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Chapter 13 Parametric nonlinear regression

Throughout most of STAT 704 and 705, we concentrated on linear
models where E (Yi ) = x′iβ. Notable exceptions arose when we
considered non-normal data. For logistic regression we had
E (Yi ) = ex

′
iβ/[1 + ex

′
iβ]; Poisson regression gave us

E (Yi ) = tie
x′iβ.

Sometimes scientists have a parametric non-linear mean function in
mind for normal data. Theoretical considerations may lead to such
a model, or else empirical evidence collected over time. Examples:
dose-response models, growth curves, heating in swine due to MRI.
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Parametric nonlinear regression

A parametric nonlinear model (13.1–13.5) has a prespecified
parametric form indexed by parameters γ

Yi = f (xi ,γ) + εi .

For example the exponential growth/decay model is
Yi = γ0e

γ1xi + εi . Data reduction takes place through the
estimation of γ = (γ0, γ1) and σ.

Other examples are the logistic growth curve
Yi = γ0[1 + γ1 exp(γ2xi )]−1 + εi and the von Bertlanffy growth
curve Yi = L∞ [1− exp (−K (xi − x0))] + εi .

Note that model diagnostics are similar to the linear case, for
example ri = Yi − f (xi , γ̂) can be used to assess model adequacy.
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Fitting parametric nonlinear models

Fitting of such models is carried out via maximum likelihood using
Newton-Raphson. Several functions in SAS can carry this out;
PROC NLMIXED is the most versatile, while PROC NLIN is the
old-school workhorse. Good starting values can make or break the
program (as we’ll see); you need to think about what the
parameters represent in the model.

There is a bit on fitting at the end of the logistic regression notes.
In your book see pp. 517–521. This theory is covered in more
detail in STAT 823 (large sample theory) and STAT 740 (advanced
statistical computing).

PROC NLMIXED provides the MLE’s as well as standard errors.
Also, functions of parameters can be estimated as well.
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Example. Yellowfin Tuna growth curve data

Yellowfin tuna are an important commercial and recreational
fishery; regulation of tuna fisheries worldwide is managed by ICCAT
(International Commission on the Conservation of Atlantic Tuna)
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Example. Yellowfin Tuna growth curve data

Proper management can include size limits on catch to, e.g.,
ensure fish have had at least one chance to reproduce before
capture. Growth curve models relating length (easily measured) to
age (very difficult to measure) are valuable for fisheries
management decisions.

The von Bertalanffy growth curve is popular in fisheries
management (with xi typically replaced by t). Parameters are L∞,
the growth limit; K , the growth rate; and x0, the age at length 0.
Reasonable start values for L∞ and x0 are straightforward; with a

little math, for some reasonable xi , try kinit = log
Yxi
−L∞

Yxi+1−L∞
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Example with SAS code

The yellowfin tuna data come from two separate populations in the
Atlantic and Pacific oceans. We have more data for the Pacific
population.

data yellowfin;

input Age Length Ocean $ @@

datalines;

803 179 Atlantic 789 182 Atlantic 644 173 Atlantic

...

1354 251 Pacific 221 160 Pacific 202 145 Pacific

;

proc sgplot data=yellowfin;

scatter x=age y=length/group=ocean;

xaxis min=0; yaxis min=0; run;

*NLMIXED did not converge at first--used NLIN instead;

proc nlin data=yellowfin plots=all; where ocean=’Pacific’;

parms Linf=200 to 300 by 50 x0=-20 to 20 by 10 K=0.001 to 0.004 by 0.001;

expo=exp(-K*(age-x0));

mu=Linf*(1-expo);

model length = mu;

der.Linf=1-expo;

der.K=Linf*(age-x0)*expo;

der.t0=-Linf*K*expo;

output out=fit pred=Lpred;

run;
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Problem from 2010 MS/PhD qualifying exam

The May 2010 qualifying exam (part II) has a nice problem.

data snake;

input conc rate @@;

datalines;

31.25 53.01 62.5 81.42 125 122.11 250 304.57 500 376.87

1000 414.13 2000 553.46

;

proc sgscatter; plot rate*conc;

proc nlmixed data=snake;

parms b1= b2= b3= sigma=; * let’s figure these out in CE 10;

mu=b1/(1+(b2/conc)**b3);

model rate ~ normal(mu,sigma*sigma);

predict b1/(1+(b2/conc)**b3) out=fit;

estimate "mean rate at conc=750" b1/(1+(b2/750)**b3);

proc sgplot data=fit;

scatter x=conc y=rate;

series x=conc y=pred;
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Nonparametric regression

Consider a continuous response with three predictors (although
these methods can be extended to other types of response).

An additive model stipulates

Yi = µ+ f1(xi1) + f2(xi2) + f3(xi3) + εi ,

and seeks to estimate the functions f1(x), f2(x), and f3(x)
(typically via splines). These are fit in proc gam and proc

transreg. We can also consider a transformation of Yi as well as
pairwise interaction surfaces.
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Nonparametric regression

A parametric nonlinear model (Chapter 13) has a prespecified
parametric form indexed by parameters γ

Yi = f (xi ,γ) + εi .

For example the exponential growth/decay model is
Yi = γ0e

γ1xi + εi . Data reduction takes place through the
estimation of γ and σ.

Nonparametric regression is essentially unspecified

Yi = f (xi ) + εi ,

and seeks to estimate f (x) : Rk → R directly. Two useful and
popular methods are lowess and kernel smoothing.
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Kernel smoothing

Let’s start with a univariate predictor yielding data {(xi ,Yi )}ni=1.
At each x ∈ R, the kernel-smoothed estimate of f (·) is a weighted
average of the Yi ’s:

f̂h(x) =
n∑

i=1

[
k{(xi − x)/h}/h∑n
j=1 k{(xj − x)/h}/h

]
Yi .

Here, k(d) is the kernel. Common choices are Gaussian
k(d) = e−0.5d

2
(most common), uniform k(d) = I{|d | < 1}, and

Epanechnikov k(d) = 0.75(1− d2)I{|d | < 1} (there are many
more). Different kernel functions simply weight neighboring points
differently.
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Bandwidth

The parameter h is called the bandwidth. The larger the
bandwidth, the smoother the estimate f̂h. What happens to f̂h as
h→∞? Is it possible to have f̂h(x) outside the range of
Yi -values?

A common way to choose the bandwidth is through
cross-validation, ĥ = argminh>0

∑n
i=1(Yi − f̂h,i (xi ))2 where f̂h,i is

the kernel-smoothed estimate based on the (n − 1) pairs
{(xj ,Yj)}j 6=i .

ksmooth in R gives kernel-smoothed regression estimates without
standard errors. A great package that does a lot more (including
handling categorical predictors) is np. You need to install it from
CRAN.
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Yellowfin tuna example in R with Gaussian
kernel-smoothing

Recall that Yi is length and xi is age. The default bandwidth h
selection is cross-validation; surprisingly, I found it under-smoothed
the data. The default kernel is Gaussian.

library(np)

Tuna.df <- read.delim(‘‘Yellowfin.txt’’,header=T)

attach(Tuna.df)

Length_Pacific <- Length[Ocean==’’Pacific’’]

Age_Pacific <- Age[Ocean==’’Pacific’’]

fit1 <-npreg(Length_Pacific~Age_Pacific)

plot(fit1,plot.errors.method="asymptotic",plot.errors.style="band",main="Kernel-smoothed")

points(Age_Pacific,Length_Pacific)
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11.4 LOcally WEighted Scatterplot Smoothing (lowess)

Kernel-smoothing is biased at the boundaries min{xi} and
max{xi}, and at the extrema of f (·). A method that solves some
of these issues uses locally fitted polynomials to estimate f (x) at
each x via weighted least squares (WLS). Lowess was introduced
by Cleveland (1979).

Recall that weighted least squares weights some pairs (xi ,Yi ) more
heavily when “more information” is known about Yi , e.g. var(Yi )
is smaller than for other values. The weight wi attached to (xi ,Yi )
is the ith diagonal of the matrix W; the remaining elements are
zero. The weighted least squares estimate of β is given by
β̂ = (XWX′)−1X′WY.
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lowess

Consider estimating f (x) at x with a linear or quadratic function.
If we assume that pairs (xi ,Yi ) have more information for f (x) at
values of xi near x , we can weight them more using WLS. The
most common weight function is tricube

wi (x) =

{
[1− (|x − xi |/dq(x))3]3 |x − xi | < dq(x)

0 |x − xi | > dq(x)

}
.

dq(x) is a distance such that the proportion of xi values within x is
q, i.e. dq(x) = min{d > 0 : 1

n

∑n
i=1 I{|xi − x | < d} ≥ q}. A

common choice of q is 0.5 (p. 450).

The lowess estimate of f (x), assuming local linear fitting, is then
f̂ (x) = [ 1 x ](XW(x)X′)−1X′W(x)Y where
W(x) = diag(w1(x), . . . ,wn(x)) and the ith row of bX is
[ 1 xi ]. For each value of x , a separate WLS is fitted – lowess
requires a lot of computation!
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Yellowfin tuna example in R with lowess

This uses defaults, which actually over-smooth in this case
(enp.target can be manipulated to fix this). An older function is
lowess; loess has improvements on lowess but gives essentially
the same answers.

fit2=loess(Length_Pacific~Age_Pacific)

pred.Age=seq(0,1200,20)

pred2=predict(fit2,pred.Age,se=TRUE)

plot(pred.Age,pred2$fit,type="l",xlab="Age",ylab="Length",main="Lowess Fit")

lines(pred.Age,pred2$fit-1.96*pred2$se.fit,lty=3)

lines(pred.Age,pred2$fit+1.96*pred2$se.fit,lty=3)

points(Age_Pacific,Length_Pacific)
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Similarities between lowess and kernel-smoothing

Both kernel-smoothing and lowess have weight functions and
bandwidths that determine how points in a neighborhood of x are
weighted.

Both estimates are written as f̂ (x) = c(x)′Y, i.e. are linear
combinations of the Yi ’s that depend on x. In STAT 704
regression, f̂ (x) = c(x)′Y where c(x)′ = [ 1 x ](X′X)−1X′. Note
that kernel-smoothing provides a true average of the Yi ’s at each
point, whereas lowess values of ci (x) may be negative or greater
than one.

Both methods are generalized to more than one predictor similarly.
Predictors are standardized to have variance one and Euclidean
distance d = ||x− x∗|| is used in the weight function rather than
|x − x∗|, or else the Mahalanobis distance is used
d =

√
(x− x∗)′S−1(x− x∗) (no need to standardized first). Note

that categorical predictors need some thought.
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Questions and comments

Is extrapolation a good idea with lowess or kernel-smoothed
methods?

The asymptotics for nonparametric smoothing methods is
worth an entire course. A bit is covered in STAT 824
(nonparametrics).

Which method, lowess or kernel-smoothing, is more
appropriate for Bernoulli data? Why?

There’s some nice animation here:
http://www.r-bloggers.com/some-heuristics-about-local-
regression-and-kernel-smoothing/

A method worthy of its own lecture is basis expansions. Basis
expansions write the unknown f (·) as f (x) =

∑K
k=1 βkφk(x)

for a set of known functions φk(·). The unknown parameters
are β1, . . . , βK . This yields a linear model.

Example basis expansions include polynomials, Legendre
polynomials, wavelets, sines and cosines, and B-splines.
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