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IRLS LOWESS

LOWESS

LOWESS (LOcally WEighted Scatterplot Smoothing) is a highly
prescriptive scatterplot smoothing method developed by Cleveland,
1979. Other scatterplot smoothing methods provide more
flexibility in weighting functions, smoothing criteria, etc.

Features of LOWESS include:
@ |ocal regression
@ weighted regression
@ robustness to outlying observations.

We will study LOWESS assuming a single predictor variable.
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IRLS LOWESS

The first step in LOWESS is a locally weighted regression with the
weight function based on the tricubic kernel:

K(u) = { {1 - (IUD3}3 lul <1

0 lul > 1

Tricubic kernel
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IRLS LOWESS

At each x;«, i* =1,...,n, construct a local linear or quadratic
regression based on K(-) using weights

Wk(x,-*)—K<’XkA_)<i*‘>, k=1,...,n
q

h

where A4 is the gth order statistic of {Ixk — Xis| } -

For each weighted least squares, we focus on the predicted value at
Xj«: yi=—rather than the weighted least squares line itself.

Residuals {e;.} are calculated, and the next weighted least squares
regression includes robust adjustments for outliers.



IRLS LOWESS

Define the bisquare kernel:

B(u) = { {1-?} Ju <1

0 lul > 1

Bisquare kernel
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IRLS LOWESS

Set s = med |ek| and define robustness weights:

w-o(3)

Use weights dx X wi(i*) in a second series of local weighted least
squares regressions.

Repeat the steps until the process converges.
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LOWESS

Example

From the water quality data, we will study fecal coliform levels for
Station C-076 (Cedar Creek).

@ Plots show the presence of outliers, even after a scale
transformation, as well as some local behavior that suggests a
need for robust scatterplot smoothing.

@ PROC LOESS in SAS conducts local regression by default,
with robust iterative weighting of outliers introduced by the
ITERATIONS= option.

@ PROC LOESS uses methods similar to LOWESS, though with
many more options for smoothing criteria available.
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Bootstrap Bootstrapping

Section 11.6

The text provides an introduction to the bootstrap without much
context. We will adopt a similar approach; details are more
suitable for, e.g., STAT 740. Intuitively, the empirical distribution
function (below) can be used as an estimate of the distribution
function F of the independent identically distributed error terms ¢;.

n

Fo(x) = %Z 10 < %)
i=1
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Bootstrapping Regression

Bootstrap

As such, sampling from F, can be used to model sampling from F.
@ Sampling from F, should be with replacement to mimic
repeated sampling from F.

@ Functionals in F have their counterparts in F,. E.g.,
/L(Fn) =X.

@ These analogies lead to methods for deriving sampling
distributions, and hence ready-made estimates of standard
errors and confidence bounds, in the absence of closed-form
results.

@ Simpler will not always prove better!
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Bootstrap

Bootstrapping Regression

The text distinguishes two types of bootstrap regressions
@ When the predictor variables are fixed and errors have
constant variance, bootstrap {e;}.
@ When the predictor variables are random, bootstrap {(x;, yi)}

For the former case, the bootstrap sample will be {ef}. We
compute Y = Y;+ef, i=1,...,n, then regress { Y} on {X;},
typically to obtain B bootstrap slope estimates,

bipy b=1,....B.

We can then compute s* {b;}, the standard deviation of {bf(b)},
as an estimate of the standard error of by.
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Bootstrap

Bootstrapping Regression

We can also use the bootstrap sample to compute confidence
intervals; the number of bootstrap samples, B, tends to be large
for this, particularly for empirical methods.

There are numerous approaches to bootstrap confidence intervals;
the book introduces one of the most interesting, the reflection
method. The percentile method simply uses the /2 and 1 — «/2

sample percentiles from {bf(b)} to construct a 100(1 — «)% Cl for

B
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Bootstrap

The reflection method

The reflection method computes

d = by —bi(a/2)
b = bi(l-a/2)—b

The 100(1 — )% Cl is then (b; — da, by + d1). Why does this
work?
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Bootstrap Bootstrapping Regression

The reflection method

With probability 1 — «, by will fall between the percentiles of its
sampling distribution:

Plbi(a/2) < by < bi(l—a/2)] =1 —a

The distances between these percentiles and 51, the mean of the
sampling distribution of by, are:

Dy = p1— bi(a/2)
D, = bi(l-a/2)-p

Rearranging, we have

bi(a/2) = p1— D
bl(l—Oé/2) == 51+D2
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Bootstrap Bootstrapping Regression

Example

The cars data set in R studies stopping distance of cars as a
function of speed. The data is not quite linear, and the variation in
stopping distance increases with speed, but we will set aside those
issues for now.

R has numerous libraries (boot is popular, though it has its
peculiarities) to bootstrap models. We can use a hand-constructed
function to bootstrap residuals from the regression of dist on
speed. We will want to compare the percentile and reflection
bootstrap confidence intervals to the 95% confidence interval
obtained from the regular normal errors model: (3.097, 4.768).
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