4

Shape Space and Distances

In this chapter we investigate further geometrical aspects
of shape. This chapter and Chapter 5 extend and formalize
the material from Chapter 3. We shall consider a briefer
version of the material than can be found in the book

Dryden and Mardia (1998).

4.1 Shape Space

4.1.1 Introduction

We have already noted that the shape of an object is given
by the geometrical information that remains when we filter

out translation, rotation and scale information.
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A rotation of a configuration is given by post-
multiplication of the configuration matriX by a rotation

matrix I.

Definition 4.1 Anm x m rotation matrix satisfied"'T" =
I'TT = [, and|T'| = +1. The set of alin x m rotation

matrices is known as the special orthogonal gréidp(m).

A translation is obtained by adding a constantector
to the coordinates of each point. An isotropic scaling is

obtained by multiplyingX by a positive real number.

Definition 4.2 The Euclidean similarity transforma-
tions of a configuration matrixX are the set of translated,

rotated and isotropically rescaled, i.e.
{(BXT 4+ 11yt : e RT, T € SO(m),y € R™}, (4.1)

wheres € IR is the scalel is a rotation matrix andy is
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a translationm-vector.

Definition 4.3 The rigid-body transformations of a
configuration matrix X are the set of translated and

rotated X, i.e.
{XT + ;4" : T € SO(m),y € R"}, (4.2

wherel' is a rotation matrix andy is a translationm-

vector.

Form = 2 we can use complex notation as in Chapter
3. Considerk > 3 landmarks inC, 2° = (2¢,...,29)T
which are not all coincident. The Euclidean similarity

transformations of° are
{nz° + 1,€ :n = ﬁew € C,¢ e C},

where 3 € IR" is the scale0 < 6 < 2r is the

rotation angle and¢ <€ C is the translation. Hence,
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the Euclidean similarity transformations of are the set
of the same complex linear transformations applied to
each landmark:7. Specifying the Euclidean similarity
transformations as complex linear transformations leads
to great simplifications in shape analysis for the two
dimensional case, as we have seen in the previous chapter.
We could consider the shape &f as the equivalence
class of the full set of similarity transformations of
a configuration. Alternatively we could filter out the
similarity transformations from the configuration in a
systematic manner. We shall adopt the latter approach.
If all £ points are coincident, then this has a special shape
that must be considered as a separate case. The coincident

case is not generally of interest.



124 STATISTICAL SHAPE ANALYSIS

4.1.2 Filtering translation

In order to represent shape it can be convenient to remove
the similarity transformations one at a time. Translation
Is the easiest to filter fromX and can be achieved by
considering contrasts of the data, i.e. pre-multiplyingaby
suitable matrix. We can make a specific choice of contrast
by pre-multiplying X with the Helmert sub-matrix of
Equation (2.9).

We write

Xg = HX e R*¥Ym\ {0} (4.3)

(the origin is removed because coincident landmarks are
not allowed) and we refer toXy as theHelmertized
landmarks.

The centred landmarks are an alternative choice for
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removing location and are given by
Xeo=0CX. (4.4)

We can revert back to the centred landmarks from the

Helmertized landmarks by pre-multiplying iy", as

1
H'H =1, - Em;f =C

and so

H'Xy=H'HX =CX.
4.1.3 Pre-shape
We saw in Section 3.2 that in computing a distance
between shapes it is necessary to standardize for size. We

standardize for size by dividing through by our notion of

size. We choose the centroid size (see Equation (2.2))
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which is also given by

| X || = trace( XTHTHX) = \/trace(XTCX) = |CX]| = S(X),
(4.5)

since HYH = C is idempotent. Note that(X) >

0 because we do not allow complete coincidence of

landmarks. The pre-shape of a configuration makfikas

all information about location and scale removed.

Definition 4.4 Thepre-shapeof a configuration matrixX

IS given by

Xy HX

Z: pu—
[ Xal [[HX]

(4.6)

which is invariant under the translation and scaling of the

original configuration.

An alternative representation of pre-shape is to initially

centre the configuration and then divide by size. The
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centred pre-shapes given by

Zo=CX/|CX||=H"Z (4.7)

sinceC = H'H. Note thatZ is a (k — 1) x m matrix
whereas’q is ak x m matrix.

Important point: Both pre-shape representations are
equally suitable for the pre-shape space which has real
dimension(k — 1)m — 1. The advantage in using is that
it is of full rank and the dimension is less than that£f
(although of course they have the same rank). On the other
hand, the advantage of working with the centred pre-shape
Z¢ is that a plot of the Cartesian coordinates gives a correct

geometrical view of the shape of the original configuration.

Definition 4.5 The pre-shape spaces the space of all

possible pre-shapes. Formally, the pre-shape spéfe



128 STATISTICAL SHAPE ANALYSIS

Is the orbit space of the non-coincident point set
configurations inR™ under the action of translation and

isotropic scaling.

The pre-shape spac? = S*~1)m~lis a hypersphere of
unit radius in(k — 1)m real dimensions, sincgZ|| = 1.
The term ‘pre-shape’ signifies that we are one step away
from shape — rotation still has to be removed. The term

was coined by Kendall (1984).

4.1.4 Shape

In order to also remove rotation information from the
configuration we identify all rotated versions of the pre-
shape with each other, and this set or equivalence class is
the shape oK. An alternative definition of the shape &f

IS
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Definition 4.6 The shapeof a configuration matrixX is

all the geometrical information about that is invariant
under location, rotation and isotropic scaling (Euclidean
similarity transformations). The shape can be represented

by the sefX] given by
[(X]={ZT:T € SO(m)}, (4.8)

whereSO(m) is the special orthogonal group of rotations

and 7 is the pre-shape ok'.

Definition 4.7 The shape spacas the set of all possible
shapes. Formally, the shape spack is the orbit space of
the non-coincident point set configurations iflR" under

the action of the Euclidean similarity transformations.

Important point: The dimension of the shape space is

m(m — 1)

M=km—m-—1-— ,
2
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and this can be simply seen as we initially have
coordinates and then must losedimensions for location,
one dimension for uniform scale angin(m — 1) for
rotation.

The shape ofX is a set — an equivalence class under
the action of the group of similarity transformations. In
order to visualize shapes it is often convenient to choose

a particular member of the shape &¥t.

Definition 4.8 Aniconis a particular member of the shape

set[.X'| which is taken as being representative of the shape.

The word icon means ‘image or likeness’ and it is
appropriate as we use the icon to picture a representative
figure from the shape equivalence class which has
‘likeness’ to the other members (i.e. the objects of thexclas

are all similar). The term was first used by Goodall (1995).
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The centred pre-shapg®- is a suitable choice of icon.
4.1.5 Size-and-shape: Removing location and rotation

We could change the order of quotienting out the
similarity transformations or only remove some of the
transformations. For example, if location and rotation are
removed but not scale, then we have the size-and-shape of

X.

Definition 4.9 The size-and-shapeof a configuration
matrix X is all the geometrical information abouk’

that is invariant under location and rotation (rigid-body
transformations), and this can be represented by the set

[X]s given by

(X]s = {XuT : T € SO(m)}, (4.9)

where Xy are the Helmertized coordinates of Equation
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(4.3). The space of all size-and-shapes is calledsike-
and-shape spacand is denoted by , for k points in

m dimensions. The size-and-shape space is the orbit space
of the configuration space under the action of translation

and rotation.

Size-and-shape has also been calleddha . We discuss
size-and-shape in more detail in Chapter 8.

If size is removed from the size-and-shape (e.g. by
rescaling to unit centroid size), then we obtain the shape

of X,

[X] = [X]s/S(X) = {2 : ' € 50(m)},

as in Equation (4.8).
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4.1.6 Reflection shape

We can also include invariances under reflections for shape

or size-and-shape.

Definition 4.10 The reflection shapeof a configuration
matrix X is all the geometrical information that is in-
variant under the similarity transformations and reflectio

The reflection shape can be represented by the set

(X]g={ZR: R e O(m)}

where O(m) is the set ofm x m orthogonal matrices,
satisfyingR*™R = I, = RRT and|R| = +1, and Z is

the pre-shape.

Definition 4.11 The reflection size-and-shapeof a con-
figuration matrix X is all the geometrical information that

IS invariant under translation, rotation and reflection.dh
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reflection size-and-shape can be represented by the set

[(X]rs ={XuR:ReO(m)}

whereO(m) is the set ofn x m orthogonal matrices and

X g are the Helmertized coordinates.

Important point: With quite a wide variety of terminol-
ogy used for the different spaces it may be helpful to refer
to Figure 38 where we give a diagram indicating the hier-

archies of the different spaces.

4.2 Distances

4.2.1 Procrustes distances

A concept of distance between two shapes is required to
fully define the non-Euclidean shape metric space. We
shall primarily concentrate on the full Procrustes disegnc

which was introduced for the two dimensional case in
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‘ Original Configuratio%

remove translation

‘ HeImertized/Centre+

remove scale remove rotation
‘ Pre-shape ‘ ‘ Size-and-shape ‘
remove rotation remove scale
remove reflection
‘ Shape ‘
remove reflectior ‘ Reflection size-and-shap%

‘ Reflection shape‘

Figure 38 The hierarchies of the various spaces (after Goodall andiidat992).

135
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Section 3.2.
Consider two configuration matrices frok points in
m dimensionsX; and X, with pre-shapesZ; and Z,.
We minimize over rotations and scale to find the closest

Euclidean distance betweefi and Zs.

Definition 4.12 Thefull Procrustes distancebetweenX;

and X5 is

X, X9) = inf Zo — B 4.1
dF( 1, 2) FeSOl(Irln),ﬁe]RH o — BZ; H’ (4.10)

whereZ, = HX, /|HX,|, r=1,2.

Result 4.1 The full Procrustes distance is

1/2

m 2
dp(X1, Xs) = {1 — (Z )\Z-) } , (4.11)
=1
whereA; > Xy > ... > A\,_1 > |\,| are the square

roots of the eigenvalues ¢ff 7,73 Z;, and the smallest
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value )\, is the negative square root iffet(Z; Z,) < 0.

The minimizing rotation is given by
r=uvt (4.12)

whereU,V € SO(m) and Z3 Z; = VAU" with A =

diag(A1, Ag, . .., A ). The minimizing scale is

~ m

F=2

1=

Proof:

See Dryden and Mardia (1998, p62).

O

We shall primarily concentrate on using the full
Procrustes distance in the shape space, because this is a

statistically natural measure of shape distance (seeddecti
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3.2). Note that

@
|
—

and so

0<dr <1.
4.2.2 Alternative distances

Alternative distances in shape space could be suggested.
In Figure 39 we see a diagrammatic view of the pre-
shape sphere. Since the pre-shape sphere is a hypersphere
embedded iR~V we could consider familiar distances
between two points on a sphere, such as the great circle
distance or the chordal (Euclidean) distance. Since the
shapes of configurations are represented by fibres on the
pre-shape sphere, we can define the distance between two

shapes as the closest distance between the fibres on the pre-
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shape sphere. In Figure 39 two minimum distances have
been drawn between the fibres (shapesis the closest

great circle distance ant} the closest chordal distance.

X4

X5l

Figure 39 A diagrammatic simplistic view of two fibres\; ] and[X2] on the pre-shape
sphere, which correspond to the shapes of the original amafiign matricesX; and X»
which have pre-shapées, andZ.. Also displayed are the smallest great cirgland

chordal distancegpr between the fibres.

Definition 4.13 The partial Procrustes distance dp is

obtained by matching the pre-shapésand 7, of X; and
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X5 as closely as possible over rotations, but not scale. So,
dp(X1, Xs) = Feé’%f(m) 12y — Zy 1]
Wherer = HX]/HHX]H, g =12

Result 4.2 The partial Procrustes distance is given by

. 1/2
dp(X1, X5) = /2 (1 = )\i) . (4.13)
=1

Proof: By keeping3 = 1 fixed throughout the proof of

Result 4.1, and just minimizing ovér O

Note the optimal rotation is the same whether or not

scaling is in the minimization.

Definition 4.14 TheProcrustes distanceor Riemannian

metric p(X1, Xy) is the closest great circle distance
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betweenZ; and Z; on the pre-shape sphere, whefe =
HX;/||HX|||, j = 1,2. The minimization is carried out

over rotations.

From trigonometry one can see that the Procrustes

distance is

NE

p(Xl, X2) = 2arcsin(dp(X1, X2)/2) = arccos ( Az) .
=1

7

(4.14)
In Figure 40 we see a cross-section of the pre-shape
sphere illustrating the relationships betwegndp andp.

Indeed

dF(Xl, XQ) = Sinp,

dp(Xl, XQ) = 2 sm(p/2)
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Important point: Note thatp can be considered as the
smallest angle between the complex vectgrandZ, over

rotations ofZ; and Z2,.

Figure 40 Section of the pre-shape sphere, illustrating the relatignbetween the

Procrustes distances-, dp andp.

Important point: For shapes which are close together

there is very little difference between the shape distgnces
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since

143

dp =dp +O(dp) , p=dr+O(dy).

Consequently for many practical datasets with small

variability there is very little difference in the analyses

when using different Procrustes distances. However, the

distinction between the distances is worth making and the

terminology is summarized in Table 1.

Distance Notation Formula Range
Full Procrustes distance |  dr | {1 — (X7, \)22 ] 0<dp <1
Partial Procrustes distance dp V21 =S A2 10 < dp < 1/2
Procrustes distance p arccos(X" A;) | 0< p<m/2

Table 1 Procrustes distances in the shape space.




