 36.22 48.19

12.4.1 Estimation and sampling distributions

Estimation: Consider the multiple linear regression model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi,

for i = 1, 2, ..., n. Least squares estimation involves finding the values of β0, β1, β2, ..., βk that
minimize the objective function

Q(β0, β1, β2, ..., βk) =
n∑
i=1

[Yi − (β0 + β1xi1 + β2xi2 + · · ·+ βkxik)]
2.

It is much easier to write this objective function using our notation for random vectors and
matrices. To see how, one needs only note that the sum of squares above is the inner product
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of Y −Xβ with itself; i.e.,

Q(β) = (Y −Xβ)′(Y −Xβ).

Because Q(β) is a scalar function of the p = k+1 elements of β, it is possible to use calculus
to determine the values of the p elements that minimize it. Formally, we can take the p
partial derivatives with respect to each of β0, β1, β2, ..., βk and set these equal to zero; i.e.,

∂Q(β)

∂β
=



∂Q(β)

∂β0
∂Q(β)

∂β1
∂Q(β)

∂β2
...

∂Q(β)

∂βk


set
=


0
0
0
...
0


p×1

.

These are called the normal equations. Solving the normal equations for β0, β1, β2, ..., βk
gives the least squares estimators, which we denote by β̂0, β̂1, β̂2, ..., β̂k.

Results: Let a and b be p× 1 vectors and A be a p× p matrix of constants. Then

∂a′b

∂b
= a and

∂b′Ab

∂b
= (A + A′)b.

These two results from matrix calculus allow us to derive the least squares estimator β̂ in
closed form. Recalling (AB)′ = B′A′ for conformable matrices A and B, we have

Q(β) = (Y −Xβ)′(Y −Xβ)

= (Y′ − β′X′)(Y −Xβ)

= Y′Y − β′X′Y −Y′Xβ + β′X′Xβ = Y′Y − 2Y′Xβ + β′X′Xβ

because β′X′Y = Y′Xβ (why?). Using the results above, we have

∂Q(β)

∂β
= −2X′Y + 2X′Xβ,

because X′X is symmetric. Setting this expression equal to 0 and rearranging gives

X′Xβ = X′Y.

In other words, we have shown the normal equations

∂Q(β)

∂β
=



∂Q(β)

∂β0
∂Q(β)

∂β1
∂Q(β)

∂β2
...

∂Q(β)

∂βk


set
=


0
0
0
...
0

 ⇐⇒ X′Xβ = X′Y.
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If X is n×p, then X′X is a p×p (square) matrix. If X′X is nonsingular, then it has a unique
inverse (X′X)−1. Pre-multiplying each side of the normal equations by (X′X)−1 gives

(X′X)−1X′Xβ = (X′X)−1X′Y =⇒ β̂ = (X′X)−1X′Y.

This is the formula for the least squares estimator of β.

Q: What happens if X′X is singular?
A: If X′X is singular, then its inverse (X′X)−1 does not exist and the least squares estimator
of β is not unique. When might this happen? Mathematically, it turns out that

rank(X) = rank(X′X).

Therefore, if there are linear dependencies among the columns of X, then

rank(X′X) < p ⇐⇒ (X′X)−1 does not exist

and the least squares estimator β̂ cannot be calculated uniquely. This can happen in ANOVA
models depending how they are parameterized. It can also happen in regression models if
there is perfect collinearity among two or more of the independent variables.

Example 12.2 (continued). We calculate the least squares estimate

β̂ = (X′X)−1X′Y

for the waste data using matrix calculations in R. The X′X matrix is

> t(X)%*%X

intercept plastic paper garbage moisture

intercept 30.00 596.98 702.41 1180.38 1515.72

plastic 596.98 12023.37 13944.86 23465.33 30106.63

paper 702.41 13944.86 16776.81 27387.00 35486.85

garbage 1180.38 23465.33 27387.00 46918.77 59665.18

moisture 1515.72 30106.63 35486.85 59665.18 76896.85

We can calculate (X′X)−1 in R using the solve function; i.e.,

> round(solve(t(X)%*%X),6)

intercept plastic paper garbage moisture

intercept 31.930929 -0.314886 -0.279648 -0.233927 -0.195548

plastic -0.314886 0.008044 0.001730 0.001230 0.001304

paper -0.279648 0.001730 0.005402 0.002921 0.000076

garbage -0.233927 0.001230 0.002921 0.003705 -0.000093

moisture -0.195548 0.001304 0.000076 -0.000093 0.003394

I used the round function to control the number of decimal places in the output.
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The vector X′Y is

> t(X)%*%Y

[,1]

intercept 38438.0

plastic 770763.3

paper 900549.2

garbage 1510802.3

moisture 1928724.2

Finally, the least squares estimate β̂ = (X′X)−1X′Y for the waste data is

> solve(t(X)%*%X)%*%t(X)%*%Y

[,1]

intercept 2244.922664

plastic 28.925002

paper 7.643614

garbage 4.296642

moisture -37.353831

That is,

β̂ =


β̂0

β̂1

β̂2

β̂3

β̂4

 =


2244.923

28.925
7.644
4.297

−37.354


(to 3 dp) and the estimated model is

Ŷ = 2244.923 + 28.925x1 + 7.644x2 + 4.297x3 − 37.354x4,

or, in other words,

ênergy = 2244.923 + 28.925(plastic) + 7.644(paper) + 4.297(garbage)− 37.354(moisture).

Remark: In practice, it is not necessary to code in X and Y and perform matrix operations
yourself. The lm function in R does all this in the background. For example, with the waste
data,

> fit = lm(energy~plastic+paper+garbage+moisture)

> fit

Coefficients:

(Intercept) plastic paper garbage moisture

2244.923 28.925 7.644 4.297 -37.354

These numerical values of the least squares estimates match the ones we obtained by doing
the matrix calculations directly (to 3 dp). �
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Assumptions: Consider the multiple linear regression model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi,

for i = 1, 2, ..., n. As in simple linear regression, we will continue to assume εi ∼ iid N (0, σ2).
Recall this means

• E(εi) = 0

• V (εi) = σ2, that is, the variance is constant

• the random variables εi are independent

• the random variables εi are normally distributed.

In our matrix formulation, the model is Y = Xβ + ε, where

ε ∼ Nn(0, σ2I),

that is, ε is a multivariate normal random vector with mean

E(ε) =


0
0
...
0

 = 0n×1

and variance-covariance matrix

Cov(ε) = σ2


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


n×n

= σ2In×n.

This model assumption for ε is equivalent to the four conditions above. Under these as-
sumptions, it is easy to show

Y ∼ Nn(Xβ, σ2I).

Note that
E(Y) = E(Xβ + ε) = Xβ + E(ε) = Xβ + 0 = Xβ

and
Cov(Y) = Cov(Xβ + ε) = Cov(ε) = σ2I.

Finally, because Y is a linear (vector-valued) function of ε, it is also normally distributed.

Discussion: Because E(Y) = Xβ, this means the n×1 vector E(Y) is a linear combination
of the (n× 1) columns of X. To see why, write

X =
(

1 x1 x2 · · · xk
)
,
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where

1n×1 =


1
1
...
1

 ,

an n×1 vector of 1’s, and the k remaining (n×1) columns of X are denoted by x1,x2, ...,xk.
For β ∈ Rp,

Xβ =
(

1 x1 x2 · · · xk
)


β0

β1

β2
...
βk

 = β01 + β1x1 + β2x2 + · · ·+ βkxk,

a linear combination of the columns of X. The collection of n× 1 vectors above is called the
column space of X and is denoted by C(X). This interpretation allows us to characterize

the least squares estimator β̂ in a new way. We say an estimate β̂ is a least squares estimate
of β if Xβ̂ is the (n× 1) vector in C(X) that is “closest” to Y. In other words, β̂ is a least
squares estimate of β if it minimizes

(Y −Xβ)′(Y −Xβ),

the squared distance between Y and Xβ ∈ C(X). We will learn later about a special matrix
that “projects” Y onto C(X) perpendicularly so as to minimize this squared distance.

Sampling distribution of β̂: Consider the multiple linear regression model

Y = Xβ + ε,

where ε ∼ Nn(0, σ2I). We now derive the sampling distribution of the least squares estimator

β̂ = (X′X)−1X′Y.

The mean of β̂ is

E(β̂) = E[(X′X)−1X′Y] = (X′X)−1X′E(Y) = (X′X)−1X′X︸ ︷︷ ︸
= Ip×p

β = β;

i.e., β̂ is an unbiased estimator of β. The variance-covariance matrix of β̂ is

Cov(β̂) = Cov[(X′X)−1X′Y]

= (X′X)−1X′Cov(Y)[(X′X)−1X′]′ = (X′X)−1X′σ2IX(X′X)−1,

because (X′X)−1 is symmetric. Therefore,

Cov(β̂) = σ2(X′X)−1 X′X(X′X)−1︸ ︷︷ ︸
= Ip×p

= σ2(X′X)−1.
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Finally, because β̂ = (X′X)−1X′Y is a linear (vector-valued) function of Y, which is mul-

tivariate normal, β̂ is also multivariate normal. Therefore, we arrive at the sampling distri-
bution

β̂ ∼ Np
(
β, σ2(X′X)−1

)
.

Remark: Because multivariate normality implies marginal normality, we know

β̂0 ∼ N (β0, σ
2(X′X)−1

11 )

β̂1 ∼ N (β1, σ
2(X′X)−1

22 )

β̂2 ∼ N (β2, σ
2(X′X)−1

33 )
...

β̂k ∼ N (βk, σ
2(X′X)−1

pp ),

where recall p = k + 1 and (X′X)−1
jj is the jth diagonal element of the (X′X)−1 matrix,

for j = 0, 1, 2, ..., k. Covariances of different least squares estimators use the off-diagonal
elements of (X′X)−1; e.g.,

Cov(β̂1, β̂2) = σ2(X′X)−1
23 .

Recall: In the simple linear regression model

Yi = β0 + β1xi + εi,

for i = 1, 2, ..., n, where εi ∼ iid N (0, σ2), we proved the least squares estimators

β̂0 ∼ N (β0, c00σ
2) and β̂1 ∼ N (β1, c11σ

2),

where

c00 =

∑n
i=1 x

2
i

n
∑n

i=1(xi − x)2
and c11 =

1∑n
i=1(xi − x)2

.

We also showed

Cov(β̂0, β̂1) = σ2

[
−x∑n

i=1(xi − x)2

]
.

These results are a special case of our sampling distribution result for β̂ above. To see why,
recall that in simple linear regression

Yn×1 =


Y1

Y2
...
Yn

 , Xn×2 =


1 x1

1 x2
...

...
1 xn

 , β2×1 =

(
β0

β1

)
, εn×1 =


ε1
ε2
...
εn

 .

Straightforward (but tedious) calculations show

X′X =


n

n∑
i=1

xi

n∑
i=1

xi

n∑
i=1

x2
i

 , (X′X)−1 =


∑n

i=1 x
2
i

n
∑n

i=1(xi − x)2
− x∑n

i=1(xi − x)2

− x∑n
i=1(xi − x)2

1∑n
i=1(xi − x)2

 ,
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and

X′Y =


n∑
i=1

Yi

n∑
i=1

xiYi

 .

Thus, the least squares estimator of β is

β̂ = (X′X)−1X′Y =


∑n

i=1 x
2
i

n
∑n

i=1(xi − x)2
− x∑n

i=1(xi − x)2

− x∑n
i=1(xi − x)2

1∑n
i=1(xi − x)2

.




n∑
i=1

Yi

n∑
i=1

xiYi


=

 Y − β̂1x∑n
i=1(xi − x)(Yi − Y )∑n

i=1(xi − x)2

 =

(
β̂0

β̂1

)
.

That is, the least squares estimator formula β̂ = (X′X)−1X′Y produces the same answers
we saw in simple linear regression. Furthermore,

V (β̂0) = σ2(X′X)−1
11 = σ2

[ ∑n
i=1 x

2
i

n
∑n

i=1(xi − x)2

]
V (β̂1) = σ2(X′X)−1

22 = σ2

[
1∑n

i=1(xi − x)2

]
Cov(β̂0, β̂1) = σ2(X′X)−1

12 = σ2

[
−x∑n

i=1(xi − x)2

]
,

where the (X′X)−1 matrix (for simple linear regression) is on the previous page. These are
the same formulas we derived previously; see Fact 2 (pp 105, notes).

Terminology: In the multiple linear regression model

Y = Xβ + ε,

where ε ∼ Nn(0, σ2I), we have derived the sampling distribution of the least squares esti-
mator

β̂ ∼ Np
(
β, σ2(X′X)−1

)
.

We now turn our attention to estimating σ2, the error variance. In vector notation, the
error (residual) sum of squares is

SSE = (Y −Xβ̂)′(Y −Xβ̂) = (Y − Ŷ)′(Y − Ŷ) = e′e.

The n× 1 vector Ŷ = Xβ̂ contains the least squares fitted values, that is,

Ŷ =


Ŷ1

Ŷ2
...

Ŷn


n×1

.
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The n× 1 vector e = Y − Ŷ contains the least squares residuals, that is,

e = Y − Ŷ =


Y1

Y2
...
Yn

−


Ŷ1

Ŷ2
...

Ŷn

 =


e1

e2
...
en


n×1

.

Terminology: Note that the vector of fitted values

Ŷ = Xβ̂ = X(X′X)−1X′Y = HY,

where the (n× n) matrix
H = X(X′X)−1X′.

In regression analysis, it is common to call H the hat matrix because it “puts the hat on
Y;” i.e., HY = Ŷ. That hat matrix has interesting properties:

• H is symmetric, i.e., H′ = H.

• H is idempotent, i.e., H2 = H.

• HX = X, i.e., H projects each column of X onto itself.

• H is the perpendicular projection matrix onto C(X).

The vector of residuals can also be written in terms of H. Note that

e = Y − Ŷ = Y −HY = (I−H)Y,

where I is the n× n identity matrix. The matrix I−H also has interesting properties:

• I−H is symmetric, i.e., (I−H)′ = I−H.

• I−H is idempotent, i.e., (I−H)2 = I−H.

• (I−H)X = 0, i.e., I−H projects each column of X to the 0 vector.

• I−H is the perpendicular projection matrix onto C(X)⊥, the orthogonal complement
of C(X).

Interesting: Because

Ŷ = HY ∈ C(X) and e = (I−H)Y ∈ C(X)⊥,

this means the n× 1 vectors Ŷ and e are orthogonal; i.e., the inner product

Ŷ′e =
n∑
i=1

Ŷiei = 0.
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This geometric discovery is interesting in its own right, and we will see its utility later
when we examine analysis of variance for multiple linear regression. Another interesting
characteristic of least squares is the residuals from an estimated model (that includes an
intercept term) must sum to 0. This can be argued geometrically. If the model includes
the intercept β0, then the first column of the design matrix X is 1 = 1n×1 and 1 ∈ C(X).
Because e = (I −H)Y ∈ C(X)⊥, the vectors 1 and e are orthogonal and hence the inner
product

1′e =
n∑
i=1

ei = 0.

Fact 4 (restated). For simple linear regression (k = 1, p = 2), we saw (pp 108, notes)

σ̂2 =
SSE

n− 2

is an unbiased estimator of the error variance σ2, that is,

E(σ̂2) = E

(
SSE

n− 2

)
= σ2.

For multiple linear regression, this result generalizes immediately, that is,

E(σ̂2) = E

(
SSE

n− p

)
= σ2.

Proof. The residual sum of squares SSE can be written as a quadratic form. Note that

SSE = (Y − Ŷ)′(Y − Ŷ) = (Y −HY)′(Y −HY)

= [(I−H)Y]′(I−H)Y

= Y′(I−H)′(I−H)Y

= Y′(I−H)(I−H)Y = Y′(I−H)Y,

because I − H is symmetric and idempotent. Recall E(Y) = Xβ and Cov(Y) = σ2I.
Therefore,

E(SSE) = E[Y′(I−H)Y] = (Xβ)′(I−H)Xβ︸ ︷︷ ︸
= 0

+tr[(I−H)σ2I].

The first term is 0 because Xβ ∈ C(X) and (I−H)Xβ ∈ C(X)⊥. Hence, Xβ and (I−H)Xβ
are orthogonal and therefore (Xβ)′(I−H)Xβ = 0. Another way to see this is through direct
algebra, that is,

(Xβ)′(I−H)Xβ = (Xβ)′(Xβ −HXβ) = (Xβ)′(Xβ −Xβ) = (Xβ)′0 = 0.

For the second term, because the tr(·) function is linear, we have

tr[(I−H)σ2I] = σ2tr(I−H) = σ2[tr(I)− tr(H)] = σ2{n− tr[X(X′X)−1X′]}.
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Recall tr(AB) = tr(BA) for any conformable matrices A and B. Taking A = X and
B = (X′X)−1X′, we can write the last expression as

σ2{n− tr[X(X′X)−1X′]} = σ2{n− tr[(X′X)−1X′X]} = σ2[n− tr(I)] = σ2(n− p),

because (X′X)−1X′X is p× p. We have shown E(SSE) = σ2(n− p). Therefore,

E(σ̂2) = E

(
SSE

n− p

)
=
σ2(n− p)
n− p

= σ2. �

Fact 5 (restated). The pivotal quantity

SSE

σ2
=

(n− p)σ̂2

σ2
∼ χ2(n− p).

This is a generalization of Fact 5 (pp 108, notes) to multiple linear regression. Its proof is
beyond the scope of this course; among other things, it would require us to be familiar with
the sampling distribution of quadratic forms like Y′AY, where Y ∼ Nn(µ,V).

Fact 6 (restated). The mean-squared error σ̂2 and the least squares estimator β̂ are inde-
pendent. The proof of this result is also beyond the scope of this course.

12.4.2 Statistical inference

Relevance: Consider the multiple linear regression model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi,

for i = 1, 2, ..., n, where εi ∼ iid N (0, σ2). In our matrix formulation, the model is

Y = Xβ + ε,

where ε ∼ Nn(0, σ2I). Just as we did in simple linear regression (Section 12.2.2, notes), we
target three statistical inference questions:

• inference for (population-level) regression parameters βj, for j = 0, 1, 2, ..., k

• confidence intervals for the population mean E(Y ) when x = x∗

• prediction intervals for the random variable Y ∗ when x = x∗.

This treatment generalizes our discussion of these same topics for simple linear regression.
Later, we will present a statistical inference approach to test

H0 : β1 = β2 = · · · = βk = 0
versus

Ha : not H0,

which can be used to assess the significance of the overall model.
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Inference for βj: Under our model assumptions, recall the least squares estimator

β̂j ∼ N (βj, cjjσ
2) =⇒ Z =

β̂j − βj√
cjjσ2

∼ N (0, 1),

where cjj is the corresponding diagonal entry in the (X′X)−1 matrix; i.e.,

c00 = (X′X)−1
11 , j = 0

cjj = (X′X)−1
j+1,j+1, j = 1, 2, ..., k.

Recall Fact 5, which says

W =
(n− p)σ̂2

σ2
∼ χ2(n− p).

Because σ̂2 is independent of β̂j (Fact 6), it follows that Z and W are also independent.
Therefore,

T =
β̂j − βj√
cjjσ̂2

=

β̂j − βj√
cjjσ2√

(n− p)σ̂2

σ2

/
(n− p)

∼ t(n− p).

Because T is pivotal, we can write

1− α = P (−tn−p,α/2 < T < tn−p,α/2) = P

(
−tn−p,α/2 <

β̂j − βj√
cjjσ̂2

< tn−p,α/2

)
= P

(
β̂j − tn−p,α/2

√
cjjσ̂2 < βj < β̂j + tn−p,α/2

√
cjjσ̂2

)
,

where tn−p,α/2 is the upper α/2 quantile of the t(n− p) distribution. Therefore,

β̂j ± tn−p,α/2
√
cjjσ̂2

is a 100(1− α)% confidence interval for βj. To perform a hypothesis test for

H0 : βj = βj,0
versus

Ha : βj 6= βj,0,

where βj,0 is a specified value (often, βj,0 = 0), we would use

T =
β̂j − βj,0√
cjjσ̂2

as a test statistic and
RR = {t : |t| > tn−p,α/2}

as a level α rejection region. One sided tests would use a suitably adjusted rejection region.
Probability values are computed as areas under the t(n− p) distribution.

PAGE 139



STAT 513: CHAPTER 12 JOSHUA M. TEBBS

Remark: Confidence intervals and hypothesis tests for βj can help us to assess the impor-
tance of using the independent variable xj in a (population-level) linear regression model
that includes the other independent variables. If we test H0 : βj = 0 versus Ha : βj 6= 0, we
are basically asking

Is there a linear relationship between E(Y ) and xj in the population of individuals
after accounting for the other variables in the model?

That is, inference regarding βj is always conditional on the other variables being included
in the model. For example, consider the linear regression model

Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε,

in Example 12.2 (pp 127, notes). Testing

H0 : β4 = 0
versus

Ha : β4 6= 0

allows us to assess the linear relationship between the expected energy E(Y ) and x4 (mois-
ture) in a population-level regression model that already includes x1, x2, and x3 (paper,
plastic, and garbage, respectively).

Confidence interval for E(Y ) when x = x∗: In the multiple linear regression model

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε,

where ε ∼ N (0, σ2), the quantity

θ = E(Y |x∗) = β0 + β1x
∗ + β2x

∗
2 + · · ·+ βkx

∗
k

is the population mean of Y when

x =


x1

x2
...
xk

 =


x∗1
x∗2
...
x∗k

 = x∗.

To include the intercept term β0 in our calculations, define

a =


1
x∗1
x∗2
...
x∗k


p×1

so that the population mean

θ = a′β = β0 + β1x
∗ + β2x

∗
2 + · · ·+ βkx

∗
k.
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A natural point estimator of θ is

θ̂ = a′β̂ = β̂0 + β̂1x
∗ + β̂2x

∗
2 + · · ·+ β̂kx

∗
k,

where β̂ is the least squares estimator of β. Note that

E(θ̂) = E(a′β̂) = a′E(β̂) = a′β = θ,

showing that θ̂ is unbiased. The variance of θ̂ is

V (θ̂) = V (a′β̂) = a′Cov(β̂)a = a′σ2(X′X)−1a = σ2a′(X′X)−1a.

Finally, we know θ̂ is normally distributed because it is a linear function of β̂, which is
multivariate normal. Therefore, we have shown

θ̂ ∼ N
(
θ, σ2a′(X′X)−1a

)
=⇒ Z =

θ̂ − θ√
σ2a′(X′X)−1a

∼ N (0, 1).

Recall Fact 5, which says

W =
(n− p)σ̂2

σ2
∼ χ2(n− p).

Because σ̂2 is independent of β̂ (Fact 6), it follows that Z and W are also independent.
Therefore,

T =
θ̂ − θ√

σ̂2a′(X′X)−1a
=

θ̂ − θ√
σ2a′(X′X)−1a√

(n− p)σ̂2

σ2

/
(n− p)

∼ t(n− p).

Because T is pivotal, we can write

1− α = P (−tn−p,α/2 < T < tn−p,α/2)

= P

(
−tn−p,α/2 <

θ̂ − θ√
σ̂2a′(X′X)−1a

< tn−p,α/2

)
= P

(
θ̂ − tn−p,α/2

√
σ̂2a′(X′X)−1a < θ < θ̂ + tn−p,α/2

√
σ̂2a′(X′X)−1a

)
,

where tn−p,α/2 is the upper α/2 quantile of the t(n− p) distribution. Therefore,

θ̂ ± tn−p,α/2
√
σ̂2a′(X′X)−1a =⇒ a′β̂ ± tn−p,α/2

√
σ̂2a′(X′X)−1a

is a 100(1− α)% confidence interval for the population mean

θ = a′β = E(Y |x∗).

That is, for the population of individuals with x = x∗, we are 100(1 − α)% confident the
mean of this population is between the endpoints above.
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Note: In the simple linear regression model

Y = β0 + β1x+ ε,

one uses

a =

(
1
x∗

)
, β̂ =

(
β̂0

β̂1

)
, and (X′X)−1 =


∑n

i=1 x
2
i

n
∑n

i=1(xi − x)2
− x∑n

i=1(xi − x)2

− x∑n
i=1(xi − x)2

1∑n
i=1(xi − x)2

.

 .

It is straightforward (but tedious) to show the preceding formula collapses to

(β̂0 + β̂1x
∗)± tn−2,α/2

√
σ̂2

[
1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
as we derived previously (see pp 110-111, notes).

Prediction interval for Y when x = x∗: Our goal is to construct a 100(1−α)% prediction
interval for Y ∗, a new value of Y when x = x∗. This interval derivation mimics the one for
simple linear regression so only the salient points are noted. The natural point predictor is

Ŷ ∗ = a′β̂ = β̂0 + β̂1x
∗ + β̂2x

∗
2 + · · ·+ β̂kx

∗
k,

and the prediction error

U = Y ∗ − Ŷ ∗ ∼ N
(
0, σ2[1 + a′(X′X)−1a]

)
=⇒ Z =

Y ∗ − Ŷ ∗√
σ2[1 + a′(X′X)−1a]

∼ N (0, 1).

Recall Fact 5, which says

W =
(n− p)σ̂2

σ2
∼ χ2(n− p).

Because σ̂2 is independent of Y ∗ (why?) and Ŷ ∗ (Fact 6), it follows that Z and W are also
independent. Therefore,

T =
Y ∗ − Ŷ ∗√

σ̂2[1 + a′(X′X)−1a]
=

Y ∗ − Ŷ ∗√
σ2[1 + a′(X′X)−1a]√
(n− p)σ̂2

σ2

/
(n− p)

∼ t(n− p).

Finishing the derivation uses this sampling distribution. It follows that

Ŷ ∗ ± tn−p,α/2
√
σ̂2 [1 + a′(X′X)−1a]

is a 100(1 − α)% prediction interval for Y ∗. Note the presence of the extra “1” in the
estimated standard error, just as we saw in simple linear regression, when compared to the
corresponding confidence interval for E(Y |x∗).
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Example 12.2 (continued). We use R to estimate the multiple linear regression model

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + εi,

for i = 1, 2, ..., 30, for the waste data in Example 12.2 (notes, pp 127). Recall the response
variable

Y = energy content of solid waste specimen

and the four independent variables

x1 = plastic by weight (measured as % of total weight)

x2 = paper by weight (measured as % of total weight)

x3 = garbage by weight (measured as % of total weight)

x4 = moisture percentage.

Here is the output:

> fit = lm(energy~plastic+paper+garbage+moisture)

> summary(fit)

Call:

lm(formula = energy ~ plastic + paper + garbage + moisture)

Residuals:

Min 1Q Median 3Q Max

-41.32 -24.03 -11.01 22.55 59.75

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2244.923 177.902 12.619 2.43e-12 ***

plastic 28.925 2.824 10.244 1.97e-10 ***

paper 7.644 2.314 3.303 0.00288 **

garbage 4.297 1.916 2.242 0.03406 *

moisture -37.354 1.834 -20.365 < 2e-16 ***

Residual standard error: 31.48 on 25 degrees of freedom

Multiple R-squared: 0.9641, Adjusted R-squared: 0.9583

F-statistic: 167.7 on 4 and 25 DF, p-value: < 2.2e-16

R output: The Estimate output gives the least squares estimate

β̂ =


β̂0

β̂1

β̂2

β̂3

β̂4

 =


2244.923

28.925
7.643
4.297

−37.354

 ,
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which we have already seen (pp 131, notes) when we calculated β̂ = (X′X)−1X′Y ourselves
using matrix operations directly. The estimated model is

Ŷ = 2244.923 + 28.925x1 + 7.643x2 + 4.297x3 − 37.354x4.

The Std.Error output gives the estimated standard errors

177.902 = ŝe(β̂0) =
√
c00σ̂2 =

√
σ̂2(X′X)−1

11

2.824 = ŝe(β̂1) =
√
c11σ̂2 =

√
σ̂2(X′X)−1

22

2.314 = ŝe(β̂2) =
√
c22σ̂2 =

√
σ̂2(X′X)−1

33

1.916 = ŝe(β̂3) =
√
c33σ̂2 =

√
σ̂2(X′X)−1

44

1.834 = ŝe(β̂4) =
√
c44σ̂2 =

√
σ̂2(X′X)−1

55 ,

where the (X′X)−1 matrix is on pp 130 (notes) and the mean-squared error

σ̂2 =
SSE

30− 5
≈ (31.48)2

is the square of the Residual standard error (see output). Recall

SSE = Y′(I−H)Y,

where H = X(X′X)−1X′ is the 30 × 30 hat matrix. The error (residual) sums of squares
SSE can be calculated directly in R as follows:

> X = cbind(intercept,plastic,paper,garbage,moisture) # design matrix

> Y = energy # response

> I = diag(30) # 30 by 30 identity matrix

> H = X%*%solve(t(X)%*%X)%*%t(X) # hat matrix

> SSE = t(Y)%*%(I-H)%*%Y # residual sum of squares

> SSE

[,1]

[1,] 24779.22

so that

σ̂2 =
24779.22

30− 5
≈ 991.16.

We can calculate the fitted value vector Ŷ = HY and the residual vector e = (I − H)Y
using the definitions in the R code above:

> Y.hat = H%*%Y # vector of fitted values

> e = (I-H)%*%Y # vector of residuals
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Recall Ŷ′e = 0 (i.e., the fitted value and residual vectors are orthogonal) and 1′e = 0 (the
residuals sum to zero). This can be “verified” by using R:

> t(Y.hat)%*%e

[,1]

[1,] -1.432306e-06

> sum(e)

[1] -1.086953e-09

Note that modest rounding error is incurred when carrying out these matrix calculations
directly (especially when inverting X′X). The output

t value Pr(>|t|)

(Intercept) 12.619 2.43e-12 ***

plastic 10.244 1.97e-10 ***

paper 3.303 0.00288 **

garbage 2.242 0.03406 *

moisture -20.365 < 2e-16 ***

gives values of the five test statistics

T =
β̂j − 0√
cjjσ̂2

,

for j = 0, 1, 2, 3, 4. For example, as noted earlier (pp 140, notes), testing

H0 : β4 = 0
versus

Ha : β4 6= 0

allows us to assess the linear relationship between the expected energy E(Y ) and x4 (mois-
ture) in a population-level regression model that already includes x1, x2, and x3 (plastic,
paper, and garbage, respectively). Two-sided probability values are in Pr(>|t|). The prob-
ability value for the test above is

p-value = PH0(|T | > 20.365) < 2× 10−16,

indicating the evidence against H0 is overwhelming. The random variable T satisfies T
H0∼

t(25), noting that n−p = 30−5 = 25. Confidence intervals for the population-level regression
parameters βj are not provided in the fit summary output, but they can be calculated easily.
A 95% confidence interval for β4 is calculated as

β̂4 ± t25,0.025ŝe(β̂4) −→ − 37.354± 2.059(1.834) −→ (−41.13,−33.58).

Interpretation: For the population of waste specimens, we would expect the energy content
to decrease between 33.58 and 41.13 kcal/kg for each one percentage increase in moisture
(x4). This statement is conditional on the values of the other variables x1 (plastic), x2

(paper), and x3 (garbage) being included in the model and remaining fixed.
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Estimating E(Y |x∗) and predicting Y ∗: To illustrate estimation and prediction at a
given value of x = x∗, set

x∗ =


x∗1
x∗2
x∗3
x∗4

 =


x+1

x+2

x+3

x+4

 =


19.9
23.4
39.3
50.5

 ,

the vector of sample means of each independent variable (i.e., the “center of gravity” of the
30 measurements of x). In R, confidence intervals and prediction intervals are calculated by
using the predict function (see complete code online):

> predict(fit,...,level=0.95,interval="confidence")

fit lwr upr

1 1281.267 1269.429 1293.105

> predict(fit,...,level=0.95,interval="prediction")

fit lwr upr

1 1281.267 1215.355 1347.179

The output fit gives the point estimate/point prediction

β̂0 + β̂1x
∗
1 + β̂2x

∗
2 + β̂3x

∗
3 + β̂4x

∗
4

≈ 2244.923 + 28.925(19.9) + 7.643(23.4) + 4.297(39.3)− 37.354(50.5) ≈ 1281.267.

Interpreting the intervals shown above is done as follows:

• Among all waste specimens with independent variable measurements specified by x∗

above, we are 95% confident the population mean energy content E(Y |x∗) is between
1269.429 and 1293.105 kcal/kg.

• For an individual waste specimen with independent variable measurements specified
by x∗ above, its energy content Y ∗ will fall between 1215.355 and 1347.179 kcal/kg
with probability 0.95. �

12.5 Analysis of variance for linear regression models

Remark: The overall fit of a linear regression model (simple or multiple) can be summa-
rized by using an analysis of variance (ANOVA). The results of this analysis are often
presented in a table to show how variability in the response data Y1, Y2, ..., Yn is partitioned
into different sources. This partition allows us to assess the overall fit of the model.

Recall: Consider the linear regression model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi,
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for i = 1, 2, ..., n, or, in matrix notation,

Y = Xβ + ε.

Recall H = X(X′X)−1X′ is the hat matrix, and Ŷ = HY and e = (I−H)Y are the vectors
of fitted values and residuals, respectively. The matrix I is the n× n identity matrix.

Approach: To create an analysis of variance partition, start with the simple quadratic form
Y′Y = Y′IY. Note that

Y′Y = Y′IY = Y′(H + I−H)Y

= Y′HY + Y′(I−H)Y

= Y′HHY + Y′(I−H)(I−H)Y = Ŷ′Ŷ + e′e,

because both H and I−H are symmetric and idempotent. This equation can be expressed
equivalently as

n∑
i=1

Y 2
i =

n∑
i=1

Ŷ 2
i +

n∑
i=1

(Yi − Ŷi)2.

We use the following terminology:

(uncorrected) total sum of squares −→ Y′IY = Y′Y =
n∑
i=1

Y 2
i

(uncorrected) regression sum of squares −→ Y′HY = Ŷ′Ŷ =
n∑
i=1

Ŷ 2
i

error (residual) sum of squares −→ Y′(I−H)Y = e′e =
n∑
i=1

(Yi − Ŷi)2.

This shows how the (uncorrected) total sum of squares Y′IY = Y′Y =
∑n

i=1 Y
2
i can be

partitioned into two parts: one part due to estimating the linear regression model and the
other part which is “left over” after estimating the model.

Convention: When we estimate a linear regression model, we are usually interested in
the regression coefficients that are attached to independent variables; i.e., β1, β2, ..., βk. We
are usually not interested in the intercept term β0, the population mean of Y when each
independent variable equals 0. Therefore, it is common to “remove the effects” of estimating

this overall mean. This can be accomplished by subtracting nY
2

from both sides of the last
equation, that is,

n∑
i=1

Y 2
i − nY

2
=

n∑
i=1

Ŷ 2
i − nY

2
+

n∑
i=1

(Yi − Ŷi)2,

which is algebraically the same as

n∑
i=1

(Yi − Y )2

︸ ︷︷ ︸
SST

=
n∑
i=1

(Ŷi − Y )2

︸ ︷︷ ︸
SSR

+
n∑
i=1

(Yi − Ŷi)2

︸ ︷︷ ︸
SSE

.
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We call

(corrected) total sum of squares −→ SST

(corrected) regression sum of squares −→ SSR

error (residual) sum of squares −→ SSE,

and these quantities obey
SST = SSR + SSE.

This partition still shows how variation in the response values Y1, Y2, ..., Yn can be partitioned
into two parts (one part due to the model and the “left over” part), but now the part due
to the model disregards the intercept term. Note that

SST =
n∑
i=1

(Yi − Y )2

is simply the numerator of the sample variance

S2 =
1

n− 1

n∑
i=1

(Yi − Y )2,

which we know is an overall measure of variation in the response values Y1, Y2, ..., Yn.

Interesting: We already know the error (residual) sum of squares SSE can be written as a
quadratic form, that is,

SSE = Y′(I−H)Y.

The other sums of squares, SST and SSR, can also be written as quadratic forms. To see
how, note that the correction term

nY
2

= Y′n−1JY,

where

J =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


n×n

is the n× n matrix of ones. The matrix J can be written as J = 11′, where

1 =


1
1
...
1


n×1

.

Therefore,

Y′n−1JY = n−1Y′11′Y =
1

n

(
n∑
i=1

Yi

)2

=
1

n
(nY )2 = nY

2
,
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as claimed. The corrected partition can now be written as

Y′Y −Y′n−1JY = Y′HY −Y′n−1JY + Y′(I−H)Y

or, equivalently,
Y′(I− n−1J)Y︸ ︷︷ ︸

SST

= Y′(H− n−1J)Y︸ ︷︷ ︸
SSR

+ Y′(I−H)Y︸ ︷︷ ︸
SSE

.

Result: If A is an idempotent matrix, then

rank(A) = tr(A).

This fact might be proven in a linear algebra course. Its proof relies on the fact that the trace
of a matrix A equals the sum of the eigenvalues of A and all eigenvalues of an idempotent
matrix must be either 0 or 1.

Revelation: The matrices I− n−1J, H− n−1J, and I−H in the ANOVA partition above
are all idempotent! For example, note that

(I− n−1J)2 = (I− n−1J)(I− n−1J) = I2 − n−1JI− In−1J + n−2J2

= I− n−1J− n−1J + n−2(11′)2.

Now, write
n−2(11′)2 = n−211′11′ = n−21n1′ = n−111′ = n−1J,

where we have used the fact that 1′1 = n. Therefore,

(I− n−1J)2 = I− n−1J− n−1J + n−1J = I− n−1J,

showing that I− n−1J is idempotent. Showing H− n−1J and I−H are idempotent is done
similarly.

Interesting: The ranks of the matrices I− n−1J, H− n−1J, and I−H correspond to the
degrees of freedom attached to SST, SSR, and SSE, respectively. For example,

rank(I− n−1J) = tr(I− n−1J) = tr(I)− n−1tr(J) = n− n−1n = n− 1.

Recall tr(AB) = tr(BA) for any conformable matrices A and B. Note that

rank(H) = tr(H) = tr[X(X′X)−1X′] = tr[(X′X)−1X′X] = tr(I) = p,

because (X′X)−1X′X is p× p. Therefore,

rank(H− n−1J) = tr(H− n−1J) = tr(H)− n−1tr(J) = p− n−1n = p− 1

and
rank(I−H) = tr(I−H) = tr(I)− tr(H) = n− p.
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Terminology: It is common to organize sums of squares (SST, SSR, and SSE) and their
degrees of freedom in an ANOVA table, which generally looks like this:

Source df SS MS F

Regression p− 1 SSR = Y′(H− n−1J)Y MSR =
SSR

p− 1
F =

MSR

MSE

Error n− p SSE = Y′(I−H)Y MSE =
SSE

n− p
= σ̂2

Total n− 1 SST = Y′(I− n−1J)Y

Mean squares: In the ANOVA table above, mean squares (MS) are formed by taking the
sums of squares (SS) and dividing by the corresponding degrees of freedom (df). On pp
137-138 (notes), we showed MSE is an unbiased estimator of σ2, that is,

E(MSE) = E

(
SSE

n− p

)
= σ2,

by making use of the fact that SSE = Y′(I−H)Y; i.e., SSE is a quadratic form in Y. What
about E(MSR)? When is MSR also an unbiased estimator of σ2?

Investigation: Recall E(Y) = Xβ and Cov(Y) = σ2I under our linear model assumptions.
We have

E(SSR) = E[Y′(H− n−1J)Y] = (Xβ)′(H− n−1J)Xβ + tr[(H− n−1J)σ2I].

The second term

tr[(H− n−1J)σ2I] = σ2tr(H− n−1J) = σ2(p− 1),

as shown on the previous page. Because

MSR =
SSR

p− 1
,

it follows that MSR will be an unbiased estimator of σ2 when the first term

(Xβ)′(H− n−1J)Xβ = 0.

This occurs when β1 = β2 = · · · = βk = 0. To see why, note that

Xβ =
(

1 x1 x2 · · · xk
)


β0

0
0
...
0

 = β01.
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Therefore,

(Xβ)′(H− n−1J)Xβ = (β01)′(H− n−1J)β01

= β2
01′(H1− n−1J1)

= β2
01′(1− n−111′1)

= β2
01′(1− 1) = β2

01′0 = 0,

and hence
E(SSR) = σ2(p− 1).

Above, we have used the fact that 1′1 = n and H1 = 1. The latter fact is true because H
projects vectors onto C(X) and 1 ∈ C(X) already.

Summary: The argument above shows two things.

1. When β1 = β2 = · · · = βk = 0 is true, then

E(MSR) = E

(
SSR

p− 1

)
=
E(SSR)

p− 1
=
σ2(p− 1)

p− 1
= σ2,

that is, MSR is also an unbiased estimator of σ2. When this is true,

F =
MSR

MSE

is the ratio of two unbiased estimators of σ2. Because MSR and MSE are both
estimating the same thing on average, we would expect F to be around 1.

2. When β1 = β2 = · · · = βk = 0 is not true, then

E(MSR) = E

(
SSR

p− 1

)
=

E(SSR)

p− 1

=
(Xβ)′(H− n−1J)Xβ + σ2(p− 1)

p− 1

=
(Xβ)′(H− n−1J)Xβ

p− 1
+ σ2 > σ2

because (Xβ)′(H− n−1J)Xβ > 0. That is, MSR is estimating something larger than
σ2 on average (maybe a lot larger depending on where Xβ is). In this situation, we
would expect

F =
MSR

MSE

to be “‘large” (i.e., larger than 1). MSE is still estimating σ2 on average, but MSR
is estimating something larger than σ2 on average (possibly much larger). This will
make F large.
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Remark: I find the preceding summary provides a compelling conceptual understanding of
how to perform the hypothesis test

H0 : β1 = β2 = · · · = βk = 0
versus

Ha : at least one of the βj is nonzero.

We have shown that values of F around 1 are consistent with H0, and “large” values of F
are consistent with Ha. Therefore, H0 should be rejected when F is large. Note that this
conceptual explanation of the “F test” does not rely on the (multivariate) normal assumption
for Y. It relies only on

E(Y) = Xβ and Cov(Y) = σ2I ⇐⇒ E(ε) = 0 and Cov(ε) = σ2I,

the so-called first and second order moment assumptions for ε.

Remark: When we include the multivariate normal assumption for ε, we can derive the
exact sampling distribution of F when H0 is true. Using distribution theory for quadratic
forms like Y′AY (under multivariate normality), a more advanced treatment of linear models
would show

SSR

σ2

H0∼ χ2(p− 1),
SSE

σ2
∼ χ2(n− p), and SSR ⊥⊥ SSE.

Therefore,

F =
MSR

MSE
=

SSR/(p− 1)

SSE/(n− p)
=

SSR/σ2

p− 1

SSE/σ2

n− p

H0∼ F (p− 1, n− p).

A level α rejection region to test H0 versus Ha is

RR = {F > Fp−1,n−p,α},

where Fp−1,n−p,α is the upper α quantile of the F distribution with p − 1 (numerator) and
n − p (denominator) degrees of freedom. Probability values are computed as areas to the
right of F on the F (p− 1, n− p) distribution.

Q: Why would we ever want to test H0 : β1 = β2 = · · · = βk = 0 to begin with?
A: When H0 is true, the (population-level) multiple linear regression model

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε

reduces to
Y = β0 + ε,

that is, none of the independent variables x1, x2, ..., xk are linearly related to E(Y ) in the
population. Therefore, the F test above provides an “overall assessment” of the regression
model. Of course, if H0 is rejected, then we do not know which βj’s are different from 0 (or
how many). Recall we have already discussed how to perform individual inference for the
βj’s as needed (see pp 139, notes).
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Example 12.2 (continued). We use R to construct the ANOVA table with the waste data
(pp 127, notes). The multiple linear regression model is

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + εi,

for i = 1, 2, ..., 30. Here, n = 30 and p = 5. We have already calculated

SSE = Y′(I−H)Y ≈ 24779.2.

The sample variance of Y1, Y2, ..., Y30 is

S2 =
1

30− 1

30∑
i=1

(Yi − Y )2

︸ ︷︷ ︸
SST

=⇒ SST = 29S2 ≈ 689709.9

so that
SSR = SST− SSE ≈ 689709.9− 24779.2 = 664930.7,

by subtraction.

> SST = 29*var(Y)

> SST

[1] 689709.9

The complete ANOVA table is below:

Source df SS MS F
Regression 4 664930.7 166232.7 167.7

Error 25 24779.2 991.2
Total 29 689709.9

Analysis: If H0 : β1 = β2 = β3 = β4 = 0 is true, that is, if none of x1 (plastic), x2

(paper), x3 (garbage), and x4 (moisture) are linearly related to expected energy E(Y ) in the
population, then we would expect F to be “close” to 1. This is clearly not the case here. A
level α = 0.05 rejection region for testing

H0 : β1 = β2 = β3 = β4 = 0
versus

Ha : at least one of the βj is nonzero

is
RR = {F > F4,25,0.05} = {F > 2.76}.

Because F ≈ 167.7, this indicates the evidence against H0 is overwhelming; see Figure 12.5
(next page). That is, there is overwhelming evidence that at least one of the independent
variables x1, x2, x3, x4 is linearly related to expected energy E(Y ) in the population.

> qf(0.95,4,25)

[1] 2.75871
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Figure 12.5: F (4, 25) pdf. This pdf represents the sampling distribution of F when H0 :
β1 = β2 = β3 = β4 = 0 is true. The level α = 0.05 rejection region RR = {F > 2.76} is
shown shaded.

Q: How does R summarize the ANOVA table?
A: Instead of presenting the overall partition (SST = SSR + SSE) as on the previous page,
R takes the (corrected) regression sum of squares

664930.7 ≈ SSR = Y′(H− n−1J)Y

(n = 30) and partitions it into the components contributed by the four independent variables
x1, x2, x3, and x4 separately. For the waste data, recall the design matrix X can be written
as

X =
(

1 x1 x2 x3 x4

)
.

Define the hat matrices

H1 = X1(X′1X1)−1X′1 corresponding to X1 =
(

1 x1

)
H2 = X2(X′2X2)−1X′2 corresponding to X2 =

(
1 x1 x2

)
H3 = X3(X′3X3)−1X′3 corresponding to X3 =

(
1 x1 x2 x3

)
and, of course,

H = X(X′X)−1X′ corresponding to X =
(

1 x1 x2 x3 x4

)
,
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the full design matrix. Observe that

H− n−1J = (H1 − n−1J) + (H2 −H1) + (H3 −H2) + (H−H3).

A stunning geometric interpretation is that the 4 matrices on the RHS are perpendicular
projection matrices onto orthogonal subspaces of the rank 4 vector space C(H− n−1J). For
us, this means we can write

SSR = Y′(H− n−1J)Y

= Y′(H1 − n−1J)Y + Y′(H2 −H1)Y + Y′(H3 −H2)Y + Y′(H−H3)Y

= SSR(x1) + SSR(x2|x1) + SSR(x3|x1,x2) + SSR(x4|x1,x2,x3).

These are called sequential sum of squares because they account for how regression sums
of squares accumulate in sequence; i.e., as independent variables “are added to the model.”
In other words,

SSR(x1) −→ SS from regressing on x1 only (while including β0)

SSR(x2|x1) −→ additional SS from regressing on x2 (including x1 and β0)

SSR(x3|x1,x2) −→ additional SS from regressing on x3 (including x1, x2, and β0)

SSR(x4|x1,x2,x3) −→ additional SS from regressing on x4 (including x1, x2, x3 and β0).

R output: Here is the ANOVA partition R provides for the waste data:

> fit = lm(energy~plastic+paper+garbage+moisture)

> anova(fit)

Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(>F)

plastic 1 239735 239735 241.8709 2.311e-14 ***

paper 1 11239 11239 11.3392 0.002458 **

garbage 1 2888 2888 2.9136 0.100231

moisture 1 411069 411069 414.7313 < 2.2e-16 ***

Residuals 25 24779 991

It is straightforward to verify the partition

664930.7 ≈ SSR = 239735 + 11239 + 2888 + 411069

(up to rounding error). We know SSR = Y′(H− n−1J)Y has 4 degrees of freedom in total;
i.e., rank(H − n−1J) = 4. One degree of freedom is allocated to each of the sequential SS
above because this is the dimension of each orthogonal subspace of C(H− n−1J).

Sequential F tests: The F statistics in the R output above are

F1 =
SSR(x1)/1

MSE
≈ 241.9

F2 =
SSR(x2|x1)/1

MSE
≈ 11.3

F3 =
SSR(x3|x1,x2)/1

MSE
≈ 2.9

F4 =
SSR(x4|x1,x2,x3)/1

MSE
≈ 414.7.
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What exactly are these statistics used to test? In words,

• F1 allows us to test whether x1 (plastic) “adds to the regression” when compared to a
model that includes only the intercept β0.

• F2 allows us to test whether x2 (paper) “adds to the regression” when compared to a
model that includes x1 (plastic) and the intercept β0.

• F3 allows us to test whether x3 (garbage) “adds to the regression” when compared to
a model that includes x1 (plastic), x2 (paper), and the intercept β0.

• F4 allows us to test whether x4 (moisture) “adds to the regression” when compared to
a model that includes x1 (plastic), x2 (paper), x3 (garbage), and the intercept β0.

Large values of F indicate that the additional independent variable is important after ac-
counting for the variables that preceded it. Under multivariate normality, a level α rejection
region for tests of this type in general is

RR = {F > F1,n−p,α},

where F1,n−p,α is the upper α quantile of the F (1, n − p) distribution (here n − p = 25).
For the tests above, values of F > F1,25,α indicate the corresponding variable does add
to the regression model significantly (after accounting for the variables that preceded it).
Probability values in Pr(>F) are areas to the right of F under the F (1, 25) pdf.

Interesting: Sequential sums of squares are used to assess the relative contribution of each
independent variable as it is added to the model in sequence. Therefore, if you change the
ordering of the independent variables x1, x2, x3, x4, you change the partition of SSR! Before,
we used

> fit = lm(energy~plastic+paper+garbage+moisture)

which adds the independent variables x1, x2, x3, and x4 in this order. Using

> fit = lm(energy~garbage+moisture+paper+plastic)

adds x3, x4, x2, and x1 in this order. Here is the ANOVA partition R provides for this
ordering:

> fit = lm(energy~garbage+moisture+paper+plastic)

> anova(fit)

Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(>F)

garbage 1 5245 5245 5.2916 0.03005 *

moisture 1 555276 555276 560.2233 < 2.2e-16 ***

paper 1 402 402 0.4060 0.52980

plastic 1 104007 104007 104.9340 1.968e-10 ***

Residuals 25 24779 991
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It is straightforward to verify the partition

664930.7 ≈ SSR = 5245 + 555276 + 402 + 104007

(up to rounding error). However, note that our assessment of the relative contributions of
each independent variable changes to reflect this new ordering.

• In the first partition, x3 (garbage) did not add significantly to a model that included
x1 (plastic), x2 (paper), and the intercept; p-value ≈ 0.100. However, in the second
partition, x3 (garbage) does add significantly when compared to a model that includes
only the intercept; p-value ≈ 0.030.

• In the first partition, x2 (paper) added significantly to a model that included x1 (plastic)
and the intercept; p-value ≈ 0.002. However, in the second partition, x2 (paper) does
not add significantly to a model that includes x3 (garbage), x4 (moisture), and the
intercept; p-value ≈ 0.530.

These are not contradictory findings. The differences in the conclusions are based entirely
on the ordering of the independent variables; i.e., the F statistics (and probability values)
for the two partitions are simply testing different things. And both partitions test different
hypotheses than we saw earlier with the summary output (pp 143, notes):

> fit = lm(energy~plastic+paper+garbage+moisture)

> summary(fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2244.923 177.902 12.619 2.43e-12 ***

plastic 28.925 2.824 10.244 1.97e-10 ***

paper 7.644 2.314 3.303 0.00288 **

garbage 4.297 1.916 2.242 0.03406 *

moisture -37.354 1.834 -20.365 < 2e-16 ***

This output gives t statistics of the form

T =
β̂j − 0√
cjjσ̂2

,

which are used to test

H0 : βj = 0
versus

Ha : βj 6= 0.

Inference here is conditional on all other independent variables being included in the model.
For example, the summary output above shows x2 (paper) adds significantly to a model that
includes x1 (plastic), x3 (garbage), x4 (moisture), and the intercept; p-value ≈ 0.003. Com-
pare this with the second sequential SS partition, where x2 (paper) does not add significantly
to a model that includes only x3 (garbage), x4 (moisture), and the intercept. �
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13 Survival Analysis

13.1 Introduction

Remark: The statistical analysis of lifetime data is important in many areas, including
biomedical applications (e.g., clinical trials, etc.), engineering, and actuarial science. The
term “lifetime” means “time to event,” where an event may refer to death, part failure,
insurance claim, natural disaster, eradication of infection, etc.

• In chronic disease clinical trials; e.g., trials involving cancer, diabetes, cardiovascular
disease, etc., the primary endpoint (variable) of interest may be time to death, time
to relapse of disease, time to disease progression, etc. For such trials, we are usually
interested in comparing the distribution of the time to event among two or more
treatments.

• Typically, clinical trials occur over a finite period of time; therefore, the time to event
is not measured on all patients in the study. This results in what is referred to as
censored data. Also, because patients generally enter a clinical trial at different
calendar times (staggered entry), the amount of follow-up time varies for different
individuals.

• The combination of censoring and staggered entry creates challenges in the analysis
of such data that do not allow basic statistical techniques to be used. This area of
statistics is called survival analysis.

Example 13.1. A randomized clinical trial (RCT) involves 64 cancer patients with severe
aplastic anemia. This occurs when an individual’s bone marrow stops making enough new
blood cells. This is a serious condition; patients who are left untreated usually die in less than
one year. Prior to the trial, all 64 patients were treated with a high dose of cyclophosphamide
(a drug designed to prepare patients for transplant by lowering the body’s immune system),
followed by an infusion of bone marrow from a family member. Patients were then randomly
assigned to one of two treatment groups:

• Group 1: Cyclosporine and methotrexate (CSP+MTX)

• Group 2: Methotrexate only (MTX).

Cyclosporine also lowers the body’s immune system (to prevent rejection of marrow from
a donor). Methotrexate is designed to slow the growth of cancer cells. In this trial, the
primary endpoint (variable) was

T = time from treatment assignment until diagnosis of AGVHD.

Acute graft versus host disease (AGVHD) is a condition where the donor’s bone marrow cells
attack the patient’s organs and tissue. One goal of the trial was to compare the distribution
of T for both treatment groups.
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CSP+MTX MTX only
3* 65 324 528* 9* 25 104* 395*
8 77* 356* 547* 11 28 106* 428*
10 82* 378* 691 12 28 156 469
12* 98* 408* 769* 20* 31 218 602
16 155* 411 1111* 20 35* 230* 681*
17 189 420* 1173 22 35* 231* 690
22 199* 449* 1213* 25 46 316* 1112*
64* 247* 490 1357 25* 49* 393 1180

Table 13.1: RCT data. Time to diagnosis of AGVHD. Starred entries represent censored
observations.

Data: Table 13.1 gives the times to diagnosis (in days) for the 64 patients. Note that only
30 of the 64 patents actually “reached the endpoint” (i.e., were actually diagnosed with
AGVHD). The remaining 34 patients were censored, that is, these patients were never
diagnosed with AGVHD.

• What probability distribution should we use to model the diagnosis times?

• What effects do censoring and staggered entry have on the resulting analysis?

• Figure 13.1 (next page) displays estimates of the survivor functions. How are these
constructed? Is the difference between the two groups statistically significant? �

13.2 Describing the distribution of time to an event

Terminology: Let T denote the time to event. It is understood to mean that T is a
nonnegative random variable for which there is an unambiguous start (e.g., point of infection,
start of treatment, etc.) and an unambiguous end (e.g., death, diagnosis, etc.) with the time
in between corresponding to T . Therefore, P (T ≥ 0) = 1. Random variables T with positive
(nonnegative) support are called lifetime random variables. For example,

• T = survival time (from birth to death)

• T = time from treatment of disease to death (this may be tricky if individuals die from
“other causes;” more about this later)

• T = time to diagnosis of a more severe condition (e.g., Alzheimer’s disease, etc.).

Remark: The time of interest may not always correspond to something deleterious such as
“death.” For example, we may consider the time to the eradication of an infection, measured
from the initiation of an antibiotic used to treat patients. In this situation, it is preferable
to shorten the distribution of times, whereas, in the other situations (e.g., when death is the
endpoint), it is desirable to lengthen time.

PAGE 159



STAT 513: CHAPTER 13 JOSHUA M. TEBBS

0 200 400 600 800 1000 1200 1400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time to AGVHD diagnosis (in days)

S
ur

vi
va

l P
ro

ba
bi

lit
y

CSP+MTX
MTX only

Figure 13.1: RCT data. Kaplan-Meier estimates for the time to diagnosis of AGVHD for
two treatment groups.

Review: We now describe some different, but equivalent, ways of defining the distribution
of a lifetime random variable T (the time to an event). In our discussion, we assume that T
is continuous.

• The cumulative distribution function (cdf):

FT (t) = P (T ≤ t).

This is the proportion of the population that has experienced the event at or before
time t. If the event is something bad like “death” or “failure,” then FT (t) is the
proportion that has “failed” by time t.

• The survivor function:

ST (t) = P (T > t) = 1− FT (t).

This is the proportion of the population that has not failed at or before time t; i.e.,
the proportion that is “still alive” at time t.

• The probability density function:

fT (t) =
d

dt
FT (t) = − d

dt
ST (t).
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Also, recall

FT (t) =

∫ t

0

fT (u)du and ST (t) =

∫ ∞
t

fT (u)du.

Note the lower limit on the integral for FT (t) is 0 because T is a lifetime random
variable (it has nonnegative support).

Example 13.2. A simple parametric model for T is the exponential distribution with mean
β > 0. Recall if T ∼ exponential(β), then the pdf of T is

fT (t) =


1

β
e−t/β, t > 0

0, otherwise.

The cdf of T is

FT (t) =

{
0, t ≤ 0

1− e−t/β, t > 0.

The survivor function of T is

ST (t) = 1− FT (t) =

{
1, t ≤ 0

e−t/β, t > 0.

A graph of the survivor function appears in Figure 13.2 (next page, left) when β = 2. Note
that

ST (1) = e−1/2 ≈ 0.607,

that is, approximately 60.7% of the population “is alive at” or “has survived up to” time
t = 1. Also,

ST (φ0.5) = e−φ0.5/2
set
= 0.5 =⇒ φ0.5

2
= − ln 0.5 =⇒ φ0.5 = 2 ln 2 ≈ 1.39;

i.e., the median survival is φ0.5 ≈ 1.39. �

Terminology: We say the distribution of a survival time T1 is stochastically larger than
another survival time T2, and write T1 ≥st T2, if the survivor function of T1 is greater than
or equal to the survivor function of T2 for all t; that is,

ST1(t) = P (T1 > t) ≥ P (T2 > t) = ST2(t),

for all t ≥ 0. In other words, “T1 tends to be larger than T2.” See Figure 13.2 (next page,
right).

Terminology: The mortality rate at time t is the proportion of the population who “fail”
between times t and t + 1 among those individuals “alive” at time t. This is a conditional
probability and is given by

m∗T (t) = P (t ≤ T < t+ 1|T ≥ t).

Usually, t is an integer of some unit of time (e.g., day, month, year, etc.).
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Figure 13.2: Left: Survivor function of T ∼ exponential(β = 2). Right: Survivor functions
of T1 ∼ exponential(β = 2) and T2 ∼ exponential(β = 1). Note that T1 ≥st T2.

Q: Suppose
T = survival time (from birth to death)

for the human population. What does the corresponding mortality rate (mortality function)
m∗T (t) look like?

Terminology: The hazard rate is simply a “continuous version” of a mortality rate,
defined as follows:

λT (t) = lim
h→0

P (t ≤ T < t+ h|T ≥ t)

h
.

In other words, the hazard rate λT (t) is the limit of the mortality rate when the interval of
time is taken to be arbitrarily small. The hazard rate is the instantaneous rate of failure at
time t, given that the individual is alive at time t. Note the hazard rate is not a probability;
rather, it is a probability rate. Therefore, it is possible that a hazard rate may exceed one.

Remark: The hazard rate (or hazard function) is a very important characteristic of a
lifetime distribution. It indicates the way the risk of failure varies over time, and this is of
interest in most applications.

• Distributions with increasing hazard functions are seen for individuals for whom some
kind of aging or “wear out” takes place (e.g., people, car batteries, etc.).

• Certain types of devices may actually display a decreasing hazard function (i.e., the
population of individuals “strengthens” over time).

Examples of hazard functions and their shapes are shown in Figure 13.3 (next page).
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Figure 13.3: Examples of hazard functions.

Observation: Note that

λT (t) = lim
h→0

P (t ≤ T < t+ h|T ≥ t)

h

= lim
h→0

P (t ≤ T < t+ h)

hP (T ≥ t)

=
1

P (T ≥ t)
lim
h→0

FT (t+ h)− FT (t)

h
=
fT (t)

ST (t)
=
− d

dt
ST (t)

ST (t)
= − d

dt
ln{ST (t)}.

Integrating both sides of the last equation, we get

− ln{ST (t)} =

∫ t

0

λT (u)du = ΛT (t),

the so called cumulative hazard function. Consequently,

ST (t) = exp

{
−
∫ t

0

λT (u)du

}
= exp {−ΛT (t)} .

Because of these one-to-one relationships, we can describe the distribution of a continuous
survival time T by using fT (t), FT (t), ST (t), λT (t), or ΛT (t).
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Example 13.2 (continued). Let’s calculate the hazard function λT (t) for T ∼ exponential(β).
We have

λT (t) =
fT (t)

ST (t)
=

1

β
e−t/β

e−t/β
=

1

β
,

which is a constant function of t. Therefore, the rate of failure is constant over time. In
other words, failures will occur, but the rate of failure does not increase or decrease over
time. Does this remind you of a “special property” that (for continuous distributions) only
the exponential distribution enjoys? �

Example 13.3. Another parametric model which is commonly assumed in engineering is
T ∼Weibull(β, η), where β > 0 and η > 0. The pdf of T can be written as

fT (t) =

 β

η

(
t

η

)β−1

e−(t/η)β , t > 0

0, otherwise,

where

β = shape parameter

η = scale parameter.

This pdf has been parameterized differently than our book so as to facilitate an interpretation
commonly used in engineering applications. The cdf of T is

FT (t) =

{
0, t ≤ 0

1− e−(t/η)β , t > 0.

The survivor function of T is

ST (t) = 1− FT (t) =

{
1, t ≤ 0

e−(t/η)β , t > 0.

Therefore, the hazard function, for t > 0, is

λT (t) =
fT (t)

ST (t)
=

β

η

(
t

η

)β−1

e−(t/η)β

e−(t/η)β
=
β

η

(
t

η

)β−1

.

Note: For T ∼Weibull(β, η), it is easy to show

• λT (t) is increasing if β > 1 (population gets weaker with aging)

• λT (t) is constant if β = 1 (constant hazard; exponential distribution)

• λT (t) is decreasing if β < 1 (population gets stronger with aging).

Therefore, under the Weibull model assumption for T , the strength of the population over
time can be described exclusively through the value of the shape parameter β. �
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Example 13.4. The data below are taken from Xu et al. (2003, Applied Soft Computing),
who describe a reliability study on turbochargers in diesel engines. These are failure time
data for n = 40 turbochargers; the failure time T is measured in 1000s of hours. All
turbochargers eventually failed; i.e., no times below were censored.

1.6 2.0 2.6 3.0 3.5 3.9 4.5 4.6 4.8 5.0
5.1 5.3 5.4 5.6 5.8 6.0 6.0 6.1 6.3 6.5
6.5 6.7 7.0 7.1 7.3 7.3 7.3 7.7 7.7 7.8
7.9 8.0 8.1 8.3 8.4 8.4 8.5 8.7 8.8 9.0

Under the assumption that T ∼Weibull(β, η), the likelihood function of β and η (assuming
independent units) is given by

L(β, η|t) =
40∏
i=1

β

η

(
ti
η

)β−1

e−(ti/η)β =

(
β

ηβ

)40
(

40∏
i=1

ti

)β−1

e−
∑40
i=1(ti/η)β .

Maximizing L(β, η|t) or lnL(β, η|t) is difficult to do analytically, so numerical optimization
methods are preferred. In R, maximizing L(β, η|t) numerically can be carried out by using
the fitdist function as follows:

> fitdist(turbo,"weibull")

Fitting of the distribution ‘weibull’ by maximum likelihood

Parameters:

estimate Std. Error

shape 3.873157 0.5176799

scale 6.920191 0.2946851

Therefore, the maximum likelihood estimates of β and η based on these data (and under the
Weibull model assumption) are

β̂ ≈ 3.87

η̂ ≈ 6.92.

The estimated standard errors are obtained numerically from the second derivative matrix
(Hessian) of the log-likelihood function. Because MLEs are approximately normally dis-
tributed in large samples, an approximate 95% confidence interval for β is

β̂ ± 1.96× ŝe(β̂) −→ 3.87± 1.96(0.52) −→ (2.85, 4.89).

Therefore, we are 95% confident (under the Weibull model assumption) that the population
parameter β is between 2.85 and 4.89. By the invariance property of maximum likelihood
estimators, the MLE of the survivor function ST (t) is

ŜT (t) =

{
1, t ≤ 0

e−(t/6.92)3.87 , t > 0,
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Figure 13.4: Turbocharger data. Left: Estimated survivor function ŜT (t). Right: Estimated

hazard function λ̂T (t).

and the estimated hazard function is

λ̂T (t) =
3.87

6.92

(
t

6.92

)3.87−1

.

The estimated survivor and hazard functions are shown in Figure 13.4 (above). �

Remark: Investigators in different areas approach the analysis of lifetime data from different
perspectives. A parametric approach is generally espoused in engineering and actuarial
science applications (see Example 13.4). That is, a parametric probability model is assigned
to describe the distribution of the random variable T . Common model choices include

• exponential

• Weibull

• log-normal

• gamma

• other less well known distributions, such as log-logistic, inverse Gaussian, Pareto, log-
gamma, Burr, Gompertz-Makeham, etc.

On the other hand, it is more common in biostatistics and medical applications to take a
nonparametric approach, where the probability distribution of T is left unspecified. This
is the approach we take going forward.
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13.3 Censoring and life table estimates

Remark: Two important issues arise in survival analysis (in particular, in clinical trials)
when time to event data are considered:

• Some individuals “are still alive” at the time of analysis (i.e., the event of interest has
not yet occurred). This results in right censored data.

• The length of follow-up varies due to staggered entry over “calendar time.” Note that
“patient time” is measured from entry into the study.

In addition to censoring occurring because of insufficient follow-up (i.e., due to the study
ending), it may also occur for other reasons. For example,

• loss to follow-up; e.g., the patient stops drops out of the study, moves away, etc.

• death from other causes (competing risks).

These different forms of censoring are referred to as random right censoring. How do we
account for censoring in the analysis of survival data?

Example 13.1 (revisited). Let’s once again consider the two-arm clinical trial with patients
assigned to one of the following treatment groups:

• Group 1: Cyclosporine and methotrexate (CSP+MTX)

• Group 2: Methotrexate only (MTX).

For this illustration, we will consider Group 1 only (CSP+MTX; see data below):

CSP+MTX
3* 8 10 12* 16 17 22 64*
65 77* 82* 98* 155* 189 199* 247*
324 356* 378* 408* 411 420* 449* 490
528* 547* 691 769* 1111* 1173 1213* 1357

Recall these are observations of

T = time from treatment assignment until diagnosis of AGVHD

for 32 patients. Thirteen (13) patients reached the endpoint and 19 patients were censored.
Our goal is to estimate the survivor function

ST (t) = P (T > t).

If we make a parametric model assumption for T , then the survivor function ST (t) will be
a function of the parameters in the model. For example, suppose T ∼ exponential(β), where
β > 0. Under this model assumption,

ST (t) = e−t/β, t > 0.
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Therefore, to estimate ST (t) under the exponential assumption, all we have to do is estimate
β under the exponential model. Recall the sample mean

T =
1

n

n∑
i=1

Ti

is the MLE of β if the diagnosis times T1, T2, ..., Tn are iid and are completely observed.
To account for censoring (under the exponential assumption), consider the following three
approaches:

1. Discard the censored observations and estimate β using ML with the complete obser-
vations only. There are 13 complete observations whose average AGVHD diagnosis
time is 367.2 days. Therefore, the estimated survivor function is

ŜT (t) = e−t/367.2, t > 0.

2. Ignore the censoring aspect and estimate β using ML with all the observations (treating
censored observations as complete observations). There are 32 observations whose
average is 371.5 days. Therefore, the estimated survivor function is

ŜT (t) = e−t/371.5, t > 0.

Remark: Although the first two approaches produce similar estimates of β, both approaches
are terrible. In the first, one is discarding information about the survival distribution con-
tained in the censored observations. For example, knowing that {T > 1213} has occurred
for the 31st patient gives information about survival time. In the second, regarding censored
times as observed times will also greatly distort the analysis. For the 1st patient, treating
{T > 3} as {T = 3} is misleading as these two events mean very different things.

3. We can write out the likelihood function of β based on the complete observations and
the censored ones. To see how, define

∆i =

{
1, ith time is observed
0, ith time is censored,

for i = 1, 2, ..., 32. Under the iid exponential(β) assumption, the likelihood function
consists of two parts: the part due to the complete observations and the part due to
the censored observations, that is,

L(β) =
32∏
i=1

[fT (ti)]
∆i [ST (ti)]

1−∆i =
32∏
i=1

(
1

β
e−ti/β

)∆i (
e−ti/β

)1−∆i

=

(
1

β

)∑32
i=1 ∆i

e−
∑32
i=1 ti∆i/β × e−

∑32
i=1 ti(1−∆i)/β

=

(
1

β

)∑32
i=1 ∆i

e−
∑32
i=1[ti∆i+ti(1−∆i)]/β

=

(
1

β

)r
e−

∑32
i=1 ti/β,
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Figure 13.5: RCT data. Estimated survivor functions (under the exponential assumption)
for three approaches to incorporate censoring.

where r =
∑32

i=1 ∆i is the number of complete observations (r = 13). The log-likelihood
function is

lnL(β) = −r ln β −
∑32

i=1 ti
β

.

The derivative of the log-likelihood function is

∂

∂β
lnL(β) = − r

β
+

∑32
i=1 ti
β2

set
= 0 =⇒ β̂ =

1

r

32∑
i=1

ti ≈ 914.5.

Therefore, the estimated survivor function is

ŜT (t) = e−t/914.5, t > 0.

Remark: Estimated survivor functions ŜT (t) from the three approaches are shown in Figure
13.5 (above). Clearly the third approach is preferred as it distinguishes between complete
and censored observations and incorporates both types. However, a remaining limitation is
that one is “locked in” to the exponential distribution as a population-level model for time to
AGVHD diagnosis. All estimates (and resulting inference) are valid under this assumption
but not necessarily otherwise. �
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Remark: We now discuss estimation in survival analysis while making no parametric as-
sumptions about the distribution of the time to event T , and we do this while accounting
for censoring and staggered entry. We start with a clinical trial example where observations
are grouped into one-year intervals of time.

Example 13.5. Data from n = 146 individuals, who previously had myocardial infarction
(MI) and participated in a clinical trial for an antihypertensive drug (to lower high blood
pressure), are given in Table 13.2 (below). All times are measured in terms of patient time
(not calendar time). The endpoint T is time to death.

Number alive and
Year since under observation at Number dying Number censored

entry into study beginning of interval during interval or withdrawn
[0, 1) 146 27 3
[1, 2) 116 18 10
[2, 3) 88 21 10
[3, 4) 57 9 3
[4, 5) 45 1 3
[5, 6) 41 2 11
[6, 7) 28 3 5
[7, 8) 20 1 8
[8, 9) 11 2 1
[9, 10) 8 2 6

Table 13.2: Myocardial infarction data. All data are measured in patient time.

Q: How should we estimate the five-year survival probability ST (5)?
A: Two naive answers are given by

76 deaths in 5 years

146 individuals
= 0.521 =⇒ ŜT (5) = 0.479

76 deaths in 5 years

146−29 individuals
= 0.650 =⇒ ŜT (5) = 0.350.

• The first estimate would be appropriate if all 29 individuals withdrawn in the first 5
years were withdrawn (censored) exactly at the 5-year mark; i.e., at time t = 5. This
corresponds to censoring on the right of the interval [0, 5). This is not the case, so
this estimate is overly optimistic; i.e., this overestimates ST (5).

• The second estimate would be appropriate if all 29 individuals withdrawn in the first
5 years were withdrawn (censored) immediately upon entering the study; i.e., at time
t = 0. This corresponds to censoring on the left of the interval [0, 5). This is not the
case either, so this estimate is overly pessimistic; i.e., this underestimates ST (5).

Remark: A better estimate of ST (5) obviously is somewhere between these two extremes,
one that allows for individuals to be censored while using smaller time intervals than [0, 5).
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Using conditional probabilities, it is easy to show ST (5) can be expressed as

ST (5) = P (T ≥ 5) = P (T ≥ 1|T ≥ 0)× P (T ≥ 2|T ≥ 1)× P (T ≥ 3|T ≥ 2)

× P (T ≥ 4|T ≥ 3)× P (T ≥ 5|T ≥ 4).

Using the complement rule for conditional probabilities, we have

P (T ≥ 1|T ≥ 0) = 1− P (0 ≤ T < 1|T ≥ 0) = 1−m∗T (0)

P (T ≥ 2|T ≥ 1) = 1− P (1 ≤ T < 2|T ≥ 1) = 1−m∗T (1)
...

P (T ≥ 5|T ≥ 4) = 1− P (4 ≤ T < 5|T ≥ 4) = 1−m∗T (4),

where recall m∗T (t) is the mortality rate. Therefore, we can write

ST (5) =
5∏
j=1

{1−m∗T (j − 1)}.

The mortality rate in each interval is easy to estimate nonparametrically; simply use the
proportion of patients who die in each interval. Choosing which denominator to use in this
proportion then depends on what we do with the censored observations.

Right censoring: Suppose any individual who is withdrawn (censored) in an interval of
time is censored at the end of that interval (right censoring). Our table then looks like

Time n(t) d(t) w(t) m̂∗T (t) =
d(t)

n(t)
1− m̂∗T (t) ŜRT (t) =

∏
{1− m̂∗T (t)}

[0, 1) 146 27 3 0.185 0.815 0.815
[1, 2) 116 18 10 0.155 0.845 0.689
[2, 3) 88 21 10 0.239 0.761 0.524
[3, 4) 57 9 3 0.158 0.842 0.441
[4, 5) 45 1 3 0.022 0.972 0.432

Thus, if right censoring was used, our estimate of the five-year survival probability, based on
the life-table, would be ŜRT (5) = 0.432.

Left censoring: Suppose any individual who is withdrawn (censored) in an interval of time
is censored at the beginning of that interval (left censoring). Our table then looks like

Time n(t) d(t) w(t) m̂∗T (t) =
d(t)

n(t)− w(t)
1− m̂∗T (t) ŜLT (t) =

∏
{1− m̂∗T (t)}

[0, 1) 146 27 3 0.189 0.811 0.811
[1, 2) 116 18 10 0.170 0.830 0.673
[2, 3) 88 21 10 0.269 0.731 0.492
[3, 4) 57 9 3 0.167 0.833 0.410
[4, 5) 45 1 3 0.024 0.976 0.400

Thus, if left censoring was used, our estimate of the five-year survival probability, based on
the life-table, would be ŜLT (5) = 0.400.
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Observation: Naive estimates of ST (5) ranged from 0.350 to 0.479, which assumed censoring
occurred at the beginning or the end of the interval [0, 5), respectively. When we restricted
attention to patient time on a year-by-year basis, our estimates of ST (5) ranged from 0.400 to
0.432, a tremendous improvement in precision! Therefore, sharper (nonparametric) estimates
of the survivor function result when we consider smaller intervals of time.

Remark: It is likely censoring occurs at a time inside of each interval (i.e., not always on

the endpoints). Therefore, our improved estimates ŜLT (5) = 0.400 and ŜRT (5) = 0.432 based
on one-year intervals are still too pessimistic and optimistic, respectively. A compromise is
to use the following table:

Time n(t) d(t) w(t) m̂∗T (t) =
d(t)

n(t)− w(t)/2
1− m̂∗T (t) ŜT (t) =

∏
{1− m̂∗T (t)}

[0, 1) 146 27 3 0.187 0.813 0.813
[1, 2) 116 18 10 0.162 0.838 0.681
[2, 3) 88 21 10 0.253 0.747 0.509
[3, 4) 57 9 3 0.162 0.838 0.426
[4, 5) 45 1 3 0.023 0.977 0.417

This table forms the basis for the life-table estimate of ST (5); i.e., ŜT (5) = 0.417. The
denominator n(t) − w(t)/2 is called the effective sample size. A plot of the estimated
survivor function is shown in Figure 13.6 (next page). This plot is based on the effective
sample size life table (above) and the completed table below:

Time n(t) d(t) w(t) m̂∗T (t) =
d(t)

n(t)− w(t)/2
1− m̂∗T (t) ŜT (t) =

∏
{1− m̂∗T (t)}

[5, 6) 41 2 11 0.056 0.944 0.393
[6, 7) 28 3 5 0.118 0.882 0.347
[7, 8) 20 1 8 0.063 0.937 0.325
[8, 9) 11 2 1 0.190 0.810 0.264
[9, 10) 8 2 6 0.400 0.600 0.158

Inference: For life-table estimators to provide unbiased results, we must assume individuals
who are censored are at the same risk of failure as those who are “still alive” and uncensored.
The “risk set” n(t), that is, those who are still alive and uncensored, should be representative
of the entire population alive at the same time. Under these assumptions, for fixed t,
theoretical arguments show the life-table estimator ŜT (t) is approximately normal with mean
ST (t) and variance which is consistently estimated by

σ̂2
ŜT (t)

= {ŜT (t)}2

t∑
j=1

dj
(nj − wj/2)(nj − dj − wj/2)

,

where nj = n(j), dj = d(j), and wj = w(j). The formula for σ̂2
ŜT (t)

is called Greenwood’s

formula. An approximate 100(1− α)% confidence interval for ST (t) is therefore given by

ŜT (t)± zα/2σ̂ŜT (t),
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Figure 13.6: Myocardial infarction data. Life-table estimate of ST (t) in Example 13.5.

where zα/2 is the upper α/2 quantile of the N (0, 1) distribution and σ̂ŜT (t) is the estimated
standard error.

MI data: The following table calculates estimated standard errors for the myocardial in-
farction data in Example 13.5:

Time n(t) d(t) w(t) ŜT (t)
∑

j

dj
(nj − wj/2)(nj − dj − wj/2)

σ̂ŜT (t)

[0, 1) 146 27 3 0.813 0.00159 0.032
[1, 2) 116 18 10 0.681 0.00327 0.039
[2, 3) 88 21 10 0.509 0.00735 0.044
[3, 4) 57 9 3 0.426 0.01084 0.044
[4, 5) 45 1 3 0.417 0.01138 0.044

Therefore, an approximate 95% confidence interval for ST (5) using the life table estimate is

0.417± 1.96(0.044) −→ (0.331, 0.503).

That is, we are 95% confident the five-year survival probability ST (5) after an MI episode is
between 0.331 and 0.503. �
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13.4 Kaplan-Meier estimator

Motivation: In Example 13.5, we saw that the bias when estimating the survivor function
ST (t) incorrectly (i.e., assuming that censoring occurs at the left or the right of each time
interval) decreases when the length of the interval was reduced (e.g., from five years to one
year). Therefore, if the data are not grouped, that is, we know the exact failure and censoring
times, we could apply the life-table estimator using intervals with very small lengths. The
Kaplan-Meier estimator is the “limit” of the life-table estimator when intervals of time
are so small that at most one observation occurs in a unit of time.

Example 13.6. Consider the small (fictitious) data set below. The endpoint T is time to
death. We have the following death and censoring times for n = 10 individuals:

Time (t) 4.5 7.5 8.5 11.5 13.5 15.5 16.5 17.5 19.5 21.5
Censoring indicator 1 1 0 1 0 1 1 0 1 0

Here, “1” means the observation was a death and “0” means the observation was censored.
We have 6 deaths and 4 censored observations (out of the 10 individuals). Let

m̂∗T (t) =
d(t)

n(t)
=

number of deaths in an interval

number at risk at beginning of the interval

be an estimate of the mortality rate at time t. Taking the interval of time to be one unit,
consider the following calculations:

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m̂∗
T (t) 0 0 0 0 1

10 0 0 1
9 0 0 0 1

7 0 0 0 1
5

1
4 0 0 1

2

1− m̂∗
T (t) 1 1 1 1 9

10 1 1 8
9 1 1 1 6

7 1 1 1 4
5

3
4 1 1 1

2

ŜT (t) 1 · · · 9
10 · · 8

10 · · · 48
70 · · · 192

350
144
350 · · 144

700

The Kaplan-Meier estimate ŜT (t) is a step function taking jumps precisely at those times
where an event (death) occurs; see Figure 13.7 (left, next page). By convention, the Kaplan-
Meier estimator is assumed to be right continuous. Pointwise confidence bands, which ac-
knowledge uncertainty in the point estimate ŜT (t), can be obtained by using Greenwood’s
formula; see Figure 13.7 (right, next page). �

Objective: We now embark on a more general discussion about survival data; this discussion
introduces notation that will be useful in developing the Kaplan-Meier estimator of ST (t)
in the one-sample problem and the log-rank test to compare two or more survival functions
(see, e.g., Example 13.1).

Discission: When describing censored survival data, it is useful to conceptualize the exis-
tence of two “latent” random variables for each individual corresponding to the failure time
and the censoring time. The term “latent” means “missing” or “not observed.”
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Figure 13.7: Left: Kaplan-Meier estimate of ST (t) in Example 13.6. Right: Kaplan-Meier
estimate with 95% pointwise confidence bands.

• For the ith individual, denote the failure time by Ti and the censoring time by Ci.
Only one of these variables is observed for the ith individual (the other is not).

• The random variable Ti corresponds to the ith individual’s survival time if that indi-
vidual was observed until death. The random variable Ci corresponds to the time that
the ith individual is censored provided that death does not intervene first.

• For example, Ci may be the time from entry into the study until the time of analysis.
Of course, censoring could occur for other reasons; e.g., loss to follow up, death from
other causes, etc.

In a survival study, for the ith individual, we get to observe the minimum of Ti and Ci,
which we denote by the random variable

Xi = min{Ti, Ci}.

We also get to observe whether the individual failed (died) or was censored; i.e., we get to
observe the binary random variable

∆i = I(Ti ≤ Ci) =

{
1, if Ti ≤ Ci
0, if Ti > Ci,

where I(·) is the indicator function. Therefore, {(Xi,∆i), i = 1, 2, ..., n} are the observed data
in a survival study, whereas Ti and Ci are latent variables which are useful in conceptualizing
the problem.
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Figure 13.8: Left: Probability density functions of T ∼ gamma(3, 0.5) and C ∼
gamma(4, 0.5). Right: Survivor function of T .

Example 13.7. To gain insight on the notation previously defined, and to get a handle on
the challenges that arise when estimating ST (t) with censored survival data, let’s perform a
small simulation study. In this study, we will assume we know the true failure and censoring
distributions. Specifically, suppose

T ∼ gamma(α = 3, β = 0.5)

C ∼ gamma(α = 4, β = 0.5).

Probability density functions of T and C are given in Figure 13.8 (above, left). The survivor
function of T , ST (t), is shown in Figure 13.8 (above, right).

Challenge: In a censored survival study, we are attempting to estimate ST (t) with ob-
servations from both fT (t) and fC(c). Of course, both of these distributions are unknown
in practice; the purpose of a simulation study like this is investigate what happens in a
controlled setting where we know the underlying distributions.

Simulation study: I generated n = 100 observations from both distributions (inde-
pendently, to emulate non-informative censoring). For each pair of observations (Ti, Ci),
i = 1, 2, ..., 100, I calculated

Xi = min{Ti, Ci}

and

∆i = I(Ti ≤ Ci) =

{
1, if Ti ≤ Ci
0, if Ti > Ci.

Recall that {(Xi,∆i), i = 1, 2, ..., 100} would be the observed data in a censored survival
study, not {(Ti, Ci), i = 1, 2, ..., 100}.
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Figure 13.9: Simulation study. Kaplan-Meier estimate ŜT (t) (solid, step function) and the
true survivor function ST (t), where T ∼ gamma(3, 0.5).

Results: The R code I used to perform this simulation is on the course web site. Below are
the values of T , C, X, and ∆ for the first five (simulated) patients:

> sim # first 5 patients only

failure.time cens.time obs.time delta

1 2.53 1.12 1.12 0

2 1.56 2.94 1.56 1

3 1.84 1.37 1.37 0

4 1.33 2.70 1.33 1

5 1.82 1.90 1.82 1

The Kaplan-Meier estimate ŜT (t) based on all n = 100 observations and the true survivor
function ST (t) are shown in Figure 13.9 (above). For the most part, we see the estimate

ŜT (t) is in general agreement with the true ST (t) despite being a nonparametric estimate
calculated from the observed data {(Xi,∆i), i = 1, 2, ..., 100}. �

Terminology: The main goal in survival analysis is to make inference about the probability
distribution of the latent random variable T . For example, in the one-sample problem, we are
usually interested in estimating the survivor function ST (t) = P (T > t) with the available
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data
{(Xi,∆i); i = 1, 2, ..., n}.

If we define the number of individuals at risk at time t in the sample by

n(t) =
n∑
i=1

I(Xi ≥ t);

i.e., n(t) is the number of individuals in the sample who have neither died nor have been
censored by time t, then the Kaplan-Meier estimator of the survivor function ST (t) can be
written as

ŜT (t) =
∏

{i:Xi≤t}

{
1− 1

n(Xi)

}∆i

.

This is the definition of the Kaplan-Meier estimator when there are no tied survival times
in the sample.

• Note that ŜT (t) is simply the product of “one minus the estimated mortalities” across
all observed death times up to an including t.

• Downward jumps will occur at those times where a death (event) occurs; i.e., when

∆i = 1. At all other times, the ŜT (t) remains constant.

Dealing with “ties:” Let d(t) denote the number of observed deaths in the sample at time
t, that is,

d(t) =
n∑
i=1

I(Xi = t,∆i = 1).

Note that d(t) is equal to 0 or 1 with continuous survival data when there are no ties. More
generally, d(t) may be greater than 1 when ties are allowed. In this situation, we can write
the Kaplan-Meier estimator as

ŜT (t) =
∏
A(u)

{
1− d(u)

n(u)

}
,

where A(u) = {all death times u ≤ t}, n(u) is the number of individuals at risk (i.e., “still
alive” and not censored) at time u, and

d(u) =
n∑
i=1

I(Xi = u,∆i = 1)

is the total number of deaths at time u. This is the most general version of the Kaplan-Meier
estimator under (random) right censoring.

Remarks: For the Kaplan-Meier estimator to give unbiased results, there is an implicit
assumption that individuals who are censored are at the same risk of failure as those who are
still alive and are uncensored. This is called the non-informative censoring assumption.
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• In our latent variable conceptualization, this means that Ti ⊥⊥ Ci, for i = 1, 2, ..., n.
Those at risk, at any time t, should be representative of the entire population alive at
the same time so estimated mortality rates in the Kaplan-Meier estimator reflect the
true population mortality rates.

• If censoring occurs only because of staggered entry, then the assumption of non-
informative censoring is probably plausible. However, when censoring results from
loss to follow-up or death from a competing risk, then this assumption may be suspect
because the censoring process depends on the survival time.

Inference: Under the non-informative censoring assumption, for fixed t, theoretical argu-
ments show the Kaplan-Meier estimator ŜT (t) is approximately normal with mean ST (t) and
variance which is consistently estimated by

σ̂2
ŜT (t)

= {ŜT (t)}2
∑
A(u)

d(u)

n(u)[n(u)− d(u)]
,

which is the limit of Greenwood’s formula given earlier for life table estimates. An approxi-
mate 100(1− α)% confidence interval for ST (t) is therefore given by

ŜT (t)± zα/2σ̂ŜT (t),

where zα/2 is the upper α/2 quantile of the N (0, 1) distribution and σ̂ŜT (t) is the estimated
standard error. R calculates these confidence intervals upon request.

Example 13.8. The data below in Table 13.3 are from a survival study with n = 80 males
subjects with advanced tongue cancer. There were two types of cancerous tumors in this
study, but we will not distinguish between them in this analysis. The endpoint was

T = time to death (measured in weeks).

Among the 80 subjects, there were 52 death times and 28 censored times. Note that some
of the death times are “ties.”

1 3 3 4 10 13 13 16 16 24
26 27 28 30 30 32 41 51 65 67
70 72 73 77 91 93 96 100 104 157
167 61* 74* 79* 80* 81* 87* 87* 88* 89*
93* 97* 101* 104* 108* 109* 120* 131* 150* 231*
240* 400* 1 3 4 5 5 8 12 13
18 23 26 27 30 42 56 62 69 104
104 112 129 181 8* 67* 76* 104* 176* 231*

Table 13.3: Tongue cancer data. Times to death or censoring for n = 80 patients. Censored
observations are starred.
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Figure 13.10: Tongue cancer data. Kaplan-Meier estimate of the survivor function ST (t).
Pointwise confidence bands are included.

R output: The survfit function in R records the at risk process n.risk and the number
of deaths (events) n.event at all times in the data set.

> fit = survfit(Surv(tongue,delta)~1,conf.type="plain")

> summary(fit)

time n.risk n.event survival std.err lower 95% CI upper 95% CI

1 80 2 0.975 0.0175 0.9408 1.000

3 78 3 0.938 0.0271 0.8845 0.991

4 75 2 0.913 0.0316 0.8506 0.974

5 73 2 0.888 0.0353 0.8183 0.957

8 71 1 0.875 0.0370 0.8025 0.947

10 69 1 0.862 0.0386 0.7868 0.938

12 68 1 0.850 0.0400 0.7712 0.928

13 67 3 0.812 0.0438 0.7257 0.898

16 64 2 0.786 0.0460 0.6961 0.876

18 62 1 0.774 0.0470 0.6815 0.866

23 61 1 0.761 0.0479 0.6670 0.855

24 60 1 0.748 0.0487 0.6527 0.844

26 59 2 0.723 0.0503 0.6243 0.821
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27 57 2 0.697 0.0516 0.5963 0.799

28 55 1 0.685 0.0522 0.5825 0.787

30 54 3 0.647 0.0537 0.5414 0.752

32 51 1 0.634 0.0541 0.5279 0.740

41 50 1 0.621 0.0545 0.5145 0.728

42 49 1 0.609 0.0549 0.5011 0.716

51 48 1 0.596 0.0552 0.4879 0.704

56 47 1 0.583 0.0554 0.4747 0.692

62 45 1 0.570 0.0557 0.4612 0.680

65 44 1 0.557 0.0559 0.4478 0.667

67 43 1 0.544 0.0561 0.4345 0.654

69 41 1 0.531 0.0563 0.4208 0.641

70 40 1 0.518 0.0564 0.4073 0.628

72 39 1 0.505 0.0565 0.3938 0.615

73 38 1 0.491 0.0566 0.3805 0.602

77 35 1 0.477 0.0567 0.3662 0.588

91 27 1 0.460 0.0573 0.3474 0.572

93 26 1 0.442 0.0577 0.3288 0.555

96 24 1 0.424 0.0582 0.3095 0.538

100 22 1 0.404 0.0586 0.2893 0.519

104 20 3 0.344 0.0594 0.2273 0.460

112 13 1 0.317 0.0604 0.1988 0.436

129 11 1 0.288 0.0614 0.1680 0.409

157 8 1 0.252 0.0634 0.1280 0.377

167 7 1 0.216 0.0638 0.0912 0.341

181 5 1 0.173 0.0640 0.0475 0.299

Estimated survival probabilities are calculated in survival along with estimated standard
errors (via Greenwood’s formula) in std.err. Large-sample 95% confidence intervals for
ST (t) are shown for each death (event) time t.

Q: Calculate a point and interval estimate for the one-year survival probability ST (52).

A: Recall the Kaplan-Meier estimate ŜT (t) is constant except at those times t where at least
one death (event) occurs. Therefore, a point estimate of the one-year survival probability
ST (52) is

ŜT (51) = 0.596.

The (estimated) standard error of this point estimate is

σ̂ŜT (51) =

√√√√{ŜT (51)}2
∑
A(u)

d(u)

n(u)[n(u)− d(u)]
,

where A(u) = {all death times u ≤ 51}. An approximate 95% confidence interval for ST (52)
is (0.488, 0.704). That is, we are 95% confident the population-level one-year survival prob-
ability ST (52) is between 0.488 and 0.704. �
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13.5 Two-sample tests

Remark: In survival data applications, especially in clinical trials, the goal is often to
compare two or more groups of individuals. If the primary endpoint is time to an event
(e.g., time to death, time to relapse, etc.), then an important issue is determining if one
treatment increases or decreases the distribution of this time. Let Z denote the treatment
group assignment. If there are two treatments of interest, then Z ∈ {1, 2}.

Inference: The problem of comparing two treatments statistically can be framed as a
hypothesis test. If we denote by S1(t) and S2(t) the survivor functions for treatments 1 and
2, respectively, the null hypothesis of no treatment difference is

H0 : S1(t) = S2(t),

for all t > 0, or, equivalently, in terms of the hazard functions,

H0 : λ1(t) = λ2(t),

for all t > 0, where λj(t) = − d
dt

ln{Sj(t)}, for j = 1, 2. One possible alternative hypothesis
specifies that the survival time for one treatment is stochastically larger (or smaller) than
the other treatment. For example, we might test H0 against

Ha : S1(t) ≤ S2(t),

for all t > 0, with strict inequality for some t, or Ha : S1(t) ≥ S2(t). A two-sided alternative
specifies

Ha : S1(t) 6= S2(t),

for some t > 0.

Remark: To address the two-sample survival problem, we will make use of a nonparamet-
ric test; that is, we will use a test statistic whose distribution (under H0) does not depend
on the shape of the underlying survival functions (at least, not asymptotically). The most
widely used test in censored survival analysis is the logrank test which we now describe.

Notation: Data from a two-sample censored survival analysis problem can be expressed as
a sample of triplets; namely,

{(Xi,∆i, Zi); i = 1, 2, ..., n},

where Xi = min{Ti, Ci}. Recall that for the ith individual,

Ti = latent failure time

Ci = latent censoring time.

The failure indicator for the ith individual is given by

∆i =

{
1, if Ti ≤ Ci
0, if Ti > Ci
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and the treatment indicator is

Zi =

{
1, ith individual in treatment group 1
2, ith individual in treatment group 2.

Notation: Let n1 be the number of individuals assigned to treatment 1; i.e.,

n1 =
n∑
i=1

I(Zi = 1),

and n2 be the number of individuals assigned to treatment 2; i.e.,

n2 =
n∑
i=1

I(Zi = 2),

so that n = n1 + n2. The number at risk at time u from treatment 1 is denoted by n1(u);
i.e.,

n1(u) =
n∑
i=1

I(Xi ≥ u, Zi = 1).

That is, n1(u) is the number of individuals in treatment group 1 who have neither died nor
have been censored at time u. Similarly,

n2(u) =
n∑
i=1

I(Xi ≥ u, Zi = 2)

is the number at risk at time u from treatment group 2.

Notation: The number of deaths at time u in treatment group 1 is denoted by d1(u);
i.e.,

d1(u) =
n∑
i=1

I(Xi = u,∆i = 1, Zi = 1).

Similarly,

d2(u) =
n∑
i=1

I(Xi = u,∆i = 1, Zi = 2)

is the number of deaths at time u in treatment group 2. The number of deaths at time u for
both treatment groups is

d(u) = d1(u) + d2(u).

This notation allows for the possibility of having more than one death occurring at the same
time (that is, “tied” survival times).

Remark: A formal derivation of the logrank test statistic, as well as asymptotic consider-
ations, relies on martingale theory. We will avoid this more advanced material and take
the following informal approach.
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• At any time u where a death is observed; i.e., when d(u) ≥ 1, the data available to us
can be summarized in the following 2× 2 table:

Treatment 1 Treatment 2 Total
Number of deaths d1(u) d2(u) d(u)

Number alive n1(u)− d1(u) n2(u)− d2(u) n(u)− d(u)
Total n1(u) n2(u) n(u)

If H0 : S1(t) = S2(t) is true, then we would expect

d1(u)− n1(u)

n(u)
d(u)

to be “close” to zero (actually, its expectation is zero under H0).

• Therefore, consider constructing this same 2×2 table at each point in time u where an
event (death) occurs. That is, consider constructing a sequence of 2× 2 tables, where
each table in the sequence corresponds to a unique time u where d(u) ≥ 1. Using
similar logic, the sum ∑

A(u)

[
d1(u)− n1(u)

n(u)
d(u)

]
where A(u) = {u : d(u) ≥ 1} denotes the set of all distinct death times u, should be
close to zero when H0 is true (again, its expectation is equal to zero under H0).

• We now examine what would happen if H0 : S1(t) = S2(t) is not true:

– If the hazard rate for treatment 1 was greater than the hazard rate for treatment
2 over all u, then we would expect

d1(u)− n1(u)

n(u)
d(u) > 0.

– If the hazard rate for treatment 1 was less than the hazard rate for treatment 2
over all u, then we would expect

d1(u)− n1(u)

n(u)
d(u) < 0.

• The last observation suggests that H0 : S1(t) = S2(t) should be rejected if the statistic

T ∗ =
∑
A(u)

[
d1(u)− n1(u)

n(u)
d(u)

]
,

is too large or too small, depending on the alternative we are interested in.
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• In order to gauge the strength of evidence against H0, we must be able to evaluate the
distribution of T ∗ (at least, approximately) when H0 is true. To do this, T ∗ needs to
be standardized appropriately. Specifically, this standardized version is the logrank
test statistic, given by

TLR =
T ∗

se(T ∗)
=

∑
A(u)

[
d1(u)− n1(u)

n(u)
d(u)

]
√√√√∑

A(u)

n1(u)n2(u)d(u){n(u)− d(u)}
n2(u){n(u)− 1}

.

We now examine the sampling distribution of TLR when H0 is true.

Sampling distribution: We now informally argue that when H0 : S1(t) = S2(t) is true,
the logrank test statistic TLR ∼ AN (0, 1), for large n. To see why this is true, consider again
the 2× 2 table:

Treatment 1 Treatment 2 Total
Number of deaths d1(u) · d(u)

Number alive · · n(u)− d(u)
Total n1(u) n2(u) n(u)

Conditional on the marginal counts, the random variable d1(u) follows a hypergeometric
distribution with probability mass function

P{d1(u) = d} =

(
n1(u)

d

)(
n2(u)

d(u)− d

)
(
n(u)

d(u)

) .

Thus, the conditional mean and variance of d1(u) are

n1(u)

n(u)
d(u)

and
n1(u)n2(u)d(u){n(u)− d(u)}

n2(u){n(u)− 1}
,

respectively. It can be shown that

T ∗ =
∑
A(u)

[
d1(u)− n1(u)

n(u)
d(u)

]
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is the sum of uncorrelated pieces d1(u) − n1(u)
n(u)

d(u), each with mean zero under H0 (not

intuitive) and that the sum ∑
A(u)

n1(u)n2(u)d(u){n(u)− d(u)}
n2(u){n(u)− 1}

is the variance of T ∗ when H0 is true (also not intuitive). With both of these results in place,
it follows that, under H0 : S1(t) = S2(t), the logrank test statistic TLR ∼ AN (0, 1) by a
version of the Central Limit Theorem for martingale type data.

Implementation: To test

H0 : S1(t) = S2(t)
versus

Ha : S1(t) 6= S2(t),

an approximate level α rejection region is

RR = {TLR : |TLR| > zα/2},

where zα/2 is the upper α/2 quantile of a N (0, 1) distribution. One-sided tests use a suitably
adjusted rejection region.

• If we were interested in showing that treatment 1 is better (i.e., longer survival times)
than treatment 2, we would use

RR = {TLR : TLR < −zα}.

The form of this rejection region makes sense because under Ha : S1(t) ≥ S2(t), we
would expect the observed number of deaths from treatment 1, d1(u), to be less than
that expected under H0. This will encourage TLR to be negative.

• If we wanted to show treatment 2 is better (i.e., longer survival times), we would we
would use

RR = {TLR : TLR > zα}.

If Ha : S1(t) ≤ S2(t) is true, we would expect d1(u) to be greater than that expected
under H0. This will encourage TLR to be positive.

Note: To “derive” the form of the logrank test, we have summarized the data using only
2× 2 tables at the distinct death times. In constructing the logrank test statistic, we never
made any assumptions regarding the shape of the underlying survival distributions. This
explains why this test is nonparametric in nature.
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Figure 13.11: RCT data. Kaplan-Meier estimates for the time to diagnosis of AGVHD for
two treatment groups.

Example 13.1 (continued). We now revisit the randomized clinical trial data for 64 patients
assigned to

• Group 1: Cyclosporine and methotrexate (CSP+MTX)

• Group 2: Methotrexate only (MTX).

Recall the primary endpoint was the time from treatment assignment until diagnosis of
AGVHD. Figure 13.11 (above) shows the Kaplan-Meier estimates of the survivor functions.
We now use the logrank test to infer what these estimates say about the true survivor
functions S1(t) and S2(t).

Analysis: In particular, suppose that we wanted to test whether the adminstration of
cyclosporine and methotrexate prolonged the time to AGVHD diagnosis (when compared to
methotrexate only); i.e., we want to test

H0 : S1(t) = S2(t)
versus

Ha : S1(t) ≥ S2(t),
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for all t (with strict inequality in Ha for some t). To do group summaries, we can use the
survfit function in R:

fit.1 = survfit(Surv(agvhd.times,cens.agvhd.times)~treatment,conf.int=0.95)

> fit.1

n events median 0.95LCL 0.95UCL

treatment=1 32 13 691 411 NA

treatment=2 32 17 469 156 NA

This table gives point estimates of the median time to AGVHD diagnosis along with large-
sample 95% confidence intervals for the population median (using Greenwood’s formula).
Note that for these data, the sample sizes and numbers of events are too small to calculate
the upper endpoints of both intervals.

To perform the logrank test, we use the survdiff function:

fit.2 = survdiff(Surv(agvhd.times,cens.agvhd.times)~treatment)

> fit.2

N Observed Expected (O-E)^2/E (O-E)^2/V

treatment=1 32 13 17.4 1.09 2.74

treatment=2 32 17 12.6 1.50 2.74

Chisq = 2.7 on 1 degrees of freedom, p = 0.1

Note: The fit.2 output gives the square of the logrank statistic, that is,

T 2
LR =


∑
A(u)

[
d1(u)− n1(u)

n(u)
d(u)

]
√√√√∑

A(u)

n1(u)n2(u)d(u){n(u)− d(u)}
n2(u){n(u)− 1}



2

.

Because our alternative hypothesis is Ha : S1(t) ≥ S2(t), we know that

T 2
LR = 2.74 =⇒ TLR = −

√
2.74 = −1.66.

Therefore, a (large-sample) level α = 0.05 test would reject H0 : S1(t) = S2(t) in favor of
Ha : S1(t) ≥ S2(t) because

RR = {TLR < −z0.05} = {TLR < −1.65}.

We have just enough evidence to conclude the time to AGVHD diagnosis for treatment
group 1 (cyclosporine and methotrexate) is stochastically larger than the time to AGVHD
diagnosis for treatment group 2 (methotrexate only). �
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