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Outline of Part I: models and parameters

Basic ideas: contingency table, cross-sectional or fixed
margins (multinomial and product multinomial sampling),
independence.

Various types of studies leading to contingency tables.

Two groups, 2× 2 table: odds ratio, relative risk, and
difference in proportions.

I × J table with ordinal outcomes: ordinal association.
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Contingency tables & their distributions

Let X and Y be categorical variables measured on a subject with I
and J levels respectively.

Each subject sampled will have an associated (X ,Y ); e.g.
(X ,Y ) = (female, Republican). For the gender variable X , I = 2,
and for the political affiliation Y , we might have J = 3.

Say n individuals are sampled and cross-classified according to
their outcome (X ,Y ). A contingency table places the raw number
of subjects falling into each cross-classification category into the
table cells. We call such a table an I × J table.

If we relabel the category outcomes to be integers 1 ≤ X ≤ I and
1 ≤ Y ≤ J (i.e. turn our experimental outcomes into random
variables), we can simplify notation: nij is the number of
individuals with X = i and Y = j .
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Abstract contingency table

In the abstract, a contingency table looks like:

nij Y = 1 Y = 2 · · · Y = J Totals
X = 1 n11 n12 · · · n1J n1+

X = 2 n21 n22 · · · n2J n2+

...
...

...
. . .

...
...

X = I nI1 nI2 · · · nIJ nI+
Totals n+1 n+2 · · · n+J n = n++

If subjects are randomly sampled from the population and
cross-classified, both X and Y are random and (X ,Y ) has a
bivariate discrete joint distribution. Let πij = P(X = i ,Y = j), the
probability of falling into the (i , j)th (row,column) in the table.
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Example of 3× 3 table

From Chapter 2 in Christensen (1997) we have a sample of n = 52
males aged 11 to 30 years with knee operations via arthroscopic
surgery. They are cross-classified according to X = 1, 2, 3 for injury
type (twisted knee, direct blow, or both) and Y = 1, 2, 3 for
surgical result (excellent, good, or fair-to-poor).

nij Excellent Good Fair to poor Totals
Twisted knee 21 11 4 36
Direct blow 3 2 2 7
Both types 7 1 1 9

Totals 31 14 7 n = 52

with theoretical probabilities:

πij Excellent Good Fair to poor Totals
Twisted knee π11 π12 π13 π1+

Direct blow π21 π22 π23 π2+

Both types π31 π32 π33 π3+

Totals π+1 π+2 π+3 π++ = 1
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Marginal probabilities

The marginal probabilities that X = i or Y = j are

P(X = i) =
J∑

j=1

P(X = i ,Y = j) =
J∑

j=1

πij = πi+.

P(Y = j) =
I∑

i=1

P(X = i ,Y = j) =
I∑

i=1

πij = π+j .

A “+” in place of a subscript denotes a sum of all elements over
that subscript. We must have

π++ =
I∑

i=1

J∑
j=1

πij = 1.

The counts have a multinomial distribution n ∼ mult(n++,π)
where n = [nij ]I×J and π = [πij ]I×J .

P(n) =

(
n++

n

)∏
(i ,j)

π
nij
ij

How is (n1+, . . . , nI+) distributed?
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Product multinomial table

Often the marginal counts for X or Y are fixed by design. For
example in a case-control study, a fixed number of cases (e.g.
people w/ lung cancer) and a fixed number of controls (no lung
cancer) are sampled. Then a risk factor or exposure Y is compared
among cases and controls within the table. This results in a
separate multinomial distribution for each level of X .

For the I multinomial distributions, the conditional probabilities of
falling into Y = j must sum to one for each level of X = i :

J∑
j=1

πj |i = 1 for i = 1, . . . , I , where πj |i = π
Y |X
j |i = P(Y = j |X = i).

How is (n1+, . . . , nI+) distributed?

7 / 45



Clinical trial example

The following 2× 3 contingency table is from a report by the
Physicians’ Health Study Research Group on n = 22, 071
physicians that took either a placebo or aspirin every other day.

Fatal attack Nonfatal attack No attack
Placebo 18 171 10,845
Aspirin 5 99 10,933

Here we have placed the probabilities of each classification into
each cell:

Fatal attack Nonfatal attack No attack
Placebo π1|1 π2|1 π3|1
Aspirin π1|2 π2|2 π3|2

The row totals n1+ = 11, 034 and n2+ = 11, 037 are fixed and thus
π1|1 + π2|1 + π3|1 = 1 and π1|2 + π2|2 + π3|2 = 1.

We want to compare probabilities in each column.
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Independence

When (X ,Y ) are jointly distributed, X and Y are independent if

P(X = i ,Y = j) = P(X = i)P(Y = j) or πij = πi+π+j .

Let
πi |j = π

X |Y
i |j = P(X = i |Y = j) = πij/π+j

and
πj |i = π

X |Y
j |i = P(Y = j |X = i) = πij/πi+.

Then independence of X and Y implies

P(X = i |Y = j) = P(X = i) and P(Y = j |X = i) = P(Y = j).

The probability of any given column response is the same for each
row. The probability for any given row response is the same for
each column.
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Case-control studies

Case Control
Smoker 688 650
Non-smoker 21 59
Total 709 709

In a case/control study, fixed numbers of cases n1 and controls n2

are (randomly) selected and exposure variables of interest recorded.
In the above study we can compare the relative proportions of
smokers within those patients admitted with lung cancer (cases)
and within those matched patients not admitted with lung cancer
(controls). We can measure association between smoking and lung
cancer, but cannot infer causation. These data were collected
“after the fact.” Such data are usually cheap and easy to get.
Above: some very old lung cancer data (Agresti, 2013).

These designs (and clinical trials) always yield product multinomial
sampling.
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Other types of studies

Prospective studies start with a sample of subjects and
observes them through time.

Clinical trial randomly allocates “smoking” and “non-smoking”
treatments to experimental units and then sees who ends up
with lung cancer or not. Problem with ethics here.
A cohort study simply follows subjects after letting them
assign their own treatments (i.e. smoking or non-smoking) and
records outcomes.

A cross-sectional design samples n subjects from a population
and cross-classifies them.

Are each of these multinomial or product multinomial?
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Comparing two proportions

Let X and Y be dichotomous. Let π1 = P(Y = 1|X = 1) and let
π2 = P(Y = 1|X = 2).

The difference in the probability of Y = 1 when X = 1 versus
X = 2 is π1 − π2.

The relative risk π1/π2 is more informative for rare outcomes.
However it may also exaggerate the effect of X = 1 versus X = 2
as well and cloud issues.
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Odds ratios

The odds of success (say Y = 1) versus failure (Y = 2) are
Ω = π/(1− π) where π = π+1 = P(Y = 1). When someone says
“3 to 1 odds the Gamecocks will win”, they mean Ω = 3 which
implies the probability the Gamecocks will win is 0.75, from
π = Ω/(Ω + 1). Odds measure the relative rates of success and
failure.

An odds ratio compares relatives rates of success (or disease or
whatever) across two exposures X = 1 and X = 2:

θ =
Ω1

Ω2
=
π1/(1− π1)

π2/(1− π2)
.

Odds ratios are always positive and a ratio > 1 indicates the
relative rate of success for X = 1 is greater than for X = 2.
However, the odds ratio gives no information on the probabilities
π1 = P(Y = 1|X = 1) and π2 = P(Y = 1|X = 2).
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Odds ratio, cont.

Different values for these parameters can lead to the same odds
ratio.

Example: π1 = 0.833 & π2 = 0.5 yield θ = 5.0. So does
π1 = 0.0005 & π2 = 0.0001.

· One set of values might imply a different decision than the other,
but θ = 5.0 in both cases.

· Here, the relative risk is about 1.7 and 5 respectively.

· Note that when dealing with a rare outcome, where πi ≈ 0, the
relative risk is approximately equal to the odds ratio.
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Odds ratio, cont.

When θ = 1 we must have Ω1 = Ω2 which further implies that
π1 = π2 and hence Y does not depend on the value of X . If (X ,Y )
are both random then X and Y are stochastically independent.

An important property of odds ratio is the following:

θ =
P(Y = 1|X = 1)/P(Y = 2|X = 1)

P(Y = 1|X = 2)/P(Y = 2|X = 2)

=
P(X = 1|Y = 1)/P(X = 2|Y = 1)

P(X = 1|Y = 2)/P(X = 2|Y = 2)

Let’s verify this formally.

This implies that for the purposes of estimating an odds ratio, it
does not matter if data are sampled prospectively, retrospectively,
or cross-sectionally. The common odds ratio is estimated
θ̂ = n11n22/[n12n21].

15 / 45



Case/control and the odds ratio

Case Control
Smoker 688 650
Non-smoker 21 59
Total 709 709

Recall there are n1 = n2 = 709 lung cancer cases and (non-lung
cancer) controls. The margins are fixed and we have product
multinomial sampling.

We can estimate π1|1 = P(X = 1|Y = 1) = n11/n+1 and
π1|2 = P(X = 1|Y = 2) = n12/n+2 but not P(Y = 1|X = 1) or
P(Y = 1|X = 2)–we would need P(X = 1),P(X = 2).

However, for the purposes of estimating θ it does not matter!

For the lung cancer case/control data,
θ̂ = 688× 59/[21× 650] = 3.0 to one decimal place.
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Odds of lung cancer, cont.

The odds of being a smoker is 3 times greater for those that
develop lung cancer than for those that do not.

The odds of developing lung cancer is 3 times greater for
smokers than for non-smokers.

The second interpretation is more relevant when deciding whether
or not you should take up recreational smoking.

Note that we cannot estimate the relative risk of developing lung
cancer for smokers P(Y = 1|X = 1)/P(Y = 1|X = 2).
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Formally comparing groups

You should convince yourself that the following statements are
equivalent:

π1 − π2 = 0, the difference in proportions is zero.

π1/π2 = 1, the relative risk is one.

θ = [π1/(1− π1)]/[π2/(1− π2)] = 1, the odds ratio is one.

All of these imply that there is no difference between groups for
the outcome being measured, i.e. Y is independent of X , written
Y ⊥ X .

Estimation of π1 − π2, π1/π2, and θ are coming up...
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A measure of ordinal trend: concordant and discordant
pairs

Another single statistic that summarizes association for ordinal
(X ,Y ) uses the idea of concordant and discordant pairs. Consider
data from the 2014 General Social Survey:

Education
Family 8th Grade High Graduate
Income or less School College School
< $10K 2011 4381 1789 220

$10K− $15K 706 3238 1474 203
$15K− $20K 366 2621 1423 230
$20K− $25K 696 2519 1591 305
> $25K 104 10175 12981 4229

Family income tends to increase with education. How to
summarize this association?

One measure of positive association is the probability of
concordance.
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Concordance

Consider two independent, randomly drawn individuals (X1,Y1)
and (X2,Y2). This pair is concordant if either X1 < X2 and
Y1 < Y2 simultaneously, or X1 > X2 and Y1 > Y2 simultaneously.
An example would be ($15K-$20K, High School) and (> $25K,
College). This pair indicates some measure of increased family
income with education.

The probability of concordance Πc is (note all the ties):

P(X2 > X1,Y2 > Y1 or X2 < X1,Y2 < Y1) = P(X2 > X1,Y2 > Y1)

+P(X2 < X1,Y2 < Y1)

= 2P(X2 > X1,Y2 > Y1)

Using iterated expectation we can show

P(X2 > X1,Y2 > Y1) =
I∑

i=1

J∑
j=1

πij

 I∑
h=i+1

J∑
k=j+1

πhk

 .
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γ statistic

Similarly, the probability of discordance is Πd given by
2P(X1 > X2,Y1 < Y2). For pairs that are untied on both variables
(i.e. they do not share the same income or education categories),
the probability of concordance is Πc/(Πc + Πd) and the probability
of discordance is Πd/(Πc + Πd). The difference in these is the
gamma statistic

γ =
Πc − Πd

Πc + Πd
.

We have −1 ≤ γ ≤ 1. γ = 1 only if Πc = 1, all pairs are perfectly
concordant. Let C be the number of concordant pairs and D be

the number of discordant pairs. An estimator is γ̂ = C−D
C+D . For the

income data, γ̂ = (C − D)/(C + D) = 0.4337, a strong positive
association between family income and education. Among untied
pairs, the proportion in concordance is 43% greater than
discordance.
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Outline of Part II: inference and tests

2× 2 tables: odds ratio, relative risk, difference in
proportions, SAS examples.

I × J tables: testing independence, SAS examples.

I × J tables: following up rejection of H0 : X ⊥ Y , SAS
examples.
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Inference for odds ratios

The sample odds ratio θ̂ = n11n22/n12n21 can be zero, undefined,
or ∞ if one or more of {n11, n22, n12, n21} are zero.

An alternative is to add 1/2 observation to each cell
θ̃ = (n11 + 0.5)(n22 + 0.5)/(n12 + 0.5)(n21 + 0.5). This also
corresponds to a particular Bayesian estimate.

Both θ̂ and θ̃ have skewed sampling distributions for small
n = n++. The sampling distribution of log θ̂ is relatively symmetric
and therefore more amenable to a Gaussian approximation. An
approximate (1− α)× 100% CI for log θ is given by

log θ̂ ± zα
2

√
1

n11
+

1

n12
+

1

n21
+

1

n22
.

A CI for θ is obtained by exponentiating the interval endpoints.
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Inference for odds ratios: alternative CI

When θ̂ = 0 this doesn’t work (log 0“=”−∞).

Can use nij + 0.5 in place of nij in MLE estimate and standard
error yielding

log θ̃ ± zα
2

√
1

n11 + 0.5
+

1

n12 + 0.5
+

1

n21 + 0.5
+

1

n22 + 0.5
.

The exact approach involves testing H0 : θ = t for various
values of t subject to rows or columns or both fixed and
computing or simulating a p-value. Those values of t that
give p-values greater than 0.05 define the 95% CI. This is
related to Fisher’s exact test.
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Example: Aspirin and heart attacks

The following 2× 2 contingency table is from a report by the
Physicians’ Health Study Research Group on n = 22, 071
physicians that took either a placebo or aspirin every other day.

Fatal attack Nonfatal or no attack
Placebo 18 11,016
Aspirin 5 11,032

Here θ̂ = 18×11032
5×11016 = 3.605 and log θ̂ = log 3.605 = 1.282, and

se{log(θ̂)} =
√

1
18 + 1

11016 + 1
5 + 1

11032 = 0.506.

A 95% CI for θ is then exp{1.282± 1.96(0.506)} =
(e1.282−1.96(0.506), e1.282+1.96(0.506)) = (1.34, 9.72).
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Inference for difference in proportions & relative risk

Assume (1) multinomial sampling or (2) product binomial
sampling. The row totals ni+ are fixed (e.g. prospective study or
clinical trial) Let π1 = P(Y = 1|X = 1) and
π2 = P(Y = 1|X = 2).

The sample proportion for each level of X is the MLE
π̂1 = n11/n1+, π̂2 = n21/n2+. Using either large sample results or
the CLT we have

π̂1
·∼ N

(
π1,

π1(1− π1)

n1+

)
⊥ π̂2

·∼ N

(
π2,

π2(1− π2)

n2+

)
.

Since the difference of two independent normals is also normal, we
have

π̂1 − π̂2
·∼ N

(
π1 − π2,

π1(1− π1)

n1+
+
π2(1− π2)

n2+

)
.
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Inference for difference in proportions

Plugging in MLEs for unknowns, we estimate the standard
deviation of the difference in sample proportions by the standard
error

se(π̂1 − π̂2) =

√
π̂1(1− π̂1)

n1+
+
π̂2(1− π̂2)

n2+
.

A Wald CI for the unknown difference has endpoints

π̂1 − π̂2 ± zα
2

se(π̂1 − π̂2).

For the aspirin and heart attack data,
π̂1 = 18/(18 + 11016) = 0.00163 and
π̂2 = 5/(5 + 11032) = 00045.

The estimated difference is π̂1 − π̂2 = 0.00163− 00045 = 0.0012
and se(π̂1 − π̂2) = 0.00043 so a 95% CI for π1 − π2 is
0.0012± 1.96(0.00043) = (0.0003, 0.0020).
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Inference for relative risk

Like the odds ratio, the relative risk π1/π2 > 0 and the sample
relative risk r = π̂1/π̂2 tends to have a skewed sampling
distribution in small samples. Large sample normality implies

log r = log π̂1/π̂2
·∼ N(log π1/π2, σ

2(log r)).

where

σ(log r) =

√
1− π1

π1n1+
+

1− π2

π2n2+
.

Plugging in π̂i for πi gives the standard error and CIs are obtained
as usual for log π1/π2, then exponentiated to get the CI for π1/π2.

For the aspirin and heart attack data, the estimated relative risk is
π̂1/π̂2 = 0.00163/0.00045 = 3.60 and se{log(π̂1/π̂2)} = 0.505, so
a 95% CI for π1/π2 is exp{log 3.60± 1.96(0.505)} =
(e log 3.60−1.96(0.505), e log 3.60+1.96(0.505)) = (1.34, 9.70).
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Example: Seat-belts and traffic deaths

Car accident fatality records for children < 18, Florida 2008.

Injury outcome
Seat belt use Fatal Non-fatal Total

No 54 10,325 10,379
Yes 25 51,790 51,815

θ̂ = 54(51790)/[10325(25)] = 10.83.

se(log θ̂) = 0.242.

95% CI for θ̂ is (exp{log(10.83)−
1.96(0.242)}, exp{log(10.83) + 1.96(0.242)}) = (6.74, 17.42).

We reject that H0 : θ = 1 (at level α = 0.05). We reject that
seatbelt use is not related to mortality.
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SAS code

norow, nocol and nopercent remove row, column and cell
percentages from the table (not shown); these are conditional
probabilities.

measures gives estimates and CIs for odds ratio and relative
risk.

riskdiff gives estimate and CI for π1 − π2.

exact plus or or riskdiff gives exact p-values for
hypothesis tests of no difference and/or CIs.

data table;

input use$ outcome$ count @@;

datalines;

no fatal 54 no nonfatal 10325

yes fatal 25 yes nonfatal 51790

;

proc freq data=table order=data; weight count;

tables use*outcome / measures riskdiff nopercent nocol;

* exact or riskdiff; * exact test for H0: pi1=pi2 takes forever...;

run;
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SAS output: inference for π1 − π2, π1/π2, and θ

Statistics for Table of use by outcome

Column 1 Risk Estimates

(Asymptotic) 95% (Exact) 95%

Risk ASE Confidence Limits Confidence Limits

-----------------------------------------------------------------------------

Row 1 0.0052 0.0007 0.0038 0.0066 0.0039 0.0068

Row 2 0.0005 0.0001 0.0003 0.0007 0.0003 0.0007

Total 0.0013 0.0001 0.0010 0.0016 0.0010 0.0016

Difference 0.0047 0.0007 0.0033 0.0061

Difference is (Row 1 - Row 2)

Column 2 Risk Estimates

(Asymptotic) 95% (Exact) 95%

Risk ASE Confidence Limits Confidence Limits

-----------------------------------------------------------------------------

Row 1 0.9948 0.0007 0.9934 0.9962 0.9932 0.9961

Row 2 0.9995 0.0001 0.9993 0.9997 0.9993 0.9997

Total 0.9987 0.0001 0.9984 0.9990 0.9984 0.9990

Difference -0.0047 0.0007 -0.0061 -0.0033

Difference is (Row 1 - Row 2)

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits

-----------------------------------------------------------------

Case-Control (Odds Ratio) 10.8345 6.7405 17.4150

Cohort (Col1 Risk) 10.7834 6.7150 17.3165

Cohort (Col2 Risk) 0.9953 0.9939 0.9967
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Three CIs give three equivalent tests...

Note that (54/10379)/(25/51815) = 10.78 and
(10325/10379)/(51790/51815) = 0.995.

Col1 risk is relative risk of dying and Col2 risk is relative risk
of living.

We can test all of H0 : θ = 1, H0 : π1/π2 = 1, and
H0 : π1 − π2 = 0. All of these null hypotheses are equivalent to
H0 : π1 = π2, i.e. living is independent of wearing a seat belt.
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Inference for testing independence in I × J tables

Assume one mult(n,π) distribution for the whole table. Let
πij = P(X = i ,Y = j); we must have π++ = 1.

If the table is 2× 2, we can just look at H0 : θ = 1.

In general, independence holds if H0 : πij = πi+π+j , or
equivalently, µij = nπi+π+j .

That is, independence implies a constraint; the parameters
π1+, . . . , πI+ and π+1, . . . , π+J define all probabilities in the I × J
table under the constraint.
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Pearson statistic

Pearson’s statistic is

X 2 =
I∑

i=1

J∑
j=1

(nij − µ̂ij)2

µ̂ij
,

where µ̂ij = n(ni+/n)(n+j/n), the MLE under H0.

There are I − 1 free {πi+} and J − 1 free {π+j}. Then
IJ − 1− [(I − 1) + (J − 1)] = (I − 1)(J − 1).

When H0 is true, X 2 ·∼ χ2
(I−1)(J−1).
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Likelihood ratio statistic

The LRT statistic boils down to

G 2 = 2
I∑

i=1

J∑
j=1

nij log(nij/µ̂ij),

and is also G 2 ·∼ χ2
(I−1)(J−1) when H0 is true.

X 2 − G 2 p→ 0.

The approximation is better for X 2 than G 2 in smaller
samples.

The approximation can be okay when some µ̂ij = ni+n+j/n
are as small as 1, but most are at least 5.

When in doubt, use small sample methods.

Everything holds for product multinomial sampling too (fixed
marginals for one variable)!

35 / 45



SAS code: tests for independence, seat-belt data

chisq gives X 2 and G 2 tests for independence (coming up in
these slides).

expected gives expected cell counts under independence.

exact plus chisq gives exact p-values for testing
independence using X 2 and G 2.

proc freq data=table order=data; weight count;

tables use*outcome / chisq norow nocol expected;

exact chisq;

run;
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SAS output: table and asymptotic tests for independence

The FREQ Procedure

Table of use by outcome

use outcome

Frequency|

Expected |

Percent |fatal |nonfatal| Total

---------+--------+--------+

no | 54 | 10325 | 10379

| 13.184 | 10366 |

| 0.09 | 16.60 | 16.69

---------+--------+--------+

yes | 25 | 51790 | 51815

| 65.816 | 51749 |

| 0.04 | 83.27 | 83.31

---------+--------+--------+

Total 79 62115 62194

0.13 99.87 100.00

Statistics for Table of use by outcome

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 151.8729 <.0001

Likelihood Ratio Chi-Square 1 104.0746 <.0001
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SAS output: exact tests for independence

Pearson Chi-Square Test

----------------------------------

Chi-Square 151.8729

DF 1

Asymptotic Pr > ChiSq <.0001

Exact Pr >= ChiSq 2.663E-24

Likelihood Ratio Chi-Square Test

----------------------------------

Chi-Square 104.0746

DF 1

Asymptotic Pr > ChiSq <.0001

Exact Pr >= ChiSq 2.663E-24

These test the null H0 that wearing a seat belt is independent of
living. What do we conclude?
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Example: Belief in God, a 3× 6 table

Belief in God
Highest Don’t No way to Some higher Believe Believe Know God
degree believe find out power sometimes but doubts exists
Less than 9 8 27 8 47 236
high school
High school or 23 39 88 49 179 706
junior college
Bachelor or 28 48 89 19 104 293
graduate

General Social Survey data cross-classifies opinion on whether God
exists by highest education degree obtained.

39 / 45



SAS code, belief in God data

data table;

input degree$ belief$ count @@;

datalines;

1 1 9 1 2 8 1 3 27 1 4 8 1 5 47 1 6 236

2 1 23 2 2 39 2 3 88 2 4 49 2 5 179 2 6 706

3 1 28 3 2 48 3 3 89 3 4 19 3 5 104 3 6 293

;

proc format; value $dc

’1’ = ’less than high school’

’2’ = ’high school or junior college’

’3’ = ’bachelors or graduate’;

value $bc

’1’ = ’dont believe’

’2’ = ’no way to find out’

’3’ = ’some higher power’

’4’ = ’believe sometimes’

’5’ = ’believe but doubts’

’6’ = ’know God exists’;

run;

proc freq data=table order=data; weight count;

format degree $dc. belief $bc.;

tables degree*belief / chisq expected norow nocol;

run;
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Annotated output from proc freq

degree belief

Frequency |

Expected |

Percent |dont bel|no way t|some hig|believe |believe |know God| Total

|ieve |o find o|her powe|sometime|but doub| exists |

| |ut |r |s |ts | |

-----------------+--------+--------+--------+--------+--------+--------+

less than high s | 9 | 8 | 27 | 8 | 47 | 236 | 335

chool | 10.05 | 15.913 | 34.17 | 12.73 | 55.275 | 206.86 |

| 0.45 | 0.40 | 1.35 | 0.40 | 2.35 | 11.80 | 16.75

-----------------+--------+--------+--------+--------+--------+--------+

high school or j | 23 | 39 | 88 | 49 | 179 | 706 | 1084

unior college | 32.52 | 51.49 | 110.57 | 41.192 | 178.86 | 669.37 |

| 1.15 | 1.95 | 4.40 | 2.45 | 8.95 | 35.30 | 54.20

-----------------+--------+--------+--------+--------+--------+--------+

bachelors or gra | 28 | 48 | 89 | 19 | 104 | 293 | 581

duate | 17.43 | 27.598 | 59.262 | 22.078 | 95.865 | 358.77 |

| 1.40 | 2.40 | 4.45 | 0.95 | 5.20 | 14.65 | 29.05

-----------------+--------+--------+--------+--------+--------+--------+

Total 60 95 204 76 330 1235 2000

3.00 4.75 10.20 3.80 16.50 61.75 100.00

Statistics for Table of degree by belief

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 10 76.1483 <.0001

Likelihood Ratio Chi-Square 10 73.1879 <.0001

Statistic Value ASE

------------------------------------------------------

Gamma -0.2483 0.0334
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Following up chi-squared tests for independence

Rejecting H0 : πij = πi+π+j does not tell us about the nature of
the association.

Pearson and standardized residuals
The Pearson residual is

eij =
nij − µ̂ij√

µ̂ij
,

where, as before, µ̂ij = ni+n+j/n is the estimate under
H0 : X ⊥ Y .

When H0 : X ⊥ Y is true, under multinomial sampling
eij
·∼ N(0, v), where v < 1, in large samples.

Note that
∑I

i=1

∑J
j=1 e2

ij = X 2.
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Standardized Pearson residuals

Standardized Pearson residuals are Pearson residuals divided by
their standard error under multinomial sampling.

rij =
nij − µ̂ij√

µ̂ij(1− pi+)(1− p+j)
,

where pij = nij/n are MLEs under the full (non-independence)
model. Values of |rij | > 3 happen very rarely when H0 : X ⊥ Y is
true and |rij | > 2 happen only roughly 5% of the time.

Pearson residuals and their standardized version tell us which cell
counts are much larger or smaller than what we would expect
under H0 : X ⊥ Y .
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Residuals, belief in God data

Annotated output from proc genmod:

proc genmod order=data; class degree belief;

model count = degree belief / dist=poi link=log residuals;

run;

The GENMOD Procedure

Std Std

Raw Pearson Deviance Deviance Pearson Likelihood

Observation Residual Residual Residual Residual Residual Residual

1 -1.050027 -0.33122 -0.337255 -0.375301 -0.368586 -0.374018

2 -7.912722 -1.983598 -2.196043 -2.466133 -2.227559 -2.41867

3 -7.17002 -1.226585 -1.273736 -1.473157 -1.418624 -1.459585

4 -4.730002 -1.325706 -1.423967 -1.591184 -1.481383 -1.569931

5 -8.275002 -1.113022 -1.142684 -1.370537 -1.33496 -1.35979

6 29.137492 2.0258686 1.9809013 3.5103847 3.5900719 3.5648903

7 -9.520085 -1.669418 -1.762793 -2.644739 -2.504646 -2.567827

8 -12.49071 -1.740695 -1.819318 -2.754505 -2.635467 -2.688045

9 -22.56805 -2.146245 -2.226274 -3.471424 -3.346635 -3.398513

10 7.8079994 1.2165594 1.1808771 1.7790347 1.8327913 1.8093032

11 0.1400133 0.0104692 0.0104678 0.016927 0.0169292 0.0169284

12 36.630048 1.4158081 1.403181 3.3524702 3.3826387 3.3773731

13 10.56995 2.5317662 2.3247777 2.8023308 3.0518386 2.8824417

14 20.402111 3.883624 3.51114 4.2710987 4.724204 4.4230839

15 29.737956 3.862983 3.5931704 4.5015643 4.8395885 4.6270782

16 -3.078006 -0.655073 -0.671253 -0.812499 -0.792914 -0.806333

17 8.1349809 0.8308573 0.8195034 1.0647099 1.0794611 1.0707466

18 -65.76757 -3.472204 -3.587324 -6.88618 -6.665198 -6.725887
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Direction and ‘significance’ of standardized Pearson
residuals rij

|rij | > 3 indicate severe departures from independence; these are in
boxes below.

− − − − − +

− − − + + +

+ + + − + −

Which cells are over-represented relative to independence? Which
are under-represented? In general, what can one say about belief in
God and education? Does this correspond with the γ statistic?
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