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Two-way ANOVA

This material is covered in Sections 19.2–19.4, but a bit differently.

We have two factors, A and B.

Levels of A are indexed by i = 1, . . . , a.

Levels of B are indexed by j = 1, . . . , b.

The number of experimental units sampled when A = i and
B = j is nij . If data are balanced, then nij ≡ n for all i , j .

nT =
∑a

i=1

∑b
j=1 nij . For balanced data, nT = nab.

Yijk is the kth replicate of factor A = i & B = j .

Let µij = E{Yijk}.
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Two-way ANOVA

We have ab different means.

Factor B
Factor A 1 2 · · · b

1 µ11 µ12 · · · µ1b

2 µ21 µ22 · · · µ2b
...

...
...

. . .
...

a µa1 µa2 · · · µab
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Two-way ANOVA

The model is written

Yijk = µij + εijk , εijk
iid∼ N(0, σ2).

The most general, least restrictive case is when each combination
of levels (i , j) has its own distinct mean. We’ll look at special
cases that impose structure on {µij}.

I Yijk = µ.. + εijk

II Yijk = µ.. + αi + εijk

III Yijk = µ.. + βj + εijk

IV Yijk = µ.. + αi + βj + εijk

V Yijk = µ.. + αi + βj + (αβ)ij + εijk
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I. µij = µ..; neither A nor B are important

When a = b = 2, the means are
Factor B

Factor A 1 2
1 µ.. µ..
2 µ.. µ..

Intercept only model

Factor A

R
es

po
ns

e

1 2

● ●
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I. µij = µ..; neither A nor B are important

If this model fits, you’re done! There is nothing further to look at.

Overall µ·· =
∑

i

∑
j µij/ab is estimated by µ̂.. = 1

ab

∑
i

∑
j Ȳij ·,

which will not equal Ȳ··· in the unbalanced case.

Fit in SAS proc glm as model response = ;

6 / 41



II. µij = µ + αi , only A important

When a = b = 2, the means are
Factor B

Factor A 1 2
1 µ.. + α1 µ.. + α1

2 µ.. + α2 µ.. + α2

Factor A model

Factor A

R
es

po
ns

e

1 2

●

●
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II. µij = µ + αi , only A important

If this fits, we have a oneway model in A. We are interested in
L =

∑a
i=1 ciαi .

SAS sets µ̂.. = 1
b

∑
j Ȳaj . (not Ȳa..) and α̂i = Ȳi ·· − Ȳa··.

Fit in SAS proc glm as model response = A;

W can get pairwise differences in factor A levels via, e.g. lsmeans

A / pdiff adj=tukey;

General contrasts are available in estimate or lsmestimate.
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III. µij = µ + βj ; only B is important

When a = b = 2, the means are
Factor B

Factor A 1 2
1 µ.. + β1 µ.. + β2

2 µ.. + β1 µ.. + β2

Factor B model

Factor A

R
es

po
ns

e

1 2

● ●

● ●

B=1

B=2
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III. µij = µ + βj , only B important

If this fits, we have a one-way model in B. We are interested in
L =

∑b
j=1 cjβj .

SAS sets µ̂.. = 1
a

∑
i Ȳib· and β̂j = Ȳ·j · − Ȳ·b·.

Fit in SAS proc glm as model response = B;

We can get pairwise differences in factor B levels via, e.g. lsmeans

B / pdiff adj=tukey;

General contrasts are available in estimate or lsmestimate.
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IV. µij = µ.. + αi + βj , A and B additive

When a = b = 2, means are
Factor B

Factor A 1 2
1 µ+ α1 + β1 µ+ α1 + β2

2 µ+ α2 + β1 µ+ α2 + β2

Additive model

Factor A

R
es

po
ns

e

1 2

●

●●

●

B=1

B=2
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IV. µij = µ+αi +βj , both A and B important, but additive

Differences in factor A level means are the same for each level of
B. Differences in factor B level means are the same for each level
of A. For example, comparing mean differences for A = 1 to A = 2
we have

µ1j − µ2j = µ+ α1 + βj − (µ+ α2 + βj) = α1 − α2,

independent of j! Similarly, µi1 − µi2 = β1 − β2 indep. of i .
SAS computes the LS estimates as β̂ = (X′X)−1X′Y, which
doesn’t simplify much in the unbalanced case. SAS sets
αa = βb = 0.
Fit in SAS proc glm as model response = A B;

We can get pairwise differences in factor A levels via, e.g. lsmeans
A / pdiff adj=tukey;

We can get pairwise differences in factor B levels via, e.g. lsmeans
B / pdiff adj=tukey;

General forms L =
∑a

i=1

∑b
j=1 cijµij can be computed in

estimate or lsmestimate (more later). 12 / 41



V. µij = µ + αi + βj + (αβ)ij , interaction model

When a = b = 2, means are
Factor B

Factor A 1 2
1 µ+ α1 + β1 + (αβ)11 µ+ α1 + β2 + (αβ)12

2 µ+ α2 + β1 + (αβ)21 µ+ α2 + β2 + (αβ)22

Interaction model

Factor A

R
es
po
ns
e

1 2

B=1

B=2
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V. µij = µ + αi + βj + (αβ)ij , interaction model

Now we have

µ1j − µ2j = α1 − α2 + (αβ)1j − (αβ)2j︸ ︷︷ ︸
depends on B = j

.

Also
µi1 − µi2 = β1 − β2 + (αβ)i1 − (αβ)i2︸ ︷︷ ︸

depends on A = i

.

We no longer have parallel curves; mean differences in A change
with levels of B and vice-versa.

SAS sets αa = βb = 0, (αβ)aj = 0 for j < b, and (αβ)ib = 0 for
i < a.

Estimates can be obtained from solving Ȳij = µ̂··+ α̂i + β̂j + (̂αβ)ij .
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Comments on model V

The interaction model gives each pairing (i , j) its own distinct
mean, with no structure on {µij}. It’s the same as a one-way
model on r = ab groups.

Your book focuses on the model where
∑a

i=1 αi = 0,∑b
j=1 βj = 0,

∑a
i=1(αβ)ij = 0 for each j , and

∑b
j=1(αβ)ij = 0

for each i . This model has enhanced interpretability, but is
not straightforward to fit in SAS (PROC GENMOD to the
rescue!).

Interaction plots estimate the means using model V, e.g.
µ̂ij = Ȳij . The overall shape of these plots give clues as to
which is the most appropriate model from I, II, III, IV, V.
More shortly.

Fit in SAS using either model response = A B A*B; or
model response = A|B;.

General forms L =
∑a

i=1

∑b
j=1 cijµij can be computed in

estimate or lsmestimate (more later).
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Model fitting

Say a = 3, b = 2, and nij = n = 2 for each pairing (i , j). The
parameters are β = (µ··, α1, α2, β1, (αβ)11, (αβ)21). Note that
α3 = β2 = (αβ)12 = (αβ)22 = (αβ)32 = (αβ)31 = 0.

In general, the degrees of freedom for A, B, and A*B are the
number of free parameters associated with each of these:

dfA = a− 1 (α1, α2, . . . , αa−1)

dfB = b − 1 (β1, β2, . . . , βb−1)

dfAB = (a− 1)(b − 1)

(αβ)11 (αβ)12 · · · (αβ)1,b−1

(αβ)21 (αβ)22 · · · (αβ)2,b−1
...

...
. . .

...
(αβ)a−1,1 (αβ)a−1,2 · · · (αβ)a−1,b−1
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Matrix formulation

As usual, Y = Xβ + ε. For our example,

Y111

Y112

Y121

Y122

Y211

Y212

Y221

Y222

Y311

Y312

Y321

Y322



=



1 1 0 1 1 0
1 1 0 1 1 0
1 1 0 0 0 0
1 1 0 0 0 0
1 0 1 1 0 1
1 0 1 1 0 1
1 0 1 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 1 0 0
1 0 0 0 0 0
1 0 0 0 0 0





µ··
α1

α2

β1

(αβ)11

(αβ)21

 +



ε111

ε112

ε121

ε122

ε211

ε212

ε221

ε222

ε311

ε312

ε321

ε322



.
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Fitting

Your textbook has a lot on fitting, parameter estimation under
balance, etc. In general, easy-to-compute closed-form estimates do
not exist, especially with unbalanced data. In that case, matrix
algebra saves the day. The LS estimates are easily computed as
β̂ = (X′X)−1X′Y. Recall β̂ ∼ Np(β, (X′X)−1σ2) where p is the
number of mean parameters in β. Let c = (c1, . . . , cp). Then

L̂ = c′β̂ ∼ N(c′β, c′(X′X)−1cσ2).

Any linear combination of mean parameters L is easily estimated.
Recall that

L̂− L

σ̂(L̂)
∼ t(nT − p).
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SAS estimate command

You can estimate any linear combination of model parameters
in β using estimate.

Say a = 3, b = 2. To estimate L1 = α2 − α1 use estimate

’L1’ A -1 1 0;

To estimate L2 = β2 − β1 + (αβ)22 − (αβ)21 use estimate

’L2’ B -3 0 3 A*B 0 0 -1 1 0 0/divisor=3;

To find the order of levels for main effects and interaction,
look at the table of estimated coefficients.

µ·· is called the intercept.

Confidence intervals are obtained via the clparm option.
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SAS lsmeans command

By definition, the quantities estimated by least-squares means
are either the raw µij or simple averages of these under any of
the models I, II, III, IV, V. You can get estimates of these
from lsmeans. For two-way models there are three, lsmeans
A, lsmeans B, and lsmeans A*B, yielding estimates of

µ̄i · =
1

b

b∑
j=1

µij

µ̄·j =
1

a

a∑
i=1

µij

µij

These are defined on p. 818 in your text; your book uses, e.g.
µi · instead of µ̄i ·.
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SAS lsmeans command

pdiff gives all pairwise differences in LS means. If the
additive model IV fits, then lsmeans A / pdiff; gives all
µ̄i1· − µ̄i2· = αi1 − αi2 and lsmeans B / pdiff; gives all
µ̄·j1 − µ̄·j2 = βj1 − βj2 . You can adjust these using Tukey or
Bonferroni.

If V fits, and you are looking at a single factor A or B, then
pdiff can still be used, but pairwise differences are averaged
over the levels of the remaining factor(s); then
µ̄i1· − µ̄i2· = αi1 − αi2 + ¯(αβ)i1· −

¯(αβ)i2· 6= αi1 − αi2 and
lsmeans gives the former. cl adds confidence intervals; the
intervals are adjusted if using, e.g. adjust=tukey.

21 / 41



SAS lsmeans command

We can also look at lsmeans A*B; it gives all estimates of
each {µij}. pdiff is indiscriminate; it gives all possible
pairwise comparisons here too.

Alternatively, we can specify lsmeans A*B / slice=A or
lsmeans A*B / slice=B to look at all pairwise differences
at each level of the other factor. The accompanying F tests
aren’t so useful; slice A*B/sliceby=A is a much better
option.
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Grouping like factor levels

A “lines” plot shows groups of levels that are not significantly
different from each other, usually with an overall FER, say
FER = 0.05.

These can be obtained automatically in proc glimmix by adding
a lines subcommand to lsmeans.
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Fuel Cell Example

Fuel cell performance is degraded when condensation builds up in
the cell. In this study, some fuel cells are operated at target
voltages with no intervention; others are dried out to remove
condensation. Factor A is the condensation treatment, i = 1, 2 for
Control, Treatment. Factor B is voltage, j = 1, 2, 3, 4 is 0.50V,
0.60V, 0.70V, 0.80V. The design is balanced, with nij = n = 2 cells
receiving one of the (i , j) pairings.

data fuelcell;

input vapor $ voltage current @@;

datalines;

Trt 0.50 32.3 Ctl 0.50 28.6

Trt 0.50 32.8 Ctl 0.50 28.5

Trt 0.60 20.3 Ctl 0.60 19.5

Trt 0.60 21.2 Ctl 0.60 19.7

Trt 0.70 10.9 Ctl 0.70 10.6

Trt 0.70 11.1 Ctl 0.70 10.6

Trt 0.80 2.53 Ctl 0.80 2.23

Trt 0.80 2.43 Ctl 0.80 2.20

;

proc glimmix data=fuelcell;

class trt voltage;

model current=trt voltage / solution;

lsmeans voltage / pdiff adjust=tukey lines;
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Example pp. 870–871

nT = 24 programmers were asked to predict how long a big project
would take in programmer-days. After the project was over, the
prediction error was calculated: Yijk = (actual programmer-days -
predicted programmer-days). Programmers were classified by type
of experience (A = 1 small systems, A = 2 small & large); and
experience (B = 1 is < 5 years, B = 2 is 5− 10 years, B = 3 is
≥ 10 years).

data predict;

input days exper years @@;

datalines;

240.0 1 1 206.0 1 1 217.0 1 1 225.0 1 1 110.0 1 2 118.0 1 2 103.0 1 2 95.0 1 2

56.0 1 3 60.0 1 3 68.0 1 3 58.0 1 3 71.0 2 1 53.0 2 1 68.0 2 1 57.0 2 1

47.0 2 2 52.0 2 2 31.0 2 2 49.0 2 2 37.0 2 3 33.0 2 3 40.0 2 3 45.0 2 3

;

run;
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Example pp. 870–871

* gives all a*b choose 2 pairwise comparisons via Tukey;

* slice subcommand only gives F-test within each slice;

proc glm data=predict plots=all; class exper years;

model days=exper|years;

lsmeans exper*years / adjust=tukey slice=exper;

* slice command in glimmix better;

* gives PW comparisons within each slice, i.e.;

* b choose 2 comparisons within each of a slices;

proc glimmix; class exper years;

model days=exper|years;

slice exper*years / sliceby=exper adjust=tukey cl;

proc glimmix; class exper years;

model days=exper|years; * adjust=tukey not needed;

slice exper*years / sliceby=years adjust=tukey cl;
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SAS lsmestimate command

You can use lsmestimate in proc glimmix to obtain
inference for general linear combinations L =

∑a
i=1

∑b
j=1 cijµij

under any of the models.

You can obtain simultaneous inference using Bonferroni,
Scheffe, or Tukey (if pairwise differences).

The theory behind the multiple comparisons is similar to that
as from the one-way model, but a bit different; pp. 848–861
Sections 19.7 - 19.9. SAS takes care of the details for us. Just
make sure you know what you are estimating.

As before, Tukey works best when looking at all pairwise
comparisons.

Bonferroni works best when looking at only a few linear
combinations, Scheffe can work better when looking at a large
number of combinations.
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More Fuel Cell

proc glimmix data=fuelcell;

class vapor voltage;

model current=vapor|voltage / solution;

*Cell means for both levels of vapor at voltage=0.5 and their contrast;

estimate "Trt 0.50V" intercept 1 vapor 0 1 voltage 1 0 0 0 vapor*voltage 0 0 0 0 1 0 0 0,

"Ctl 0.50V" intercept 1 vapor 1 0 voltage 1 0 0 0 vapor*voltage 1 0 0 0 0 0 0 0 ,

"Trt vs Ctl 0.50V" vapor 1 -1 vapor*voltage 1 0 0 0 -1 0 0 0/ adjust=bon alpha=0.1 cl;

run;

proc glimmix data=fuelcell;

class vapor voltage;

model current=vapor|voltage / solution;

lsmestimate vapor*voltage "Trt 0.50V" 0 0 0 0 1 0 0 0,

"Ctl 0.50V" 1 0 0 0 0 0 0 0 0

/ adjust=bon alpha=0.1 cl;

run;
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ANOVA table

The ANOVA table lists rows for Treatments (depending on
which model you are fitting, I–V), Error, and Total as before.

As usual, the Pythagorean Theorem tells us

||Xβ̂ − 1nT Ȳ··||
2 + ||Y − Xβ̂||2 = ||Y − 1nT Ȳ···||

2.

SSTR+SSE=SSTO.

The p-value in the ANOVA table tests whether anything is
important beyond a simple intercept µ. For example, in the
interaction model V, the F-test is for
H0 : αi = 0, βj = 0, (αβ)ij = 0. In model IV, whether
H0 : αi = 0, βj = 0, etc.
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Type 3 sums of squares and associated tests

There are also Type 3 sums of squares and associated tests.
In interaction model V, there are SSA, SSB, and SSAB; these
measure variability explained by the model due to factors A,
B, and the AB interaction respectively (pp. 836–841). By
definition, these are the differences in sums of squared errors
comparing model V to (a) a model with B and A*B, (b) a
model with A and A*B, and (c) a model with A and B. Only
(c) is a hierarchical model, so that’s the only test of interest
here.

If the data are balanced, nij = n for all i , j , then
SSTR=SSA+SSB+SSAB. The book notes this (pp. 837–838)
and discusses associated testing at some length.

30 / 41



Type 3 sums of squares and associated tests

Tim recommends fitting V and testing H0 : (αβ)ij = 0, i.e.
whether the additive model fits. If IV fits, then interpretation
simplifies. Furthermore, if IV fits, you may want to test
whether you can drop A or B from model IV; these two Type
3 tests are given to you automatically after fitting IV via
model response=A B; All of these are standard “nested
linear hypotheses” type F-tests.

Your book does not recommend refitting the model when you
accept H0 : (αβ)ij = 0. This goes against the book’s own
advice for fitting general regression models in STAT 704. Tim
recommends using the additive model if you accept the
interaction is not important; discussed briefly in 19.10.
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Type III test of no interaction in simple example

Recall the data where a = 3, b = 2, and nij = n = 2. We want to
test H0 : (αβ)ij = 0 in full model V. Y = XFβF + εF ; here



Y111
Y112
Y121
Y122
Y211
Y212
Y221
Y222
Y311
Y312
Y321
Y322


=



1 1 0 1 1 0
1 1 0 1 1 0
1 1 0 0 0 0
1 1 0 0 0 0
1 0 1 1 0 1
1 0 1 1 0 1
1 0 1 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 1 0 0
1 0 0 0 0 0
1 0 0 0 0 0




µ
α1
α2
β1

(αβ)11
(αβ)21

 +



ε111
ε112
ε121
ε122
ε211
ε212
ε221
ε222
ε311
ε312
ε321
ε322


.

The reduced model is Y = XRβR + εR ; here


Y111
Y112
Y121
Y122
Y211
Y212
Y221
Y222
Y311
Y312
Y321
Y322


=



1 1 0 1
1 1 0 1
1 1 0 0
1 1 0 0
1 0 1 1
1 0 1 1
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 0
1 0 0 0




µ
α1
α2
β1

 +



ε111
ε112
ε121
ε122
ε211
ε212
ε221
ε222
ε311
ε312
ε321
ε322


.
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Type III test, continued...

For the full model β̂F = (X′FXF )−1X′FY,

SSE (F ) = ||Y − XF β̂F ||2, dfE(F ) = 12− 6 = 6, and
MSE (F ) = SSE (F )/dfE(F ).

For the reduced model β̂R = (X′RXR)−1X′RY,

SSE (R) = ||Y − XR β̂R ||2, and dfE(R) = 12− 4 = 8.

Define

F ∗ =
{SSE (R)− SSE (F )}/{dfE(R) − dfE(F )}

MSE (F )
.

Then if H0 : (αβ)11 = (αβ)21 = 0 is true,

F ∗ ∼ F (dfE(R) − dfE(F ), dfE(F )).

Use the Type III test for A*B in SAS.
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Diagnostics and remedial measures

Interaction plots are given from plots=all fitting model V.
These will tell you which of models I–V are good candidates
for the data.

Residuals are defined as usual. For example, under model IV,
eijk = Yijk − Ŷijk = Yijk − [µ̂·· + α̂i + β̂j ]. Look at least at eijk
vs. Ŷijk . You can plot the {eijk} vs. the indices i and j for two
additional plots. Look at normal probability plot.

If data have nonconstant variance but are normal, you can use
repeated / group=A*B; in proc mixed. If variance only
changes with levels of A or B, we can instead use repeated /

group=A; or repeated / group=B;

If data are nonnormal and have nonconstant variance, try a
Box-Cox transformation of the Yijk in proc transreg.
Sometimes a Box-Cox transformation of the Yijk can also get
rid of a signficant interaction (pp. 826–827).
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Strategy for analysis

Check whether A and B interact with the Type 3 test. If not,
base inference on the additive model or else model with A or
B only. Typically one looks at pairwise mean differences from
lsmeans.

If A and B signficantly interact, then you can examine
pairwise differences of averaged effects, e.g. µ̄·j1 − µ̄·j2 , or else
pairwise difference “slices” µij1 − µij2 for i = 1, . . . , a. These
are interpreted differently. For example, the slices may be
signficant whereas the averaged differences may not.

Check the appropriateness of the model with standard
diagnostic plots. If have both non-constant variance and
non-normal data, consider a Box-Cox transformation of the
response. Often a Box-Cox transformation will also eliminate
significant interactions.
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Outline of book’s approach

Everything in Chapter 19 requires balance nij = n. Balance is
nice if you are computing ANOVA’s by hand, but more often
than not data are unbalanced and the nice formulae do not
apply. Chapter 23 is an entire (short) chapter devoted to
unbalanced analyses.

19.1 Three examples of designs leading to two-way ANOVA.

19.2 Interpretation of model, overall means, additive and
interaction models, important and non-important interactions,
transforming the data to get rid of an interaction.

19.3 Cell-means model with two factors.

19.4 Interaction model: fitting via least squares, partitioning
sums of squares & degrees of freedom, an augmented ANOVA
table with SSTR=SSA+SSB+SSAB.

19.5 Residual analysis.
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Outline of book’s approach

19.6 F tests: three of them from fitting model V using
augmented table. Kimball inequality:
α ≤ 1− (1− α1)(1− α2)(1− α3) (has to do with controlling
family-wise error rate on whether factors A, B and AB are
important).

19.7 Strategy for analysis & flowchart.

19.8 Analyzing factor effects without an interaction (within
the context of V!)

19.9 Analyzing factor effects with an interaction.

19.10 Pooling sums of squares, i.e. using IV instead of V
when interaction not important.
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Focus on model V (as in textbook)

This is Minitab’s model. LS parameter estimates minimize

Q(µ··,α,β,αβ) =
a∑

i=1

b∑
j=1

nij∑
k=1

(Yijk − (µ·· + αi + βj + (αβ)ij)
2,

subject to α· = β· = (αβ)i · = (αβ)·j = 0. These are given by

µ̂·· = Ȳ···

α̂i = Ȳi ·· − Ȳ···

β̂j = Ȳ·j · − Ȳ··

(̂αβ)ij = Ȳij − Ȳi ·· − Ȳ·j · + Ȳ···

We have

Ȳij − Ȳ···︸ ︷︷ ︸
µ̂ij−µ̂··

= Ȳi ·· − Ȳ··︸ ︷︷ ︸
α̂i

+ Ȳ·j · − Ȳ··︸ ︷︷ ︸
β̂j

+ Ȳij − Ȳi ·· − Ȳ·j · + Ȳ···︸ ︷︷ ︸
(̂αβ)ij

.

Fitted values are Ŷijk = Ȳij . Estimates only for balanced data!
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Matrix formulation

For example considered earlier,

Y111

Y112

Y121

Y122

Y211

Y212

Y221

Y222

Y311

Y312

Y321

Y322



=



1 1 0 1 1 0
1 1 0 1 1 0
1 1 0 −1 −1 0
1 1 0 −1 −1 0
1 0 1 1 0 1
1 0 1 1 0 1
1 0 1 −1 0 −1
1 0 1 −1 0 −1
1 −1 −1 1 −1 −1
1 −1 −1 1 −1 −1
1 −1 −1 −1 1 1
1 −1 −1 −1 1 1





µ··
α1

α2

β1

(αβ)11

(αβ)21

+



ε111

ε112

ε121

ε122

ε211

ε212

ε221

ε222

ε311

ε312

ε321

ε322



.

Uses α3 = −α1 − α2, β2 = −β1, (αβ)12 = −(αβ)11,
(αβ)22 = −(αβ)21, (αβ)31 = −(αβ)11 − (αβ)21, and
(αβ)32 = −(αβ)12 − (αβ)22 = (αβ)11 + (αβ)21.
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Model V SS

Recall model V is simply a one-way model with cell-means {µij}.

SSTO =
a∑

i=1

b∑
j=1

nij∑
k=1

(Yijk − Ȳ··)
2

SSTR =
a∑

i=1

b∑
j=1

nij(Ȳij − Ȳ···)
2

SSE =
a∑

i=1

b∑
j=1

nij∑
k=1

(Yijk − Ȳij)
2

Note that each deviation can be broken up as

Yijk − Ȳ···︸ ︷︷ ︸
ijkth deviation

= Ȳij − Ȳ···︸ ︷︷ ︸
explained by model

+Yijk − Ȳij︸ ︷︷ ︸
left over

.

40 / 41



Model V, balanced case nij = n (p. 841)

We can show that SSTR=SSA+SSB+SSAB where

SSA = nb
a∑

i=1

(Ȳi·· − Ȳ··)2

SSA = na
b∑

j=1

(Ȳ·j· − Ȳ···)2

SSAB = n
a∑

i=1

b∑
j=1

(Ȳij − Ȳi·· − Ȳ·j· + Ȳ···)2

SSA, SSB, and SSAB measure the portion of variability explained
by the model due to Factors A, B, and interaction, respectively.
This leads to a “refined ANOVA table”

Source SS df MS F p-value

A SSA a − 1 SSA
a−1

MSA
MSE

P{F (a − 1, (n − 1)ab) > MSA/MSE}
B SSB b − 1 SSB

b−1
MSB
MSE

P{F (b − 1, (n − 1)ab) > MSB/MSE}
AB SSAB (a − 1)(b − 1) SSAB

(a−1)(b−1)
MSAB
MSE

P{F ((a − 1)(b − 1), (n − 1)ab) > MSAB/MSE}

Error SSE (n − 1)ab SSE
(n−1)ab

Total SSTO nab − 1

We have three tests for H0 : αi = 0, H0 : βj = 0, and
H0 : (αβ)ij = 0 respectively. Only the last one, the test for the
interaction, yields a hierarchical model if accepted.
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