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Abstract 

The aims of the present study are to identify a model best fitting the late-life immigrant data and to 
forecast the number of late-life immigrants entering the United States. The method of maximum 
likelihood was used to estimate the parameters and to forecast the number of late-life immigrants in 
the future. The late-life immigrant data from 1933 to 2007, which have been documented annually 
by the Department of Homeland Security, reveal that the ARI (1, 1) model may fit most adequately 
and forecast that the number of late-life immigrants who enter the U.S. will reach approximately 
540,000 in 10 years, which explains 1.6 times increase, compared to the number of late-life 
immigrants entering the U.S. in 2007, under the assumption that current political, social, and 
economical conditions will be persistent in the future. Policy decision makers may be advised to 
prepare measures and/or programs for the increasing number of late-life immigrants so that they 
can be smoothly adjusted to their life in the U.S. Under the current welfare reform act which bars 
those without citizenship from accessing federally-funded public services including Medicaid, the 
well-being and health of indigent elderly immigrants without citizenship may be at risk when they 
become ill. 
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Introduction 

Brief History of Immigration Policies in the U.S. 

The U.S. Census Bureau has projected that the U.S. population will increase to 392 million by 2050, 

and that 86 percent of this increase may be due to the effects of net immigration (U.S. Census 

Bureau, 2008). The number of elderly immigrants 65 years or older has almost doubled since 1990 

from 2.7 million to 4.3 million people (Leach, 2008/9). The increasing numbers of older immigrants 

will be mainly from Latin America and Asia (He, 2002). 

Hagan (2004) argued that the impact of immigration is not just demographic but it is economic. 

Immigrants have played an increasingly important role in the U.S. labor force historically and 

depended on immigration for its labor-force growth. Foreign-born workers were especially 

important to the nation’s economic growth and job creation in the mid to late 1990s, accounting for 

almost half of the net increase in the nation’s civilian labor force from 1996 to 2000 (Hagan, 2004; 

Mosisa, 2002; Sum, Fogg, Harrington, Khatiwada, Trub’sky, & Palma, 2002).  

Even though U.S. immigration policies seemed to have set the parameters for legal immigration, 

the prominent periods of immigration reform have been inconsistent, at times curtailing and at other 

times expanding the conditions depending on U.S. economy (Hagan, 2004). For example, the early 

immigration laws such as the Chinese Exclusion Act of 1882 and the Gentlemen’s Agreement of 

1907 reflected not only racial preference but also the economic factor in immigration law because 

the U.S. was concerned about the influence of inexpensive immigrant labor from Asian countries 

(Smith & Edmonston, 1997). The immigration policy of the U.S. such as the 1921 Quota Act and 

the follow-up 1924 also barred Asian immigration, and deported Mexican peoples because there 

were also fears about adverse consequences for native workers due to their providing cheap labor. 

During World War II, in an effort to fill labor shortages in the farm industry, the Bracero Program 

was enacted in 1943, which allowed farm workers from Mexico to work on U.S. farms on a 
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temporary basis. However, two decades later, this program ended in 1964 due to the critics that 

Bracero workers were no longer beneficial to the U.S. economy, but rather they were adversely 

affecting the wages and jobs of native farm workers (Hagan, 2004; Martine, 1996). The 

establishment of U.S. immigration policy since 1965 had additional purpose, the “social goal of 

family unity”. By the mid-1970s, large numbers of legal immigrants entered in to the U.S. from Latin 

America along with smaller flows from Asia. The passage of the Immigration and Nationality Act 

Amendments of 1965, the Hart-Celler Act (PL 89-236) extended the family reunification provision 

to include parents of citizens (Brunner & Colarelli, 2010). 

Family Reunification Program  

After the Immigration and Nationality Act Amendments of 1965, on average, late-life immigrants 

have entered the United States through the extended family reunification program, i.e., at the 

invitation of their adult children who are naturalized in the U.S. (Brunner & Colarelli, 2010; Gelfand 

& Yee 1991; Leach, 2008/9). The primary objective of the family reunification program was to bring 

the nation’s immigration law in line with civil right legislation so that immigrants would not be 

discriminated against on the basis of ethnicity or nationality.  

Personal Responsibility and Work Opportunity Reconciliation Act of 1996 

When legal late-life immigrants reached age 65 and older, the late-life immigrants had had the same 

rights as their U.S.-born counterparts in access to the public assistance system until the 

implementation of U.S. Public Law 104-193 in 1996, also called the Personal Responsibility and 

Work Opportunity Reconciliation Act of 1996 (PRWORA) (Nam 2008, 2011; Zimmermann & 

Tumlin, 1999). However, the PRWORA distinguished between citizens and non-citizens in access to 

public assistance and, by extension, to healthcare services. As a result, elderly immigrants without 

citizenship have been barred from accessing Medicaid, except for those living in states that allow 

ineligible noncitizens to access the state-funded Medicaid program (Fremstad & Cox, 2004; Nam, 
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2011). By taking this approach, its creators expect PRWORA to conserve more public financing and 

address deficits in welfare funding by emphasizing the principle of self-sufficiency and by defining 

the situation in which legal immigrants without citizenship receive public benefits as a social 

problem (Agrawal, 2008; Nam, 2011).  

Profiles of Late-Life Immigrants 

The demographic profiles of late-life immigrants imply that they have little or no work history in the 

United States, and they are more likely than their native counterparts in the U.S. to live in poverty 

(Leach, 2008/9; Nam, 2008; He, 2002). In addition, the U.S. Census Bureau (He, 2002) revealed that 

in 1999, older noncitizens had the lowest overall health insurance coverage rate (84.2% for 

noncitizens as opposed to 92.2% for native born and 98.1% for naturalized citizens). Differences 

were even more striking in terms of private health insurance coverage (21.4% for noncitizens as 

opposed to 63.8% for native born and 46.7% for naturalized citizens). However, the Medicaid 

coverage status of noncitizens was highest (34.5% for noncitizens while only 7.7% for native born 

and 15.2% for naturalized citizens).  

Potentially Negative Impact of the PRWORA on Late-Life Immigrants 

The statistics described above suggest that elderly immigrants who were covered by health insurance 

were more likely to rely on Medicaid due to their socioeconomic status in the United States. 

Consequently, the PRWORA has caused great concern about the health of elderly immigrants and 

their well-being as they fall into poverty. This concern is heightened by the fact that most 

immigrants who arrived after August 22, 1996 when the PRWORA was implemented are no longer 

eligible for the major source of health insurance on which these immigrants appear to rely, Medicaid, 

until they become citizens. The only exception would be if individual states are willing to pay for the 

health care services of elderly immigrants living their respective jurisdictions (Fremstad & Cox, 2004; 

Nam, 2011; Smith, 2001).  
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To become U.S. citizens, immigrants need to pass the naturalization process in English or seek 

employment to meet the 40-quarter work requirement (10 years of work history in the U.S.) to be 

eligible for public assistance (Nam, 2011; National Immigration Law Center, 2002). For many elderly 

immigrants, these are unrealistic and unmanageable demands. In addition, some racial/ethnic 

minority groups may become acculturated to life in the U.S. more easily by using the English 

language and/or participating in the main stream culture of the U.S.; however, others may not be as 

successful in acculturating to the host country. In addition, in relation of elderly immigrants’ health 

to the PRWORA, Binstock and Jean-Baptiste (1999) observed in a qualitative study that the stresses 

associated with the loss of public benefits had already affected the mental health of elderly 

immigrants in Dade County, Florida. It is assumed that without measures to curb the number of 

late-life immigrants entering the U.S. or extended public service programs for the late-life 

immigrants to acquire the U.S. citizenship, the health of the late-life immigrants may be at risk.  

The aims of the present study are 1) to identify a possible candidate model for the late-life 

immigrant data and 2) to forecast the number of late-life immigrants entering the U.S. under the 

assumptions that the current immigration policy and welfare reform are persistent in the future. 

Forecasting the number of late-life immigrants entering the U.S. annually will help policy decision 

makers prepare the U.S. immigration and welfare policies for the influx of the late-life immigrants. 

The term of “late-life immigrants” in the present study refers to any legal permanent immigrants 

who migrated to the U. S. at age 45 or older.  

 

Data  

The present study used immigrant data released by the Department of Homeland Security (DHS). 

Even though the U.S. government has published data on immigration annually since the 1890s 

(DHS, 2010), the data before 1996 are not available directly from their homepage. The author of the 
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present study made contact to the Office of Immigrant Statistics at DHS via email and obtained the 

data from 1933 to 1995. The DHS distinguishes between legal permanent residents and 

refugees/asylees (DHS, 2010). Legal permanent residents refer to those who have been granted 

lawful permanent residence in the United States (i.e., “green card” recipients) (DHS, 2010).  

The late-life immigrant data in this present study consist of 75 observations, that is to say, one 

observation from each year from 1933 to 2007. The last three observations, i.e., data from 2008 to 

2010, were left for the further diagnosis of the accuracy of a model which will be specified through 

the process of this study. Following sections include 1) model specification, 2) model fitting and 

diagnostics, 3) forecasting, and 4) Discussion. All statistical analyses will be performed in R. 

 

Model Specification 

The plot in Figure 1 on the page 7, which is a scatterplot of ௧ܻ = value of the variable Y (Annual 

number of late-life immigrants entering the U.S.) at time t (Years), shows the number of late-life immigrants 

has been increasing, behaving a quadratic pattern with median = 49,729 (ranging from 3,904 to 

370,652). More specifically, there was a slow increase in the number of late-life immigrants from 

1933 to 1980; there has been a steep increase afterwards with a big spike in early 1990s.  Even 

though there were some levels of drops after 1996, the increasing trend continued after 2000. Over 

all, the late-life immigrant data may be represented as a realization of a deterministic trend with a 

quadratic function. The deterministic trend can be removed by using a “detrending” approach. 

However, this approach requires an assumption that the trend lasts “forever” and ignores the 

correlation among time lags since the deterministic trend models are based on the least squares 

model fit (Cryer & Chan, 2008). Hence, the present study will select a “differencing” approach, 

which is also called ARIMA (p, d, q) models, for the late-life immigrant data, which is developed  
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Figure 1: Scatter Plot for the Late-Life Immigrant Data 

 

extensively by Box and Jenkins (Cryer & Chan, 2008). In ARIMA (p, d, q), the character “p” refers 

to the order of the autoregressive component, “d” the number of differences needed to arrive at a 

stationary ARMA (p, q) process, and “q” the order of the moving average component. This 

approach is to apply differencing repeatedly to the series { ௧ܻ} until the differenced observations 

resemble a realization of a stationary time series. Securing stationarity by using the differencing 

approach will allow for the use of theory of stationary processes for the modeling, analysis, and 

forecasting of the stationary series. The general form of ARIMA (p, d, q) models in backshift 

notations is 

1)ܤ∅ − ௗ(ܤ ௧ܻ =  ௧݁ܤߠ
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Figure  2: BoxCox Power Transformation 

 

Figure 3: Scatter Plot after Transformation with 
Logarithm 

 

where {݁௧} is zero mean white nose with variance var	(݁௧) = ௘ଶߪ . In this notation, a stochastic 

process { ௧ܻ} is believed to follow an autoregressive integrated moving average model with ݀th 

differences. The letter “B” refers to the backshift operator. For example, (1-B)	 ௧ܻ equals ௧ܻ − ௧ܻିଵ. 

The autoregressive (AR) and moving average (MA) characteristic operators are: 

∅(B) = (1− ∅ଵB − ∅ଶBଶ −⋯− ∅୮B୮), i.e., Autoregressive (AR) characteristic operator 

θ(B) = (1− θଵB − θଶBଶ −⋯− θ୮B୯), i.e., Moving average (MA) characteristic operator. 

 

Box-Cox Power Transformation 

Before taking a difference for stationary process, a possible non-constant variance needs to be 

stabilized through a power transformation introduced by Box and Cox (1964). The power 

transformation will also frequently improve an approximation of normality. The transformation is 

defined by  
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ܶ( ௧ܻ) = ቐ
௧ܻ
ఒ − 1
ߣ ߣ						, ≠ 0

݈݊( ௧ܻ) ߣ								, = 0,
 

where ߣ is called the transformation parameter.  

Guided by Box and Cox (1964), a ߣ value is identified as in Figure 2 on the page 8. An 

approximate 95% confidence interval for ߣ includes ߣ = 0. As in the formula above, ߣ = 0 requires 

the logarithm transformation, ܶ( ௧ܻ) = ݈݊( ௧ܻ), by L’Hoptial’s Rule (Cryer & Chan, 2008), which is 

constructed using the large sample properties of the maximum likelihood estimates. That is, the 

value of ߣ = 0 maximizes the normal log-likelihood function in the data used for the present study.  

Taking a Difference 

The plot of the transformed data with logarithm in Figure 3 on the page 9 shows an 

approximately increasing trend with lots of momentum between observations, which suggests non-

stationarity in the data. A quantitative test, the augmented Dickey-Fuller unit-root test, for 

stationarity guided by Dickey and Fuller (1979) also supports that the observed time series is not 

stationary (ܲ − ݁ݑ݈ܽݒ = 0.1) in testing H଴:	α = 1	(nonstationary) (See Output-1in the appendix). 

The observed increasing trend and the augmented Dickey-Fuller unit-root test result recommend 

taking a difference of the log-transformed data for stationarity. Output-2 in the appendix reports 

that the log-transformed late-life immigrant data came to be stationary after the first differencing 

(ܲ − ݁ݑ݈ܽݒ = 0.01). This result indicates that we have sufficient evidence that this series is 

stationary at the α = 0.05 level. Theoretically to say, the AR characteristic polynomial ∅∗(ܤ) =

1)(ܤ)∅ − } does not contain a unit root, so (ܤߙ ௧ܻ − ௧ܻିଵ} or {∇Y୲} is stationary. The scatter plot 

after taking the first difference of the transformed data in Figure-4 also support the series is now 

stationary. 
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Figure 4: Scatter Plot after Taking a First Difference of the Transformed Data 

 

Model Specifications 

For selecting an ARMA (p, q) model for the differenced data, the sample ACF and PACF were 

plotted. According to Figure 5 in the appendix, the plots show the fluctuations of the sample 

autocorrelation values ݎ௞ within ± ଶ
√଻ହ

= 0.23 which is margin of random error bounds, suggesting a 

white noise process. The sample EACF in Output-3 in the appendix and BIC plots in Figure 6 in the 

appendix, however, show conflict results: the sample EACF supports an AR (1) model since a 

‘wedge’ with a tip is at (1, 0) for the first differenced data, while the BIC output supports an AR (2) 

model appropriately fits the differenced data. Based on the results, candidate models for the late-life 

immigrant data may be ARI (1, 1), ARI(2, 1), or ARIMA (0, 1, 0) model. Hence, the present study 

will start to fit and diagnose ARI (1, 1) model, followed by possible candidates including ARI (2, 1), 

and ARIMA (0, 1, 0) models to select the best model for the late-life immigrant data. Even though 
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an IMA (1, 1) model was not suggested by the assessments for a model specification, the IMA (1, 1) 

model will also be tested to comprehensively investigate all possible candidates. 

 

Model Fitting and Diagnostics  

Model Fitting 

An ARIMA (p, d, q) process with p = 1, d = 1, and q = 0 is called an ARI (1, 1) process and can be 

expressed as 

(1− −1)(ܤ∅ (ܤ ௧ܻ = ݁௧ 

Or, equivalently, 

௧ܻ − ௧ܻିଵ = ∅( ௧ܻିଵ − ௧ܻିଶ) + ݁௧, 

where {݁௧} is a normal zero mean white noise process with var	(݁௧) =  ௘ଶ. Since the late-lifeߪ

immigrant data were transformed by logarithm, the formula will be changed as follows: 

log	 ௧ܻ − log	 ௧ܻିଵ = ∅(log	 ௧ܻିଵ − log	 ௧ܻିଶ) + ݁௧. 

To estimate unknown parameters, the method of maximum likelihood (ML) was used since the ML 

method in fitting time series has some advantages including 1) that parameter estimates are based on 

the entire observed sample ଵܻ, 	 ଶܻ, … , ௡ܻ ; and 2) ML estimators have very nice large-sample 

distributional properties (Cryer, & Chan, 2008). As in Output-4 in the appendix, the estimated 

∅෡ = 0.1999 and estimated standard error SE෢൫∅෡൯ = 0.1138, where ∅෡~ܰܣ ቀ∅, ଵି∅
మ

௡
ቁ, gives 

estimated parameters as follows;  

log	 ௧ܻ − log	 ௧ܻିଵ = 0.1999(log	 ௧ܻିଵ − log	 ௧ܻିଶ) + ݁௧. 

Using the ML method, the approximate large-sample confidence interval for ARI (1, 1) model based 

on the parameter estimates is 

∅෡ ± Zα
మ
∗ SE෢ ൫∅෡൯ 
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= 0.1999 ± 1.96(0.1138) 	⟺ (−0.023148, 0.422948). 

The interval includes zero, indicating that ∅෡ is not statistically different from zero. Based on this 

result, no more complex AR-type model, i.e., ARI (2, 1), needs to be examined. 

Model Diagnostics 

To check the fit of the ARI (1, 1) model, the observed residuals ݁௧ෝ  will be examined since the 

residuals serve as proxies for the white noise terms ݁௧. If the model is correctly specified and the 

estimates are reasonably close to the true parameters, the residuals should behave roughly like a 

sequence of independent, normal random variables with zero mean and constant variance. 

Commonly, the residuals will be standardized, that is, eො୲∗ = ොୣ౪
σො౛

, where σොୣ
ଶ is an estimate of the white 

noise error variance σୣଶ. Most of the standardized residuals {eො୲∗} are assumed to fall between -3 and 3. 

In checking whether the residuals behave like a white noise process and the ARI (1, 1) model fit the 

data adequately, a series of tests will include checking for the normality and independence 

assumptions and the Ljung-Box test. 

Normality Assumption – In order to visually assess the normality assumption, the histograms 

and QQ plots of the standardized residuals are used. For the hypothesis tests for normality, the 

Shapiro-Wilk test is used. As in Figure 7 in the appendix, the histogram and QQ plots show no 

gross departures from normality. The Shapiro-Wilk test in Output-5 in the appendix supports the 

results of the plots: In testing H଴: “the standardized residuals are normally distributed,” with the 

observed P-value of 0.09157, we failed to reject the null hypothesis at α = 0.05 level. In summary, 

there is not sufficient evidence against normality. 

Independence Assumption – For visual assessment of the independent assumption, a time series 

plot of the standardized residuals is used, and a runs test with the standardized residuals is used for a 

formal test of the independence assumption. The standardized residual plot displays no discernible 
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patterns and looks to be random in appearance. The runs test supports the visual assessment: In 

testing H଴: “the standardized residuals are independent,” with the observed P – value of 0.605, we 

failed to reject the null hypothesis at α = 0.05 level. In summary, there is no evidence against 

independence.  

Ljung-Box Test - To further check the adequacy of a fitted ARI (1, 1) model formally, the 

Ljung-Box test (1978) is used. According to Figure 9 in the appendix showing the results of the 

modified Ljung-Box test, in testing H଴: “the ARI (1, 1) model is appropriate,” we do not have 

sufficient evidence against ARI (1, 1) model adequacy for the log-transformed late-life immigrant 

data when the maximum lag K=10 since we observed  χଽ,			଴.଴ହ
ଶ = 10.0538 and its corresponding 

݌ − value = 0.3461. The graphically displayed Ljung-Box test also supports the aforementioned 

hypothesis test result: 1) the residuals plotted through time displayed on the top of Figure 9 also 

show that the standardized residuals fall between -3 and 3, suggesting the residuals are normally 

distributed; 2) the sample autocorrelation function (ACF) of the residuals in the middle of the same 

figure shows that the residuals are approximately uncorrelated, behaving a white noise process; and 3) 

the p-values of the modified Ljung-Box test for various values of K on the bottom displays that all 

of the modified Ljung-Box test p-values are larger than α = 0.05.  

Overfitting – The initial model specification processes presented conflict models. Hence, to 

further assess the validity of the ARI (1, 1) model, the ARI (2, 1), IMA (1, 1), and ARIMA (0, 1, 0) 

models are assessed by examining the significance of the additional parameter estimates and the 

change in the estimates from the assumed model and by assessing the diagnostic plots.  

Output-7 in the appendix presents the IMA (1, 1) model fit and diagnostics with standardized 

residuals. We see that a 95% confidence interval for θଵ, the IMA model parameter, is  

−0.1917 ± 1.96(0.1054) ⟺ (−0.398284, 0.014884), 
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Table 1: 
Comparisons of Diagnostics among the Suggested Models 

  ARI (1, 1) IMA (1, 1) ARIMA (0, 1, 0) 
Confidence Intervals Insignificant Insignificant N/A 
AIC  -90.94 -90.9 -89.93 
Whitenoise Variance 0.06544 0.06549 0.0682 
Diagnostics Normality1 p = 0.092 p = 0.089 p = 0.078 
 Independence2 p = 0.605 p = 0.890 p = 0.211 
 Ljung-Box Test3 Fail to reject Fail to reject Reject 
Note:  
The Shapiro-Wilks test was used for the formal normality assumption test. 
The runs test was used for the formal independence assumption test. 
The modified Ljung-Box Test is testing H଴: “the suggested model is appropriate.” 

 

which also include zero. Therefore, θ෠ଵ is not statistically different than zero, which also suggests that 

the IMA (1, 1) is not necessary. The standardized residuals are not against normality and 

independence assumptions (See Figure 10 and Output-7 in the appendix) and the Ljung-Box test 

tells IMA (1, 1) model adequately fits the data (see Figure 11 in the appendix).  

Output-8 in the appendix shows the ARIMA (0, 1, 0) model diagnostics with residuals. After 

taking a first difference, the residual plots in Figure 12 and Output-8 in the appendix do not show 

serious violation of normality and independence assumptions. However, the Ljung-Box test results 

do not support that the ARIMA (0, 1, 0) model adequately fits the late-life immigrant data: many of 

the p-values of the modified Ljung-Box test for various values of K on the bottom in Figure 13 in 

the appendix are less than α = 0.05.  

Table 1 presents the summary of the diagnostic values of the suggested models. Even though 

the ARIMA (0, 1, 0) model has the smallest AIC with a trivial difference, the estimate of the white 

noise variance is greatest among the three models. In addition, the Ljung-Box test strongly discounts 

the ARIMA (0, 1, 0) model. The IMA (1, 1) model turned out to be as a strong candidate model as 

the ARI (1, 1) model since all results from the diagnosis of the two models are very similar.  
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Comparing the forecasts displayed in Output-9, 10, and 11 in the appendix, the predicted values 

from the MMSE forecast of Yଶ଴଴଼ , Yଶ଴଴ଽ, and Yଶ଴ଵ଴ in the ARI (1, 1), IMA (1, 1) and ARIMA (0, 1, 

0) models are also very similar each other: the values from the three models are ranging from 

approximately 340,000 in 2007 to approximately 370,000 in 2010. In addition, all of them are 

showing an increasing trend over times.  

Taking into account all the results from the diagnostics in the table as well as the sample EACF 

and BIC plot which were used for the initial model specification, the ARI (1, 1) model may be a 

better model than the IMA (1, 1) or the ARIMA (0, 1, 0) model since the plots favored the AR-type 

models. The number of late-life immigrants in the future will be forecasted through the ARI (1, 1) 

model in the next section. 

 

Forecasting  

To compare the forecasts through the suggested models to the actual values of the process, the last 

three observations, which are the values from the years of 2008, 2009, and 2010, are withheld. This 

technique will provide further information on how accurate the forecasting is. For forecasting, the 

minimum mean squared error (MMSE) forecast is adopted as a formal mathematical criterion to 

calculate model forecasts. The criterion is based on the mean squared error of prediction, i.e., 

MSEP = E{[Y୲ାℓ − ℎ(Yଵ, Yଶ, … , Y୲)]ଶ}. 

To minimize the MSEP,  

ℎ(Yଵ, Yଶ, … , Y୲) = E(Y୲ାℓ|Yଵ, Yଶ, … , Y୲). 

Hence, the ℓ- step ahead forecast is  

Y෡୲(ℓ) = E(Y୲ାℓ|Yଵ, Yଶ, … , Y୲),  

which is the MMSE forecast of Y୲ାℓ. 

As in Output-4, the fitted ARI (1, 1) models was  
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Table 2: 
Comparisons of the MMSE Forecast to the Actual Observations 

Year Observed  Predicted 
   e୞෡౪శℓ

(ై)  Y෡୲(ℓ) e୞෡౪శℓ
(౑)  

2008 356316  200420 341907 546327 
2009 353573  141229 358462 724278 
2010 329400  121763 376970 899612 

 

 

log	 ௧ܻ − log	 ௧ܻିଵ = 0.1999( ௧ܻିଵ − ௧ܻିଶ) + ݁௧ , 

so that ∅෡ = 0.1999 and the white noise variance estimate σොୣ
ଶ = 0.06544. 

The estimated forecasts and standard errors both on the log scale and on the original scale are given 

for lead times ℓ = 1,2, . . ,10 as in Output-9 in the appendix. The ℓ-step ahead MMSE forecast of 

Y୲ାℓ on the log scale is back-transformed to the original scale by using the following formula: 

Y෡୲(ℓ) = exp ቄZ෠୲(ℓ) + ଵ
ଶ

var[e୲(ℓ)]ቅ, 

where var[e୲(ℓ)] is the variance of the ℓ-step ahead forecast error e୲(ℓ) = Z୲ାℓ − Z෠୲(ℓ), and 

Z୲ = ln ௧ܻ. However, a 100(1- α) percent prediction interval for Y୲ାℓ is formed by exponentiating the 

endpoints of the prediction interval for Z୲ାℓ = logY୲ାℓ. In summary, a 100(1- α) percent prediction 

interval for Y୲ାℓ is 

1 − α = prቀZ෠୲ାℓ
(୐) < Z୲ାℓ < Z෠୲ାℓ

(୙)ቁ = pr(e୞෡౪శℓ
(ై)

< Y୲ାℓ < e୞෡౪శℓ
(౑)

). 

The predicted values from the MMSE forecast of Y୲ାℓ for the late-life immigrant data and the actual 

values of the late-life immigrant data are compared.  

As Table 2 above presents, the predicted values from the MMSE forecast of Yଶ଴଴଼ , Yଶ଴଴ଽ , and 

Yଶ଴ଵ଴ are very similar to the actually observed values of the late-life immigrant data, which suggests 

the ARI (1, 1) model explains adequately the late-life immigrant data. According to the predicted 

values from the MMSE forecast, in 10 years from 2007, the number of late-life immigrants who  
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Figure 16: Forecasting for the Late-Life Immigrants on Log Scale 

 

enter the U.S. will reach approximately 540,000, which accounts for 1.6 times increase. Without 

taking measures for the late-life immigrants, some racial/ethnic minority groups may not be 

successfully acculturated to the life in the U.S. and may not successfully achieve citizenship status to 

be eligible for the public medical services when they fall into poverty. Specifically, without taking 

actions for the late-life immigrants who may be disadvantaged by the PRWORA, widened 

discrepancies in the quality of life and health among racial/ethnic groups in the U.S. can be easily 

anticipated.  

 

Discussion  

By using the method of maximum likelihood, the present study identified that the ARI (1, 1) model 

fits the late-life immigrant data most adequately. The estimated parameters are  
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log	 ௧ܻ − log	 ௧ܻିଵ = 0.1999(log	 ௧ܻିଵ − log	 ௧ܻିଶ) + ݁௧. 

According to the predicted values from the MMSE forecast, in the near future, in 2017, the 

number of late-life immigrants who enter the U.S. will reach approximately 540,000, which accounts 

for 1.6 times increase compared with the number of late-life immigrants who enter the U.S. in 2007. 

The present study used national data documented by the DHS, but the selected model and 

forecasting can be generalizable only under some assumptions including that the current 

immigration policy, welfare reform, and supply & demand for foreign labor forces in the U. S. are 

persistent in the future.  

Another limitation is that the approximate large-sample confidence interval of ∅෡ for ARI (1, 1) 

includes zero, indicating that ∅෡ is not statistically different from zero. However, no other models 

including IMA (1, 1), and ARIMA (0, 1, 0) turned out to be better than ARI (1, 1). 

Defining the term “late-life immigrants” as those who enter the U.S. at age 45 or older may also 

be a limitation. Compared to early twentieth century, the age of 45 or older is no longer “old” in 

present time since they actively participate in social and economic activities even after immigration 

to the U.S., which implies they have more chance to achieve citizenship status than those aged 55 or 

older. Hence, immigrants aged 55 or older may be a better target population for the present study. 

However, the last age category in the DHS data had been “45 or older” until the DHS documented 

for the 1940 DHS data.   
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 Appendix 

Figure-1: Late-Life Immigrant Original Data 

 

Figure-2: Box-Cox plot 

 
 

Figure-3: Plot of Log-Transformed Data 
 

Figure-4: First Differencing of the Log-
Transformed Data
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Figure-5: Sample ACF and PACF 
 

 
 

Figure 6: BIC 
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Figure 7: Normality Assumption Test with Residuals - ARI (1, 1) Model 
 

 
Figure 8: Plot for Independence Assumption Checking with Residuals - ARI (1, 1) Model 
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Figure-9: Ljung-Box Test - ARI (1, 1) Model
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Figure-10: Normality & Independence Assumption Checking - IMA (1, 1) Model  
 

 
 
 

Figure-11: Ljung-Box Test - IMA (1, 1) Model 
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Figure-12: Normality & Independence Assumption Checking - ARIMA (0, 1, 0) Model 

 
 
Figure-13: Ljung-Box Test - ARIMA (0, 1, 0) Model 
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Figure-14: Prediction Interval Plot on Log Scale
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Output-1: Augmented Dickey-Fuller Unit Root test with the Log-Transformed Data 

 

> ar(diff(immig45.log)) 
 
Call: 
ar(x = diff(immig45.log)) 
 
Order selected 0  sigma^2 estimated as  0.06549  
> ADF.test(immig45.log,selectlags=as.list(0),itsd=c(1,0,0)) 
  --------- ------ - ------ ---- 
  Augmented Dickey & Fuller test 
  --------- ------ - ------ ---- 
 
  Null hypothesis: Unit root. 
  Alternative hypothesis: Stationarity. 
 
---- 
  ADF statistic: 
 
        Estimate Std. Error t value Pr(>|t|) 
adf.reg    -0.04      0.024  -1.646      0.1 
 
  Lag orders: 0 
  Number of available observations: 74  
Warning message: 
In interpolpval(code = code, stat = adfreg[, 3], N = N) : 
p-value is greater than printed p-value 
 
 

 
 In testing 

H଴:	α = Nonstationary 
vs. 
Hଵ:	α = Stationary, 
with p-value = 0.1 for the augmented Dickey-Fuller unit-root test for difference nonstationarity, 
we do not have sufficient evidence that this series is stationary at the α = 0.05 level. 
Theoretically to say, the AR characteristic polynomial ∅∗(B) = ∅(B)(1 − αB) contains a unit 
root. In other words, {Y୲} is nonstationary, but {∇Y୲} is stationary.  
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Output-2: Augmented Dickey-Fuller unit root test after taking a first difference of the log-
transformed data 

 
> ar(diff(immig45.log.diff)) 
 
Call: 
ar(x = diff(immig45.log.diff)) 
 
Coefficients: 
      1        2        3        4        5        6        7        8   
-0.6876  -0.5868  -0.6623  -0.5432  -0.4557  -0.4417  -0.3870  -0.2372   
 
Order selected 8  sigma^2 estimated as  0.07795  
> ADF.test(immig45.log.diff,selectlags=as.list(1:8),itsd=c(1,0,0)) 
  --------- ------ - ------ ---- 
  Augmented Dickey & Fuller test 
  --------- ------ - ------ ---- 
 
  Null hypothesis: Unit root. 
  Alternative hypothesis: Stationarity. 
 
---- 
  ADF statistic: 
 
        Estimate Std. Error t value Pr(>|t|) 
adf.reg    -1.11      0.188  -5.892     0.01 
 
  Lag orders: 1 2 
  Number of available observations: 71  
Warning message: 
In interpolpval(code = code, stat = adfreg[, 3], N = N) : 
  p-value is smaller than printed p-value 
 
 
 In testing 

H଴:	α = Nonstationary 
vs. 
Hଵ:	α = Stationary, 
with p-value = 0.01 for the augmented Dickey-Fuller unit-root test for difference 
nonstationarity, we have sufficient evidence that this series after taking a first difference of the 
log-transformed data is stationary at the α = 0.05 level.  
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Output-3: Sample EACF 

 

> eacf(immig45.log) 
AR/MA 
  0 1 2 3 4 5 6 7 8 9 10 11 12 13 
0 x x x x x x x x x x x  x  x  x  
1 o o o o o o o o o o o  o  o  o  
2 o o o o o o o o o o o  o  o  o  
3 o x o o o o o o o o o  o  o  o  
4 o x x o o o o o o o o  o  o  o  
5 o o x o o o o o o o o  o  o  o  
6 x o o o o o o o o o o  o  o  o  
7 x x o o o o o o o o o  o  o  o  
 
 

 

Output-4: ARI (1, 1) Model Fitting 

> immig45.log.fit=arima(immig45.log,order=c(1,1,0),method='ML') 
> immig45.log.fit 
 
Call: 
arima(x = immig45.log, order = c(1, 1, 0), method = "ML") 
 
Coefficients: 
         ar1 
      0.1999 
s.e.  0.1138 
 
sigma^2 estimated as 0.06544:  log likelihood = 46.47,  aic = -90.94 
 
 
 
 
 Significance test for ARI (1,1): 

0.1999 ± 1.96 ∗ 0.1138 = (−0.023148, 0.422948) 
The AR parameter estimate ∅෡ is not significantly different from zero.  
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Output-5: Shapiro-Wilk Test for Normality – ARI (1, 1) Model 

 

> shapiro.test(rstandard(immig45.log.fit)) 
 
        Shapiro-Wilk normality test 
 
data:  rstandard(immig45.log.fit)  
W = 0.9717, p-value = 0.09157 
 
 

 

Output-6: Runs Test for Independence – ARI (1, 1) Model 

 
> runs(rstandard(immig45.log.fit)) 
$pvalue 
[1] 0.605 
 
$observed.runs 
[1] 33 
 
$expected.runs 
[1] 35.56 
 
$n1 
[1] 27 
 
$n2 
[1] 48 
 
$k 
[1] 0 
 
> 
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Output-7:  Overfitting (2): IMA (1, 1) Model and Checking Assumptions 

 
> immig45.log.ima_1=arima(immig45.log,order=c(0,1,1),method='ML') 
> immig45.log.ima_1 
 
Call: 
arima(x = immig45.log, order = c(0, 1, 1), method = "ML") 
 
Coefficients: 
         ma1 
      0.1917 
s.e.  0.1054 
 
sigma^2 estimated as 0.06549:  log likelihood = 46.45,  aic = -90.9 
> shapiro.test(rstandard(immig45.log.ima_1)) 
 
        Shapiro-Wilk normality test 
 
data:  rstandard(immig45.log.ima_1)  
W = 0.9716, p-value = 0.08968 
 
> runs(rstandard(immig45.log.ima_1)) 
$pvalue 
[1] 0.89 
 
$observed.runs 
[1] 35 
 
$expected.runs 
[1] 34.97333 
 
$n1 
[1] 26 
 
$n2 
[1] 49 
 
$k 
[1] 0 
 
 Significance test for IMA (1,1): 

−0.1917 ± 1.96 ∗ 0.1054 = (−0.398284, 0.014884) 
The MA parameter estimate θ෠  is not significantly different from zero.  
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Output-8:  Overfitting (3): ARIMA (0, 1, 0) Model and Checking Assumptions 

> immig45.log.diff=arima(immig45.log,order=c(0,1,0),method='ML') 
> immig45.log.diff 
 
Call: 
arima(x = immig45.log, order = c(0, 1, 0), method = "ML") 
 
 
sigma^2 estimated as 0.0682:  log likelihood = 44.96,  aic = -89.93 
> 
> shapiro.test(rstandard(immig45.log.diff)) 
 
        Shapiro-Wilk normality test 
 
data:  rstandard(immig45.log.diff)  
W = 0.9706, p-value = 0.07764 
 
> runs(rstandard(immig45.log.diff)) 
$pvalue 
[1] 0.211 
 
$observed.runs 
[1] 29 
 
$expected.runs 
[1] 34.33333 
 
$n1 
[1] 25 
 
$n2 
[1] 50 
 
$k 
[1] 0 
 
> 
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Output-9: Forecasting ARI (1, 1) Model 

 

> #Prediction 
> immig45.log.predict=predict(immig45.log.fit,n.ahead=10) 
> round(immig45.log.predict$pred,3) 
Time Series: 
Start = 2008  
End = 2017  
Frequency = 1  
 [1] 12.71 12.71 12.71 12.71 12.71 12.71 12.71 12.71 12.71 12.71 
> round(immig45.log.predict$se,3) 
Time Series: 
Start = 2008  
End = 2017  
Frequency = 1  
 [1] 0.256 0.400 0.510 0.602 0.681 0.753 0.818 0.878 0.935 0.988 
> log_back.predict=round(exp(immig45.log.predict$pred+(1/2)*(immig45.log.predict$se)^2),3) 
> log_back.predict 
Time Series: 
Start = 2008  
End = 2017  
Frequency = 1  
 [1] 341907.9 358462.9 376970.0 396680.0 417472.7 439366.3 462410.4 486663.7 
 [9] 512189.1 539053.3 
> > #Prediction Interval 
> immig45.UPI=(immig45.log.predict$pred)+(qnorm(0.975,0,1)*immig45.log.predict$se) 
> immig45.LPI=(immig45.log.predict$pred)-(qnorm(0.975,0,1)*immig45.log.predict$se) 
> Year=c(2008:2017) 
> data.frame(Year,immig45.LPI=exp(immig45.LPI),log_back.predict,immig45.UPI=exp(immig45.UPI)) 
   Year immig45.LPI log_back.predict immig45.UPI 
1  2008   200420.90         341907.9    546327.7 
2  2009   151229.71         358462.9    724278.5 
3  2010   121763.28         376970.0    899612.9 
4  2011   101743.78         396680.0   1076638.7 
5  2012    87043.30         417472.7   1258472.4 
6  2013    75694.12         439366.3   1447161.9 
7  2014    66627.21         462410.4   1644097.8 
8  2015    59202.03         486663.7   1850302.3 
9  2016    53005.98         512189.1   2066590.7 
10 2017    47758.47         539053.3   2293659.5 
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Output-10: Forecasting IMA (1, 1) Model 

 

> immig45.log.ima_1.predict=predict(immig45.log.ima_1,n.ahead=10) 
> round(immig45.log.ima_1.predict$pred,3) 
Time Series: 
Start = 2008  
End = 2017  
Frequency = 1  
 [1] 12.71 12.71 12.71 12.71 12.71 12.71 12.71 12.71 12.71 12.71 
> round(immig45.log.ima_1.predict$se,3) 
Time Series: 
Start = 2008  
End = 2017  
Frequency = 1  
 [1] 0.256 0.398 0.501 0.587 0.661 0.728 0.790 0.846 0.900 0.950 
> #Backtransromation 
> 
log_back.ima_1.predict=round(exp(immig45.log.ima_1.predict$pred+(1/2)*(immig45.log.ima_1.predict
$se)^2),3) 
> #Prediction Interval 
> 
immig45.log.ima_1.UPI=(immig45.log.ima_1.predict$pred)+(qnorm(0.975,0,1)*immig45.log.ima_1.predi
ct$se) 
> immig45.log.ima_1.LPI=(immig45.log.ima_1.predict$pred)-
(qnorm(0.975,0,1)*immig45.log.ima_1.predict$se) 
> Year=c(2008:2017) 
> 
data.frame(Year,ima_1.LPI=exp(immig45.log.ima_1.LPI),log_back.ima_1.predict,ima_1.UPI=exp(immig4
5.log.ima_1.UPI)) 
   Year ima_1.LPI log_back.ima_1.predict ima_1.UPI 
1  2008 200510.16               342124.8  546753.8 
2  2009 151737.82               358409.7  722494.1 
3  2010 123906.78               375469.7  884775.5 
4  2011 104800.40               393341.8 1046080.8 
5  2012  90562.73               412064.5 1210538.7 
6  2013  79430.75               431678.5 1380192.1 
7  2014  70443.00               452226.0 1556289.3 
8  2015  63016.15               473751.6 1739707.6 
9  2016  56769.74               496301.8 1931129.0 
10 2017  51442.20               519925.3 2131123.7 
> 
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Output-11: Forecasting ARIMA (0, 1, 0) Model 

 

> immig45.log.random.walk.predict=predict(immig45.log.random.walk,n.ahead=10) 
> round(immig45.log.random.walk.predict$pred,3) 
Time Series: 
Start = 2008  
End = 2017  
Frequency = 1  
 [1] 12.709 12.709 12.709 12.709 12.709 12.709 12.709 12.709 12.709 12.709 
> round(immig45.log.random.walk.predict$se,3) 
Time Series: 
Start = 2008  
End = 2017  
Frequency = 1  
 [1] 0.261 0.369 0.452 0.522 0.584 0.640 0.691 0.739 0.783 0.826 
> #Backtransromation 
> 
log_back.random.walk.predict=round(exp(immig45.log.random.walk.predict$pred+(1/2)*(immig45.log.r
andom.walk.predict$se)^2),3) 
> #Prediction Interval 
> 
immig45.random.walk.UPI=(immig45.log.random.walk.predict$pred)+(qnorm(0.975,0,1)*immig45.log.r
andom.walk.predict$se) 
> immig45.random.walk.LPI=(immig45.log.random.walk.predict$pred)-
(qnorm(0.975,0,1)*immig45.log.random.walk.predict$se) 
> Year=c(2008:2017) 
> 
data.frame(Year,immig45.LPI=exp(immig45.random.walk.LPI),log_back.random.walk.predict,immig45.ra
ndom.walk.UPI=exp(immig45.random.walk.UPI)) 
   Year immig45.LPI log_back.random.walk.predict immig45.random.walk.UPI 
1  2008   198165.97                     342091.7                551612.9 
2  2009   160305.45                     353959.3                681891.4 
3  2010   136236.11                     366238.7                802363.7 
4  2011   118775.37                     378944.0                920316.3 
5  2012   105256.24                     392090.0               1038521.8 
6  2013    94363.41                     405692.2               1158403.5 
7  2014    85344.23                     419766.2               1280823.6 
8  2015    77725.74                     434328.4               1406367.0 
9  2016    71190.78                     449395.9               1535464.5 
10 2017    65516.24                     464986.0               1668455.1 
> 
 

 


