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IRLS LOWESS

LOWESS

LOWESS (LOcally WEighted Scatterplot Smoothing) is a highly
prescriptive scatterplot smoothing method developed by Cleveland,
1979. Other scatterplot smoothing methods provide more
flexibility in weighting functions, smoothing criteria, etc.

Features of LOWESS include:
@ local regression
@ weighted regression
@ robustness to outlying observations.

We will study LOWESS assuming a single predictor variable.
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IRLS LOWESS

The first step in LOWESS is a locally weighted regression with the
weight function based on the tricubic kernel:

K(u) :{ o) =
0 lul > 1

Tricubic kernel
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IRLS LOWESS

At each x;=, i* =1,...,n, construct a local linear or quadratic
regression based on K(-) using weights

Wk(x,-*):K(’XkA_’“*‘), k=1,....n
q

where Ay is the qth order statistic of {|xx — Xix|}-

For each weighted least squares, we focus on the predicted value at
Xj«: yi=—rather than the weighted least squares line itself.

Residuals {ej,} are calculated, and the next weighted least squares
regression includes robust adjustments for outliers.



IRLS LOWESS

Define the bisquare kernel:

B(u) = { {1-u2)” Jul<1

0 lul > 1

Bisquare kernel
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IRLS LOWESS

Set s = med |ex| and define robustness weights:

e )

Use weights dx x wy(i*) in a second series of local weighted least
squares regressions.

Repeat the steps until the process converges.
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IRLS LOWESS

Example

From the water quality data, we will study fecal coliform levels for
Station C-076 (Cedar Creek).

@ Plots show the presence of outliers, even after a scale
transformation, as well as some local behavior that suggests a
need for robust scatterplot smoothing.

@ PROC LOESS in SAS conducts local regression by default,
with robust iterative weighting of outliers introduced by the
ITERATIONS= option.

@ PROC LOESS uses methods similar to LOWESS, though with
many more options for smoothing criteria available.
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Bootstrap Bootstrapping

Section 11.6

The text provides an introduction to the bootstrap without much
context. We will adopt a similar approach; details are more
suitable for, e.g., STAT 740. Intuitively, the empirical distribution
function (below) can be used as an estimate of the distribution
function F of the independent identically distributed error terms e;.

Fo(x) = }72 160 < %)
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Bootstrapping i

Bootstrap

Bootstrapping

As such, sampling from F,, can be used to model sampling from F.

@ Sampling from F, should be with replacement to mimic
repeated sampling from F.

@ Functionals in F have their counterparts in F,. E.g.,
u(Fa) = X.

@ These analogies lead to methods for deriving sampling
distributions, and hence ready-made estimates of standard
errors and confidence bounds, in the absence of closed-form
results.

@ Simpler will not always prove better!
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Bootstrapping Regression

Bootstrap

Bootstrapping Regression

The text distinguishes two types of bootstrap regressions

@ When the predictor variables are fixed and errors have
constant variance, bootstrap {e;}.

@ When the predictor variables are random, bootstrap {(x;, yi)}

For the former case, the bootstrap sample will be {e/}. We
compute Y = Y; + e, i =1,...,n, then regress { Y/} on {X;},
typically to obtain B bootstrap slope estimates,

bf(b), b=1,...,B.

We can then compute s* {b]}, the standard deviation of {bf(b)},
as an estimate of the standard error of b;.
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Bootstrapping Regression

Bootstrap

We can also use the bootstrap sample to compute confidence
intervals; the number of bootstrap samples, B, tends to be large
for this, particularly for empirical methods.

There are numerous approaches to bootstrap confidence intervals;
the book introduces one of the most interesting, the reflection
method. The percentile method simply uses the «/2 and 1 — /2
sample percentiles from {b;(b)} to construct a 100(1 — «)% Cl for

B
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Bootstrapping Regression

Bootstrap Bootstrapping Regression

The reflection method

The reflection method computes

Cl'l = b1—bi‘(a/2)
CI'2 = bf(l—a/Q)—bl

The 100(1 — )% Cl is then (by — da, by + d1). Why does this
work?
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Bootstrap Bootstrapping Regression

The reflection method

With probability 1 — «, by will fall between the percentiles of its
sampling distribution:

Pbi(a/2) < by < hi(1—a/2)]=1—«

The distances between these percentiles and 31, the mean of the
sampling distribution of by, are:

D1 = p1— bi(a/2)
D2 = bl(].—Oé/Q)—ﬁl

Rearranging, we have

bi(a/2) = p1— D1
bi(1—«a/2) B1+ Ds
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Bootstrap Bootstrapping Regression

Example

The cars data set in R studies stopping distance of cars as a
function of speed. The data is not quite linear, and the variation in
stopping distance increases with speed, but we will set aside those
issues for now.

R has numerous libraries (boot is popular, though it has its
peculiarities) to bootstrap models. We can use a hand-constructed
function to bootstrap residuals from the regression of dist on
speed. We will want to compare the percentile and reflection
bootstrap confidence intervals to the 95% confidence interval
obtained from the regular normal errors model: (3.097, 4.768).
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