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LOWESS

LOWESS (LOcally WEighted Scatterplot Smoothing) is a highly
prescriptive scatterplot smoothing method developed by Cleveland,
1979. Other scatterplot smoothing methods provide more
flexibility in weighting functions, smoothing criteria, etc.

Features of LOWESS include:

local regression

weighted regression

robustness to outlying observations.

We will study LOWESS assuming a single predictor variable.
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The first step in LOWESS is a locally weighted regression with the
weight function based on the tricubic kernel:

K (u) =

{ {
1− (|u|)3

}3
|u| ≤ 1

0 |u| > 1
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At each xi∗ , i
∗ = 1, . . . , n, construct a local linear or quadratic

regression based on K (·) using weights

wk(xi∗) = K

(
|xk − xi∗|

∆q

)
, k = 1, . . . , n

where ∆q is the qth order statistic of {|xk − xi∗|}k .

For each weighted least squares, we focus on the predicted value at
xi∗ : ŷi∗–rather than the weighted least squares line itself.

Residuals {ei∗} are calculated, and the next weighted least squares
regression includes robust adjustments for outliers.
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Define the bisquare kernel:

B(u) =

{ {
1− u2

}2 |u| ≤ 1
0 |u| > 1
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Set s = med |ek | and define robustness weights:

δk = B
(ek

6s

)
Use weights δk × wk(i∗) in a second series of local weighted least
squares regressions.

Repeat the steps until the process converges.
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Example

From the water quality data, we will study fecal coliform levels for
Station C-076 (Cedar Creek).

Plots show the presence of outliers, even after a scale
transformation, as well as some local behavior that suggests a
need for robust scatterplot smoothing.

PROC LOESS in SAS conducts local regression by default,
with robust iterative weighting of outliers introduced by the
ITERATIONS= option.

PROC LOESS uses methods similar to LOWESS, though with
many more options for smoothing criteria available.
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Section 11.6

The text provides an introduction to the bootstrap without much
context. We will adopt a similar approach; details are more
suitable for, e.g., STAT 740. Intuitively, the empirical distribution
function (below) can be used as an estimate of the distribution
function F of the independent identically distributed error terms εi .

Fn(x) =
1

n

n∑
i=1

I (xn ≤ x)
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As such, sampling from Fn can be used to model sampling from F .

Sampling from Fn should be with replacement to mimic
repeated sampling from F .

Functionals in F have their counterparts in Fn. E.g.,
µ(Fn) = x̄ .

These analogies lead to methods for deriving sampling
distributions, and hence ready-made estimates of standard
errors and confidence bounds, in the absence of closed-form
results.

Simpler will not always prove better!
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The text distinguishes two types of bootstrap regressions

When the predictor variables are fixed and errors have
constant variance, bootstrap {ei}.
When the predictor variables are random, bootstrap {(xi , yi )}

For the former case, the bootstrap sample will be {e∗i }. We

compute Y ∗
i = Ŷi + e∗i , i = 1, . . . , n, then regress {Y ∗

i } on {Xi},
typically to obtain B bootstrap slope estimates,
b∗1(b), b = 1, . . . ,B.

We can then compute s∗ {b∗1}, the standard deviation of
{
b∗1(b)

}
,

as an estimate of the standard error of b1.
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We can also use the bootstrap sample to compute confidence
intervals; the number of bootstrap samples, B, tends to be large
for this, particularly for empirical methods.

There are numerous approaches to bootstrap confidence intervals;
the book introduces one of the most interesting, the reflection
method. The percentile method simply uses the α/2 and 1− α/2

sample percentiles from
{
b∗1(b)

}
to construct a 100(1− α)% CI for

β1.
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The reflection method

The reflection method computes

d1 = b1 − b∗1(α/2)

d2 = b∗1(1− α/2)− b1

The 100(1− α)% CI is then (b1 − d2, b1 + d1). Why does this
work?
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The reflection method

With probability 1− α, b1 will fall between the percentiles of its
sampling distribution:

P [b1(α/2) ≤ b1 ≤ b1(1− α/2)] = 1− α

The distances between these percentiles and β1, the mean of the
sampling distribution of b1, are:

D1 = β1 − b1(α/2)

D2 = b1(1− α/2)− β1
Rearranging, we have

b1(α/2) = β1 − D1

b1(1− α/2) = β1 + D2
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Example

The cars data set in R studies stopping distance of cars as a
function of speed. The data is not quite linear, and the variation in
stopping distance increases with speed, but we will set aside those
issues for now.

R has numerous libraries (boot is popular, though it has its
peculiarities) to bootstrap models. We can use a hand-constructed
function to bootstrap residuals from the regression of dist on
speed. We will want to compare the percentile and reflection
bootstrap confidence intervals to the 95% confidence interval
obtained from the regular normal errors model: (3.097, 4.768).
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