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Inference for group means

Once the model is fit, we are typically interested in inference
regarding group means µ1, . . . , µr .

In particular, if we reject the overall F-test of H0 : µ1 = · · · = µr ,
we often want to know which pairs of means are significantly
different. That is, we look at CIs for µi − µj and tests of
H0 : µi = µj .

If one looks at all possible pairs, the number of comparisons is(
r
2

)
= r(r−1)

2 . For r = 3, this entails looking at µ1 − µ2,

µ1 − µ3, and µ2 − µ3.

Alternatively, one might be interested in differences such as
µ1 − 1

2 (µ2 + µ3). Here level 1 is placebo and levels 2 and 3 are two
different doses of the same allergy medicine.
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17.3 Comparing factor levels

Model is Yij = µi + εij , where εij
iid∼ N(0, σ2).

We have mean parameters µ1, . . . , µr . Most functions of interest
are linear combinations of means:

L = L(c) =
r∑

i=1

ciµi ,

where µi = E{Yij}. These include

each mean, e.g. L = µ2

differences, e.g. L = µ3 − µ7

general contrasts, e.g. L = µ1 − 1
3µ2 − 1

3µ3 − 1
3µ4

general linear forms, e.g. L = µ1 + 2µ2 − 10µ3

A linear combination is called a contrast if
∑r

i=1 ci = 0.
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Estimation of L

Since Ȳi · is unbiased estimate of µi , L̂ =
∑r

i=1 ci Ȳi · is unbiased
estimate of L.

Note that Ȳi ·
ind .∼ N(µi , σ

2/ni ). Then

L̂ =
r∑

i=1

ci Ȳi · ∼ N

(
r∑

i=1

ciµi , σ
2

r∑
i=1

c2
i

ni

)
.

The estimated standard error of L is

σ̂(L̂) =

√√√√MSE
r∑

i=1

c2
i

ni
.

When the model is true, we have

L̂− L

σ̂(L̂)
∼ t(nT − r).
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CI and hypothesis test

Recall L̂ =
∑r

i=1 ci Ȳi · estimates L =
∑r

i=1 ciµi and σ̂(L̂) estimates
σ(L̂).

A 95% CI for L is L̂± se(L̂)t(0.975, nT − r).

To test H0 : L = L0, obtain p-value P
{
|t(nT − r)| > | L̂−L0

σ̂(L̂)
|
}

.

Both of these can be computed in SAS procedures via test,
contrast, or estimate.
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Example: CI for µ8

pp. 737–738.

Take c8 = 1 and ci = 0 for i 6= 8.

A (1− α)100% CI is

Ȳ8· ±
√

MSE

n8
t(1− α

2
, nT − r).
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Difference µ1 − µ2

pp. 739–740.

Take c1 = 1, c2 = −1, and ci = 0 for i = 3, . . . , r .

Then
Ȳ1· − Ȳ2· − (µ1 − µ2)√

MSE ( 1
n1

+ 1
n2

)
∼ t(nT − r).

To test H0 : L = 0⇔ H0 : µ1 = µ2, note that if H0 is true then

t∗ =
Ȳ1· − Ȳ2·√

MSE ( 1
n1

+ 1
n2

)
∼ t(nT − r).

Reject at level α if |t∗| > t(1− α
2 ; nT − r).

Two-sample t-test w/ refined estimate of σ2 (when r > 2).
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Feral hog rooting activity example

For the feral hog study, one possible contrast would be
L = 1

3 (µ1 + µ2 + µ3)− µ4, comparing upland sites vs. floodplain
sites

data rooting;

input habitat $ activity @@;

rootroot=sqrt(activity);

datalines;

BLH 139 BLH 228 BLH 275 CTS 45 CTS 127 CTS .

U 0 U 45 U 16 MS 145 MS 124 MS 240

;

run;

proc glm data=rooting; class habitat;

model rootroot=habitat / solution clparm; * solution not needed;

lsmeans habitat; * not needed;

estimate "Upland vs. Floodplain" habitat 1 1 1 -3 / divisor=3;

run;

proc glimmix data=rooting; class habitat;

model rootroot=habitat;

lsmestimate habitat 1 1 1 -3/ cl divisor=3;

run;

Is rooting activity greater in the floodplain? By how much?
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17.4 Simultaneous inference

If we obtain several 95% CI’s for L1, . . . , Lg separately, the
probability that each Li will be in its interval simultaneously will
actually be (typically much) less than 95%:

P(L1 ∈ I1, L2 ∈ I2, . . . , Lg ∈ Ig ) ≤ 0.95.

Question: what would this probability be if the intervals are
independent?

Question: what would this probability be if the intervals are
perfectly correlated in that Li ∈ Ii ⇔ Lj ∈ Ij for all i 6= j?
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Simultaneous inference

We need CI’s for linear combinations L1, . . . , Lg such that
probability that L1, . . . , Lg are simultaneously in their respective
CI’s is at least 1− α.

For example, say r = 3, β = (µ1, µ2, µ3) and we want to look at
three pairwise differences L12 = µ1 − µ2, L13 = µ1 − µ3,
L23 = µ2 − µ3. We want intervals I12, I13, I23 such that

P(L12 ∈ I12, L13 ∈ I13, L23 ∈ I23) ≥ 1− α.

We’ll look at (1) Tukey, (2) Scheffe, and (3) Bonferroni procedures.
All three procedures produce confidence intervals that look like

Ȳi · − Ȳj · ± σ̂(L̂ij)× stat,

where stat is a critical value that depends on the method.
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17.5 Tukey intervals

For Tukey,

stat =
1√
2
q(1− α; r , nT − r)

where q is the studentized range distribution (p. 746). Table B-9
has these values, but we’ll just get them automatically from SAS.
There are several examples on pp. 748–752.

Unequal sample sizes (ni 6= nj for some i 6= j) gives overall
confidence greater than 1− α (Tukey-Kramer). Equal sample
sizes n1 = · · · = nr gives exact overall confidence of 1− α.

Can be used for data “snooping” or data “dredging” – letting
data suggest L’s of interest.

Derivation of the studentized range on next slide...
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Derivation of Tukey intervals

Assume n1 = n2 = · · · = nr = n, so nT = rn. Let Xi = Ȳi · − µi .
Let X(i) be the ith order statistic.

X1, . . . ,Xr
iid∼ N(0, σ2/n).

Define

Q =
X(r) − X(1)√

MSE/n
∼ q(r , nT − r).

This is the definition of the studentized range distribution. Then

1− α = P

{
X(r) − X(1)√

MSE/n
≤ q(1− α; r, nT − r)

}

= P

{
X(r) − X(1) ≤

√
MSE/n q(1− α; r, nT − r)

}
≥ P

{
|Xi − Xj | ≤

√
MSE/n q(1− α; r, nT − r) for all i, j

}
= P

{
Ȳi· − Ȳj· − σ̂(L̂ij )× stat ≤ µi − µj ≤ Ȳj· − Ȳi· + σ̂(L̂ij )× stat for all i, j

}
.

where stat = 1√
2
q(1− α; r , nT − r).
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Tukey example

* Tukey example ;

data rooting;

input habitat $ activity @@;

rootroot=sqrt(activity);

datalines;

BLH 139 BLH 228 BLH 275 CTS 45 CTS 127 CTS .

U 0 U 45 U 16 MS 145 MS 124 MS 240

;

proc glm data=rooting; class habitat;

model rootroot=habitat;

lsmeans habitat/ pdiff adjust=tukey alpha=0.05 cl lines;

run;

The subcommand lines adds a lines plot illustrating which levels
are not significantly different.

13 / 21



17.6 Scheffe multiple comparisons

Recall L(c) =
∑r

i=1 ciµi . Scheffe’s method works for any number
of arbitrary contrasts L1, . . . , Lg . The ith interval Ii among the g
simultaneous intervals I1, . . . , Ig has endpoints

L̂(ci )± σ̂{L̂(ci )}
√

(r − 1)F (1− α; r − 1, nT − r).

These intervals have the property,

P(L1 ∈ I1, L2 ∈ I2, . . . , Lg ∈ Ig ) ≥ 1− α.

Example, pp. 754–755.
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Comments on Scheffe

Works for all possible contrasts, including differences in
means.

Okay for data snooping!

If only pairwise differences are to be looked at, Tukey is better.

If H0 : µ1 = · · · = µr is rejected, Scheffe’s method guarantees
at least one significant contrast out of all possible (p. 755).

Here, stat =
√

(r − 1)F (1− α; r − 1, nT − r).
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17.7 Bonferroni procedure (p. 756)

Recall from STAT 712, if you have events E1,E2, . . . ,Eg , where
P(Ei ) = α for i = 1, . . . , g , then

P(EC
1 ∩ EC

2 ∩ · · · ∩ EC
g ) ≥ 1− gα.

We define our events to be Ei = {L(ci ) 6= Ii} and let Ii have
endpoints

L̂(ci )± t(1− α

2g
, nT − r)σ̂{L̂(ci )}.

Then P(Ei ) = α
g and

P{L(c1) ∈ I1, . . . , L(cg ) ∈ Ig} ≥ 1− g(
α

g
) = 1− α.

Read this over several times to make sure you understand!
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A bit more detail...

Draw a Venn diagram to convince yourself

P (∪iEi ) ≤
∑
i

P(Ei ).

This implies

1− P (∪iEi ) ≥ 1−
∑
i

P(Ei ).

De Morgan implies
(∪iEi )

c = ∩iE c
i .

Finally,

P(∩iE c
i ) = 1− P (∪iEi ) ≥ 1−

∑
i

P(Ei ) = 1− gα.
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Comments on Bonferroni

Now the ci ’s don’t even have to be contrasts – all linear
combinations work.

Here, stat = t(1− α
2g , nT − r).

If all pairwise differences in means are to be considered, use
Tukey, else Bonferroni may or may not be better.

Bonferroni usually beats Scheffe for comparison of contrasts
(provides smaller intervals) unless looking at MANY Li ’s.
Note that Bonferroni’s method has g in t(1− α

2g , nT − r),
whereas Scheffe’s method does not have g in√

(r − 1)F (1− α; r − 1, nT − r).

Not good for snooping. Need to have L1, . . . , Lg defined
before analyzing data.
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General comments

If looking at handful g of pairwise comparisons, can calculate

1
√

2
q(1− α; r, nT − r),

√
(r − 1)F (1− α; r − 1, nT − r), t(1−

α

2g
, nT − r),

and see which is smallest!

In estimate command in proc glm, SAS will give you L̂ and
σ̂(L̂) for any L =

∑r
i=1 ciµi . Need to use lsmestimate with

cl in proc glimmix to get CI automatically.
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Feral hog rooting activity example

For feral hog example, interest is on

L1 = 1
2 (µ1 + µ2 + µ3)− µ4, comparing Upland vs Floodplain

L2 = 1
2 (µ1 + µ4)− 1

2 (µ2 + µ3), comparing year-long wet
habitats vs. dry habitats.

L3 = µ2 − µ3, comparing the two wettest habitats.
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Feral hog rooting activity SAS code

* Scheffe example, p. 734 & pp. 754-755 ;

* glimmix does simultaneous testing and CI’s ;

* use either adjust=scheffe or adjust=bon ;

proc glimmix data=rooting; class habitat;

model rootroot=habitat;

lsmestimate habitat ’Floodplain vs upland’ -1 -1 -1 3,

’Dry vs Wet’ 1 -1 -1 1,

’Cypress-Tupelo vs. Muck Swamp’ 0 1 -1 0 / adjust=scheffe alpha=0.1 cl divisor=3;

run;
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