
STAT 520 HOMEWORK 5

Remark: Problem 1 is the most important problem on this assignment (it will prepare you
for your project). Problem 2 was taken largely from last year’s final exam. Problem 3 consists
of a bunch of rambling on my part; I got tired of rambling, so I just turned it into a problem.

1. In Homework 4, you were asked to identify a small set of candidate ARIMA(p, d, q) models
(perhaps some of you even made a “final choice”) for each of the following data sets:

• ibm: daily closing IBM stock prices (dates not given)

• internet: number of users logged on to an Internet server each minute (dates/times not
given)

• gasprices: average price (US dollars per gallon) for regular gasoline in the United States;
there are n = 145 weekly observations collected from 1/5/2009 to 10/10/2011 (Source:
Rajon Coles, Fall 2011).

Remembering your candidate models for each data set, fit and diagnose your model selections.
That is, use the methods from Chapter 7 to fit your chosen models (for uniformity, you could
just use maximum likelihood for each model fit). Then, diagnose your fitted model(s) by doing
a thorough analysis of the residuals and implementing the overfitting technique (Chapter 8).

For each data set and for each model you entertained in Homework 4, what do you think now?
Would you like to suggest another model for further investigation? Or, are you satisfied with
your Homework 4 model selections?

• If your original model choices in Homework 4 are “reasonable,” convince me that they
are.

• If your original model choices are deemed “not reasonable,” use the information from your
diagnoses to specify another model. Then, evaluate the merit of this new model using the
methods from Chapter 7 and Chapter 8.

Your goal is to come up with one final model for each data set−the “best” one. Convince me
that your final model does a good job at explaining the variability in the data, but also adhere
to the Principle of Parsimony. There are no “right” answers here, but there are certainly bad
answers (stay away from these).

Important: Remember your “final” model for each data set!! On Homework 6 (which I will
count as extra credit), you will be forecasting future values!

2. In class, we looked at the number of homeruns hit by the Boston Red Sox each year during
1909-2010. Denote this process by {Yt}. I have displayed the data in Figure 1. Note that these
data are available on the course web site (homeruns).

I used R to fit the model
(1−B)Zt = et − θet−1,

where Zt =
√
Yt. Here is the output:

> arima(sqrt(homeruns),order=c(0,1,1),method=’ML’) # maximum likelihood
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Coefficients:

ma1

-0.2488

s.e. 0.1072

sigma^2 estimated as 1.437: log likelihood = -161.64, aic = 325.28

(a) Why do you think I used the square-root transformation? Why do you think I used a
nonstationary model?
(b) Based on the model that I fit (judged to be a “reasonable” candidate model during the
model specification phase), what do you think the sample ACF of {Zt} looked like? the sample
ACF of {∇Zt}? Try to answer these questions without looking at the ACFs in R.
(c) Write an approximate 95 percent confidence interval for θ based on the model fit. Interpret
the interval.
(d) I have displayed below the tsdiag output from fitting the model above to the Boston Red
Sox homerun data. I have also performed the Shapiro-Wilk and runs tests for the standardized
residuals; see the R output below:

> shapiro.test(rstandard(homerun.fit)

W = 0.9884, p-value = 0.5256

> runs(rstandard(homerun.fit))

$pvalue

[1] 0.378
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Based on the information available, what do you think of the adequacy of the model that I fit
to these data? Can you suggest a better model?

3. I have put the following paper on the course web site:

• Fisher, T. and Gallagher, C. (2012). New weighted Portmanteau statistics for time series
goodness of fit testing. Journal of the American Statistical Association 107, 777-787.

As I mentioned in class (30 Oct 2013), Fisher and Gallagher proposed new goodness-of-fit
(GOF) statistics for ARIMA models (and also for nonlinear models, too). Read Sections 1 and
2 of this paper. Don’t worry if you cannot understand all of the technical details; this journal is
one of the most prestigious journals in statistics and some articles can be quite mathematical.

In Section 8.2 of the notes, we presented the Ljung-Box statistic

Q∗ = n(n+ 2)
K∑
k=1

r̂2k
n− k

which can be used to test
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H0 : the ARMA(p, q) model is appropriate
versus

H1 : the ARMA(p, q) model is not appropriate

(perhaps after transformation, differencing, or both). When H0 is true, that is, the null model is
correct, Q∗ follows (approximately) a χ2 distribution with degrees of freedom equal to K−p−q.
Note that on page 777 of the paper by Fisher and Gallagher, they denote the Ljung-Box statistic
by Q̃. Also note that we use K to denote the “maximum lag.” Fisher and Gallagher use m.

The authors’ new ARIMA GOF statistics are in Section 2 of their paper. In particular, their
new statistics are Q̃W and M̃W ; see Equations (5) and (6), respectively. The Q̃W statistic
is very similar to the Ljung-Box statistic. The M̃W statistic depends on the sample partial
autocorrelations of the residuals (note that Fisher and Gallagher use π̂k notation to denote
the sample partial autocorrelations). As the authors show in their Theorem 1 (on page 779),
their new GOF statistics Q̃W and M̃W follow a different large-sample (asymptotic) distribu-
tion (under H0) than the one we stated for the Ljung-Box test. The asymptotic distribution
identified by the authors for their statistics is a χ2 mixture (i.e., a linear combination of m
χ2 distributions). It is hard to write out this mixture distribution explicitly, so the authors
approximate it using a gamma distribution with parameters α and β given in Equations (7)
and (8), respectively (these approximations essentially come from method-of-moments-type ar-
guments). The nice thing about using the gamma approximation is that the gamma probability
distribution is “tabled” in R; type help(pgamma) in R and you will see.

Here is what I want you to do.

• Refit the square-root transformed IMA(1,1) model to the Boston Red Sox homerun data
in Problem 2. Save the standardized residuals from this fit and calculate the first 10
sample autocorrelations (of the standardized residuals) and also the first 10 sample partial
autocorrelations (of the standardized residuals).

• For each m = 2, 3, 4, ..., 10, calculate the values of Q̃W and M̃W . You can do this by hand
(may take a while) or you can get R to do this for you.

• For each m, calculate the probability value for the test of H0 versus H1 above using the
gamma approximation. For example, suppose you have calculated Q̃W with m = 3; call
it Q.W.3. To find the probability value, type in

m = 3

alpha = (3/4)*(m*(m+1)^2)/(2*m^2+3*m+1-6*m) # Equation (7)

beta = (2/3)*(2*m^2+3*m+1-6*m)/(m*(m+1)) # Equation (8)

# p-value

1-pgamma(Q.W.3,shape = alpha, scale = beta)

Note that in the formulas for α and β, we have p + q = 0 + 1 = 1, because we are
fitting an IMA(1,1) to the (square-root transformed) process. The function pgamma gives
a cumulative probability; therefore, 1-pgamma gives the right-tail probability (like the
Ljung-Box test, both competing GOF tests are one-sided, upper-tail tests).
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• Therefore, you should calculate probability values for each value of m (m = 2, 3, 4, ..., 10)
for both Q̃W and M̃W . The gamma approximation described in the last bullet applies to
both Q̃W and M̃W .

• What do the competing GOF testing procedures say about the adequacy of the model
that I fit to the Boston homerun data? Compare your conclusions to those reached from
the Ljung-Box test (p-values for this test are given in the tsdiag output in Problem 2).

Discussion: Why is this paper so interesting? At least within an ARIMA modeling framework
(which is the focus in our class), examine carefully the authors’ Table 2. Do you see how the
powers associated with Q̃W and M̃W are almost always larger than the power associated with
the Ljung-Box test (statistic denoted by Q̃)? This means that if the H0 model is not correct,
the testing procedures that use Q̃W and M̃W have a larger probability of rejecting H0 when
compared to the Ljung-Box test. Furthermore, the authors’ Table 1 provides evidence that the
new GOF tests confer higher power while still maintaining the nominal Type I Error rates.
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