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Generalized Linear Mixed Models

We have considered random block effects in two models:
randomized complete block and repeated measures within one
factor designs. The idea is that within a block the responses are
more similar (i.e. correlated) than across blocks.

Observations often occur in related clusters. Phrases like repeated
measures, longitudinal data, and panel data, get at the same thing:
there’s correlation among observations in a cluster.

One approach, the topic of this lecture, induces correlation through
the inclusion of random effects, yielding a GLMM.

Another approach, generalized estimating equations, accounts for
correlation by modifying “independence” likelihood equations. This
is not discussed here, but rather in STAT 770 & STAT 771.
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Add random effects to linear predictor

Let Yi = (Yi1, . . . ,Yini ) be ni correlated responses in cluster i .
Associated with each repeated measure Yij are fixed (population)
effects β and cluster-specific random effects ui . Let µij = E (Yij).

In a GLMM the linear predictor is augmented to include random
effects:

g(µij) = x′ijβ + z′ijui .

For logistic regression, this is

logit P(Yij = 1) = x′ijβ + z′ijui .
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Add random effects to linear predictor

Note that conditional on ui ,

E (Yij |ui ) =
ex′ijβ+z′ijui

1 + ex′ijβ+z′ijui
.

The distinction between the conditional model and a marginal
model is subtle, but very important. The interpretation of β is
slightly different in both cases, and estimation of β differs
depending on the model. Estimation of marginal models was
developed first.
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Example

I ask a random sample of the same n = 14 STAT 705 graduate
students “do you like statistics?” once a month for 4 months.

Yij = 1 if “yes” and Yij = 0 if no. Here, i = 1, . . . , 14 and
j = 1, . . . , 4.

Covariates might include mij , the average mood of the student
over the previous month (mij = 0 is bad, mij = 1 is good), the
degree being sought (di = 0 doctoral, di = 1 masters), the month
tj = j , and pj the number of homework problems assigned in STAT
705 in the previous month.

A GLMM might be

logit P(Yij = 1) = β0 + β1mij + β2di + β3pj + β4j + ui .

This model assumes that log-odds of liking statistics changes
linearly in time, holding all else constant. Alternatively, we might
fit a quadratic instead or treat time as categorical. Here, ui

represents a student’s a priori disposition towards statistics.
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Interpretation

Let’s compare month j + 1 to month j for individual i , holding all
else (m, d , and p) constant. The difference in log odds is

(β0 + β1mij + β2di + β3pj + β4(j + 1) + ui )− (β0 + β1mij + β2di + β3pj + β4j + ui ) = β4.

Not holding everything constant we get

(β0 + β1mi,j+1 + β2di + β3pj+1 + β4(j + 1) + ui )− (β0 + β1mij + β2di + β3pj + β4j + ui )

= β1(mi,j+1 − mij ) + β3(pj+1 − pj ) + β4.

Either way, we are conditioning on individual i , or the
subpopulation of all individuals with predisposition ui ; i.e. everyone
“like” individual i in terms of liking statistics to begin with.

How are eβ1 , eβ2 , eβ3 and eβ4 interpreted here?
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Random effects u1, . . . ,un

The random effects are assumed to come from (in general) a
multivariate normal distribution

u1, . . . ,un
iid∼ Nq(0,Σ).

The covariance cov(ui ) = Σ can have special structure, but is
usually unstructured. The free elements of Σ are estimated along
with β.

The ui can account for heterogeneity caused by omitting
explanatory variables and/or are interpreted as blocking effects.

Note that cov(Yi ) 6= Σ! In general, the covariance of Yi does not
have closed form unless Yi is normal, rather than Bernoulli or
Poisson.
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Two special cases

Logistic regression with random intercepts:

logit P(Yij = 1|ui ) = x′ijβ + ui , ui
iid∼ N(0, σ2).

Poisson regression with random intercepts:

Yij |ui ∼ Poisson(λij tij), log(λij) = x′ijβ + ui , ui
iid∼ N(0, σ2).

When σ = 0 we get the standard logistic or Poisson regression
models; when σ > 0 we account for extra heterogeneity in
clustered responses (each i is a cluster with it’s own random ui ).

GLMMs induce only positive correlation between two observations
Yij1 and Yij2 within the same cluster.
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Fitting binary GLMMs

The general model is hierarchical:

Yij |ui
ind .∼ Bern

(
ex′ijβ+z′ijui

1 + ex′ijβ+z′ijui

)
,

u1, . . . ,un
iid∼ Nq(0,Σ).

Conditional on the random effect ui , the elements in
Yi = (Yi1, . . . ,YiTi

) are independent. So the PDF of Yi |ui is

p(yi |ui ) =

ni∏
j=1

(
ex′ijβ+z′ijui

1 + ex′ijβ+z′ijui

)yij (
1

1 + ex′ijβ+z′ijui

)1−yij
.

However, the u1, . . . ,un are not model parameters. The model
parameters are (β,Σ). We need the to maximize the likelihood

L(β,Σ) = p(y1, . . . , yn|β,Σ).
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Integrate to get likelihood

The unconditional PDF of Yi is

p(yi ) =

∫
Rq

 ni∏
j=1

(ex′ijβ+z′ijui )yij

1 + ex′ijβ+z′ijui

 p(ui |Σ)dui ,

where p(ui |Σ) is a Nq(0,Σ) PDF. The ui is integrated out and this
is a function of (β,Σ) only. The likelihood is the product of these

L(β,Σ) =
n∏

i=1

∫
Rq

 ni∏
j=1

(ex′ijβ+z′ijui )yij

1 + ex′ijβ+z′ijui

 p(ui |Σ)dui .

This involves n q-dimensional integrals that do not have
closed-form.

This is how correlation is induced among the Yi = (Yi1, . . . ,Yini ).

Building a Poisson GLMM likelihood is similar.
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Approaches to estimation

PROC NLMIXED estimates the integrals (for a “current”
quasi-Newton value of (β,Σ)) using adaptive Gauss-Hermite
quadrature. This approach approximates the integrals above
by sums ∫

Rq

h(ui )p(ui |Σ)dui ≈
Q∑

k=1

ckh(sk),

for arbitrary h(·) where Q is the number of quadrature points
s1, . . . , sQ and c1, . . . , cQ are weights. The (adaptive)
quadrature points and weights are chosen from a theory on
integral approximations.

PROC GLIMMIX essentially uses Q = 1. GLIMMIX is by far
the fastest approach in SAS.

PROC MCMC uses Markov chain Monte Carlo for updating
all parameters, including random effects.
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PROC GLIMMIX

GLIMMIX extends the MIXED procedure to GLM’s, and in fact
iteratively calls MIXED when fitting GLMM’s.

Only normal random effects are allowed.

GLIMMIX uses an approximation when fitting models. The
approximation in effect replaces an intractable integral in the
likelihood with a simple linear Taylor’s expansion. See SAS’
GLIMMIX documentation for details on “Pseudo-likelihood
Estimation Based on Linearization.”
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Longitudinal study of mental health

Agresti (2013) considers data from a longitudinal study comparing
a new drug with a standard drug for treatment of subjects suffering
mental depression. n = 340 Patients were either mildly or severely
depressed upon admission into the study. At weeks 1, 2, and 4,
corresponding to j = 1, 2, 3, patient i ’s suffering Yij was classified
as normal Yij = 1 or abnormal Yij = 0. Let si = 0, 1 be the
severity of the diagnosis (mild, severe) and di = 0, 1 denote the
drug (standard, new).

We treat time as a categorical predictor and fit a marginal logit
model with an exchangeable correlation structure:

data depress;

infile "c:/tim/cat/depress.txt";

input case diagnose treat time outcome; time=time+1;

run;

proc glimmix; class case time;

model outcome = diagnose treat time treat*time / dist=bin link=logit solution;

random case;

estimate "new vs. std @ week 1" treat 1 treat*time 1 0 0 / exp cl;

estimate "new vs. std @ week 2" treat 1 treat*time 0 1 0 / exp cl;

estimate "new vs. std @ week 4" treat 1 treat*time 0 0 1 / exp cl;

run;
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A conditional, random effects model

Model interpretation is within the individual; i.e. blocked on
individual.

The model is

logit P(Yij = 1) = β0 + β1si + β2di + β3I{j = 1}+ β4I{j = 2}
+β5I{j = 1}di + β6I{j = 2}di + ui

where ui ∼ N(0, σ2).

The model parameters are β0, . . . , β6 along with σ.
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Output from PROC GLIMMIX

Covariance Parameter

Estimates

Cov Standard

Parm Estimate Error

case 0.01838 0.1330

Solutions for Fixed Effects

Standard

Effect time Estimate Error DF t Value Pr > |t|

Intercept 0.9813 0.1813 337 5.41 <.0001

diagnose -1.3119 0.1470 676 -8.93 <.0001

treat 2.0435 0.3060 676 6.68 <.0001

time 1 -0.9599 0.2290 676 -4.19 <.0001

time 2 -0.6205 0.2245 676 -2.76 0.0059

time 3 0 . . . .

treat*time 1 -2.0989 0.3894 676 -5.39 <.0001

treat*time 2 -1.0965 0.3838 676 -2.86 0.0044

treat*time 3 0 . . . .
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New is better than old

Type III Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

diagnose 1 676 79.69 <.0001

treat 1 676 41.09 <.0001

time 2 676 9.12 0.0001

treat*time 2 676 14.73 <.0001

Exponentiated Exponentiated Exponentiated

Label Lower Upper Estimate Lower Upper

new vs. std @ week 1 -0.5296 0.4188 0.9461 0.5888 1.5201

new vs. std @ week 2 0.4855 1.4085 2.5780 1.6250 4.0899

new vs. std @ week 4 1.4426 2.6444 7.7178 4.2318 14.0757

We see a severe diagnosis (s = 1) significantly decreases the odds
of a normal classification by a factor of e−1.31 = 0.27.

The odds (of normal classification) ratio comparing the new drug
to the standard drug changes with time because of the interaction.
At 1 week it’s e2.04−2.10 = 0.95; at week 2 it’s e2.04−1.10 = 2.6,
and at 4 weeks it’s e2.04−0 = 7.7. The new drug is better, but
takes time to work.
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Ache monkey hunting

Data on the number of capuchin monkeys killed by 47 Ache
hunters over several hunting trips were recorded. There were 363
total records. Recall that monkey hunting involves splitting into
groups, chasing monkeys through the trees, and shooting arrows
straight up.

Let Yij be the number of monkeys killed by hunter i , i = 1, . . . , 47
on trip j of length Lij (the trip length serves as an ‘offset’ in the
model fitting). Let λi be the hunter i ’s kill rate (per day).

Yij ∼ Poisson(λiLij),

where
log λi = β0 + β1ai + β2a2i + ui ,

u1, . . . , u47
iid∼ N(0, σ2).
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Monkey hunting

We include a quadratic effect because we expect a “leveling off”
effect or possible decline in ability with age.

Of interest is when hunting ability is greatest. Hunting prowess
contributes to a man’s status within the group. ai is hunter i ’s
age-45 years.

An individual’s kill rate is given by λ = eβ0+β1a+β2a
2
eu, where a is

the individual’s age and u is their latent hunting ability, i.e. their
blocking effect.

One can compare the effect of age within the span of, say, 20 to
60 years, to the spread of eu to see which explains more of the
variability in terms of hunting ability: age or innate ability.
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Monkey hunting SAS code

data ache1;

input TRIP$ PID$ AGE nkills tripdays; ltripday=log(tripdays); age=age-45;

datalines;

C082697A 3394 31 1 4

C082697A 3327 38 0 4

C082697A 3313 39 0 4

C082697A 3220 50 0 4

C082697A 3157 56 0 4

C082697A 3146 57 0 4

C082697A 3144 58 1 4

C082697A 7089 59 1 4

C082697A 3126 60 2 4

C082697A 7085 62 1 4

C102197A 3394 31 1 3

C102197A 3327 38 0 3

C102197A 3238 48 3 3

C102197A 3220 50 0 3

C102197A 3144 58 2 3

C102197A 3086 67 0 3

...et cetera...

T120997A 3182 53 0 5

T120997A 3094 65 0 5

T121597A 3254 46 0 4

T121597A 3128 60 0 4

;

proc glimmix data=ache1; class pid;

model nkills = age age*age / dist=pois link=log offset=ltripday solution;

random intercept / subject=pid;
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GLIMMIX GLMM output

The GLIMMIX Procedure

Model Information

Response Variable nkills

Response Distribution Poisson

Link Function Log

Variance Function Default

Offset Variable ltripday

Variance Matrix Blocked By PID

Dimensions

G-side Cov. Parameters 1

Subjects (Blocks in V) 47

Max Obs per Subject 28

Covariance Parameter Estimates

Standard

Cov Parm Subject Estimate Error

Intercept PID 1.7965 0.6505

Solutions for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept -2.4222 0.4113 46 -5.89 <.0001

AGE 0.02889 0.02307 314 1.25 0.2115

AGE*AGE -0.00405 0.002079 314 -1.95 0.0525
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GLMM example with bivariate random effects vectors

Thall and Vail (1990) presented data from a clinical trial of n = 59
epileptic patients who were randomized to take either a new drug
di = 1 or a placebo (di = 0) in addition to standard chemotherapy.
Other baseline data included ai = log(agei ) where agei is age in
years and bi = log(basei ), where basei is number of seizures in
preceding 8-week period. The outcome is Yij the number of
seizures within the following 4 2-week periods, up to 8 weeks. So
j = 1, 2, 3, 4. The model fit is

Yij ∼ Poisson(λij),

where
log λij = β0 + βbbi + βddi + βbdbi di + βaai + βv tj + ui1 + ui2tj

=


1
bi
di
bi di
ai
tj



′ 
β0
βb
βd
βbd
βa
βv

 +

[
1
tj

]′ [ ui1
ui2

]

= x′ijβ + z′ijui
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Model building, continued...

We further assume

u1, . . . ,u59
iid∼ N2(0,Σ) = N2

([
0
0

]
,

[
σ11 σ12
σ12 σ22

])
.

This assumes a log linear trend individual i ’s seizure rate over the
8 weeks. Specifically,

log λij = θ0i + θ1iweeksj ,

where cov(θ0i , θ1i ) = σ12. This follows from properties of
multivariate normal distributions.
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SAS code

data seizure;

input id$ seiz visit treat age base;

age=log(age);

base=log(base);

datalines;

101 11 1 1 18 76

101 14 2 1 18 76

101 9 3 1 18 76

101 8 4 1 18 76

102 8 1 1 32 38

102 7 2 1 32 38

102 9 3 1 32 38

102 4 4 1 32 38

...et cetera...

238 13 1 0 22 47

238 15 2 0 22 47

238 13 3 0 22 47

238 12 4 0 22 47

;

proc glimmix; class id;

model seiz=base|treat age visit / dist=poi link=log solution;

random intercept visit / subject=id type=un;

nloptions maxiter=50; * did not converge with default=20;

run;
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Annotated output

Covariance Parameter Estimates

Cov Standard

Parm Subject Estimate Error

UN(1,1) id 0.4052 0.1251

UN(2,1) id -0.05393 0.02964

UN(2,2) id 0.02174 0.009264

Solutions for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept -2.3423 1.2616 55 -1.86 0.0687

base 0.8700 0.1351 117 6.44 <.0001

treat -1.3682 0.6884 117 -1.99 0.0492

base*treat 0.3304 0.2090 117 1.58 0.1166

age 0.4627 0.3568 117 1.30 0.1973

visit -0.05276 0.03137 58 -1.68 0.0980
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Interpretation

Consider an individual from the population with covariates (a, b) at
time t with random effect (u1, u2). The ratio of seizure rates,
within this individual, for drug versus placebo is:

λ(a, b, t, d = 1|u)

λ(a, b, t, d = 0|u)
=

eβ0+βbb+βd+βbdb+βaa+βv t+u1+u2t

eβ0+βbb+βaa+βv t+u1+u2t
= eβd+βbdb.

Within a subject, the mean number of seizures over a 2-week

period is reduced by e−1.37+0.330 log(base) = (0.25)base0.33.

This function crosses unity around 65 baseline seizures within the
previous 8 weeks. It’s about 0.5 when base = 8. So the drug
significantly reduces seizures at any visit, but the reduction rate
critically depends on the baseline seizure rate.
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