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What is ANOVA?

Analysis of variance (ANOVA) models are regression models with
qualitative predictors, called factors or treatments.

Factors have different levels.

For example, the factor “education” may have the levels high
school, undergraduate, graduate. The factor “gender” has two
levels female, male.

We may have several factors as predictors; e.g. race and gender
may be used to predict annual salary in $.

There are two types of factors:

Classification (investigator cannot control).

Experimental (investigator can control).
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ANOVA

A control treatment (or control factor level) is sometimes used to
measure effects of (new or experimental) treatments under
investigation, relative to the “status quo.”

E.g. ibuprofen, aspirin, and placebo. We have 3 factor levels.
Without the placebo, we do not know how effective ibuprofen or
aspirin are relative to no pain killer, only relative to each other.

Uses of ANOVA models: find the best/worst treatment, measure
the effectiveness of a new treatment, compare treatments.

We are often interested in determining whether there is a
difference in treatments.

Read Sections 16.1–16.8 in the text.
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16.3 Cell means model

We have r different treatments or factor levels. At each level i ,
have ni observations from group i .

The total number of observations is nT = n1 + n2 + · · ·+ nr .

The response is Yij where{
i = 1, . . . , r factor level

j = 1, . . . , ni obs. within factor level.

Example: Two factors: MS, PhD. Yij is age in years. In Spring
2014, we observe

Y11 = 28, Y12 = 24, Y13 = 24, Y14 = 22, Y15 = 26, Y16 = 23,

Y21 = 29, Y22 = 23, Y23 = 26, Y24 = 25, Y25 = 22, Y26 = 23, Y27 = 38, Y28 = 33, Y29 = 30, Y2,10 = 27.
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One-way ANOVA model

Yij = µi + εij , εij
iid∼ N(0, σ2).

We can rewrite as:
Yij

ind .∼ N(µi , σ
2).

Data are normal, data are independent, the variance is
constant across groups.

µi is allowed to be different for each group; the ANOVA
model is nonparametric.

Questions: What is E{Yij}? What is σ2{Yij}?
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Matrix formulation (pp. 683–684, 710–712)

For r = 3, we have

Y11

Y12
...

Y1n1

Y21

Y22
...

Y2n2

Y31

Y32
...

Y3n3



=



1 0 0
1 0 0
...

...
...

1 0 0
0 1 0
0 1 0
...

...
...

0 1 0
0 0 1
0 0 1
...

...
...

0 0 1



 µ1

µ2

µ3

 +



ε11

ε12
...
ε1n1

ε21

ε22
...
ε2n2

ε31

ε32
...
ε3n3


or

Y = Xβ + ε.
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16.4 Fitting the model

For r = 3, let Q(µ1, µ2, µ3) =
∑3

i=1

∑ni
j=1(Yij − µi )2.

We need to minimize this over all possible (µ1, µ2, µ3) to find the
least-squares (LS) solution. We can easily show that Q(µ1, µ2, µ3)
has a minimum at

β̂ =

 µ̂1

µ̂2

µ̂3

 =

 Ȳ1·
Ȳ2·
Ȳ3·

 ,
where Ȳi · = 1

ni

∑ni
j=1 Yij is the sample mean from the ith group

(pp. 687–688).

These β̂ are also maximum likelihood estimates.
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Matrix formula of least-squares estimators (r = 3)

X′X =

 1 · · · 1 0 · · · 0 0 · · · 0
0 · · · 0 1 · · · 1 0 · · · 0
0 · · · 0 0 · · · 0 1 · · · 1





1 0 0

.

.

.

.

.

.

.

.

.
1 0 0
0 1 0

.

.

.

.

.

.

.

.

.
0 1 0
0 0 1

.

.

.

.

.

.

.

.

.
0 0 1



=

 n1 0 0
0 n2 0
0 0 n3

 ,

(X′X)−1 =

 n−1
1 0 0

0 n−1
2 0

0 0 n−1
3

 , X′Y =

 Y1·
Y2·
Y3·

 ,

⇒ β̂ = (X′X)−1X′Y =

 Ȳ1·
Ȳ2·
Ȳ3·

 .
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Residuals

As in regression (STAT 704),

eij = Yij − Ŷij = Yij − µ̂i = Yij − Ȳi ·

As usual, Ŷij is the estimated mean response under the model.

Note that
∑ni

j=1 eij = 0, i = 1, . . . , r . [check this!]

In matrix terms
e = Y − Xβ̂ = Y − Ŷ.
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Feral hog rooting activity example

r = 4 habitat types (Bottomland Hardwood, Cypress/Tupelo
Slough, Upland Pine, Muck Swamp)

20 x 50-meter tracts randomly selected within these habitats.
(ni ≡ 3).

The tracts were monitored on a bi-monthly basis for 18
months; we will consider a single month. One of the
Cypress-tupelo tracts was flooded, so nT = 11 rather than 12,
and n1 = n3 = n4 = 3 and n2 = 2.

The response will be rooting damage in each of 1000 1 x 1
square meter cells; we will treat it as continuous for this
analysis.
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Feral Hogs

: Juvenile feral hogs in snowstorm : Juvenile feral hogs rooting
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Bottomland Hardwoods

: Large sweetgum : Second-growth forest
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Cypress-Typelo Sloughs

: Re-sprouted tupelo slough : Cypress-tupelo slough
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Uplands

: Longleaf pine savannah : Longleaf pine in “rocket” stage
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Muck Swamps

: Cinnamon fern at muck swamp
edge

: Muck swamp
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Feral hog rooting activity example

data rooting;

input habitat $ activity @@;

rootroot=sqrt(activity);

datalines;

BLH 139 BLH 228 BLH 275 CTS 45 CTS 127 CTS .

U 0 U 45 U 16 MS 145 MS 124 MS 240

;

proc sgplot;

scatter x=habitat y=activity;

run;

proc glm plots=all data=rooting; * zero/one dummy variables, but recover cell means via lsmeans;

class habitat;

model rootroot=habitat;

lsmeans habitat;

run;
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16.5 ANOVA table (pp. 690–698)

Define the following:

Yi · =

ni∑
j=1

Yij = i th group sum,

Ȳi · =
1

ni

ni∑
j=1

Yij = i th group mean

Y·· =
r∑

i=1

ni∑
j=1

Yij =
r∑

i=1

Yi · = sum of all obs.

Ȳ·· =
1

nT

r∑
i=1

ni∑
j=1

Yij =
1

nT

r∑
i=1

Yi · = mean of all obs.
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Sums of squares for treatments, error, and total

SSTO =
r∑

i=1

ni∑
j=1

(Yij − Ȳ··)
2 = variability in Yij ’s

SSTR =
r∑

i=1

ni∑
j=1

(Ŷij − Ȳ··)
2 =

r∑
i=1

ni∑
j=1

(µ̂ij − Ȳ··)
2

=
r∑

i=1

ni∑
j=1

(Ȳi · − Ȳ··)
2 =

r∑
i=1

ni (Ȳi · − Ȳ··)
2

= variability explained by ANOVA model

SSE =
r∑

i=1

ni∑
j=1

(Yij − Ŷij)
2 =

r∑
i=1

ni∑
j=1

e2
i

= variability NOT explained by ANOVA model
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Comments

As before in regression,

SSTO︸ ︷︷ ︸
total

= SSTR︸ ︷︷ ︸
treatment effects

+ SSE︸︷︷︸
leftover randomness

SSE=0 ⇒ Yij = Yik for all j 6= k and for i = 1, . . . , r .

SSTR=0 ⇒ Ȳi · = Ȳ·· for i = 1, . . . , r .
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ANOVA table (p. 694)

Source SS df MS

SSTR
∑r

i=1

∑ni
j=1(Ȳi · − Ȳ··)

2 r − 1 SSTR/(r − 1)

SSE
∑r

i=1

∑ni
j=1(Yij − Ȳi ·)

2 nT − r SSE/(nT − r)

SSTO
∑r

i=1

∑ni
j=1(Yij − Ȳ··)

2 nT − 1
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Degrees of freedom

SSTO has nT − 1 df because there are nT Yij − Ȳ·· terms in
the sum, but they sum to zero (1 constraint).

SSE has nT − r df because there are nT Yij − Ȳi · terms in the
sum, but there are r constraints of the form∑ni

j=1(Yij − Ȳi ·) = 0, i = 1, . . . , r .

SSTR has r − 1 df because there are r terms ni (Ȳi · − Ȳ··) in
the sum, but they sum to zero (1 constraint).

Assuming µ1 = · · · = µr , Cochran’s Theorem (Section 2.7) shows
that SSTR/σ2 ∼ χ2

r−1 and SSE/σ2 ∼ χ2
nT−r and they are

independent.
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Expected mean squares

E{MSE} = σ2, MSE is unbiased estimate of σ2

E{MSTR} = σ2 +

∑r
i=1 ni (µi − µ·)2

r − 1
,

where µ· =
∑r

i=1
niµi
nT

is the weighted average of µ1, . . . , µr (pp.
696–698).

If µi = µj for all i , j ∈ {1, . . . , r}, then E{MSTR} = σ2, otherwise
E{MSTR} > σ2.

Hence, if any group means are different then E{MSTR}
E{MSE} > 1.
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16.6 F test of H0 : µ1 = · · · = µr

Fact: If µ1 = · · · = µr then

F ∗ =
MSTR

MSE
∼ F (r − 1, nT − r).

To perform an α-level test of H0 : µ1 = · · · = µr vs. Ha : some
µi 6= µj for i 6= j ,

Fail to reject H0 if F ∗ ≤ F (1− α, r − 1, nT − r) or p-value
≥ α.

Reject H0 if F ∗ > F (1− α, r − 1, nT − r) or p-value < α.

p-value = P{F (r − 1, nT − 1) ≥ F ∗}.

Example: Feral hog rooting activity
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Comments

If r = 2 then F ∗ = (t∗)2 where t∗ is the t-statistic from a
2-sample pooled-variance t-test.

The F-test may be obtained from the general nested linear
hypotheses approach (big model / little model). Here the full
model is Yij = µi + εij and the reduced is Yij = µ+ εij .

F ∗ =

[
SSE(R)−SSE(F )

dfER−dfEF

]
SSE(F )
dfEF

=
MSTR

MSE
.
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16.7 Alternative formulations

SAS will fit the cell means model (discussed so far) with a noint

option in model statement; however, the F-test will not be correct.
Your textbook discusses an alternative parameterization that is not
easy to obtain from the SAS procedures we will use.

By default, SAS fits the model

Yij = µ+ αi + εij ,

where αr = 0.

E{Yrj} = µ; µ is the cell-mean for the rth level.

For i < r , E{Yij} = µ+ αi ; αi is i ’s offset to group r ’s mean
µ.

Note that SAS’s default corresponds to a regression model where
categorical predictors are modeled using the usual zero-one dummy
variables. In class, let’s find the design X for SAS’s model for
r = 3 and n1 = n2 = n3 = 2.
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SAS’s baseline & offset model

Even though SAS parameterizes the model differently, with the rth
level as baseline, the ANOVA table and F-test is the same as the
cell means model.

Also µ̂ = Ȳr · and α̂i = Ȳi · − Ȳr · are the OLS and MLE estimators.
These are reported in SAS. Use, e.g. model sales=design /

solution;

The cell means µ̂i are obtained in SAS by adding lsmeans to glm

or glimmix.
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