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Additive design when nij ≡ 1

When nij ≡ 1, the subscript k is suppressed, and we must assume
that interaction is negligible compared to experimental error:

Yij = µ·· + αi + βj + {αβij + εij}︸ ︷︷ ︸
Error

, i = 1, . . . , a, j = 1, . . . , b

The additive effects A and B are tested against the error term,
which has (a− 1)× (b − 1) degrees of freedom. The book notes
we may choose to estimate µij by the MVUE Ȳi · + Ȳ·j − Ȳ··, rather
than Yij .
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Tukey’s test for additivity

Tukey’s test for additivity provides a 1 df test for interaction,
rather than a (a− 1)× (b − 1) df test, which would be impractical
for nij ≡ 1. 0.5

The reduced model is additive: Yij = µ·· + αi + βj + εij . The full
model is

Yij = µ·· + αi + βj + Dαiβj + εij .

This is more restrictive than using a general interaction (αβ)ij ,
leaving (a− 1)× (b − 1)− 1 = ab − a− b df to estimate error.
The full LS estimator would be nonlinear in our parameters.
Instead, we solve for D separately, and then plug in LS estimates of
αi and βj from the additive model.
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Tukey’s test for additivity

D̂ =

∑a
i=1

∑b
j=1(Ȳi · − Ȳ··)(Ȳ·j − Ȳ··)Yij∑a

i=1(Ȳi · − Ȳ··)2
∑b

j=1(Ȳ·j − Ȳ··)2
.

SSAB∗ =
a∑

i=1

b∑
j=1

ˆ(αβ)
2

ij =

a∑
i=1

b∑
j=1

D̂2α̂2
i β̂

2
j = D̂

a∑
i=1

b∑
j=1

α̂i β̂jYij ,

and SSTO=SSA+SSB+SSAB*+SSE*.

F ∗ =
SSAB∗

SSE ∗/(ab − a− b)
∼ F (1, ab − a− b),

if H0 : D = 0 is true.
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Trick for additivity test

Let Ŷij be fitted values from the additive model. Make a second
pass through PROC GLM to fit the ANCOVA model

Yij = µ+ αi + βj + γŶ 2
ij + εij .

The test of H0 : γ = 0 is the same as the test of H0 : D = 0, the
F-statistics are the same and the p-values are the same!
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Confidence ratings

Example (p. 895): Executives are exposed to one of three methods
(treatment, i = 1 utility method, i = 2 worry method, i = 3
comparison method) of quantifying the maximum risk premium
they would be willing to pay to avoid uncertainty in a business
decision. The response variable is “degree of confidence” in the
method on a scale from 0 (no confidence) to 20 (complete
confidence). It is thought that confidence is related to age, so the
subjects are blocked according to age (j = 1, 2, 3, 4, 5 from oldest
to youngest). nT = 15 subjects are recruited, with three subjects
in each of the 5 age categories. Within each age category, the
three subjects are randomly given one of the three treatments.
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Confidence ratings, pp. 895-896

data conf;

input rating age method @@;

datalines;

1 1 1 5 1 2 8 1 3

2 2 1 8 2 2 14 2 3

7 3 1 9 3 2 16 3 3

6 4 1 13 4 2 18 4 3

12 5 1 14 5 2 17 5 3

;

proc format;

value ac 1=’oldest’ 2=’age grp II’ 3=’age grp III’ 4=’age grp IV’ 5=’youngest’;

value mc 1=’utility’ 2=’worry’ 3=’compare’;

* first obtain interaction plot by fitting model V;

* trajectories look reasonably parallel;

proc glm data=conf plots=all;

class age method;

model rating=age|method;

run;
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Confidence ratings

* fit additive model;

proc glm data=conf plots=all;

class age method;

format age $ac. method $mc.;

model rating=age method / solution;

output out=tukeytest p=p; * p=yhat values for Tukey’s test;

run;

* Tukey test for additivity;

* p-value=0.79 so model IV is okay;

proc glm data=tukeytest;

title ’Test for additivity is Type III p*p p-value’;

class age method;

model rating=age method p*p;

run;
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21.1 Randomized complete block designs

Subjects are placed into homogeneous groups, called blocks, which
are selected based on either characteristics of experimental units or
the experimental setting. All treatment combinations assigned
randomly to subjects within blocks.

Example: Stream habitat is being tested for biodiversity. In an
observational study, three different types of habitat along streams
are tested: farmland, high-density rural, forested. Four streams are
selected for testing: Myers Creek, Cedar Creek, Dry Branch and
Toms Creek. For each stream and habitat type, a randomly
selected 100-meter stretch is seined and electrofished to measure
fish and macroinvertebrates. A single measure of biodiversity
(IBI-Index of Biotic Integrity) is computed for each stream reach.
The observational treatment here is Habitat, while the block is
Stream.
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RCBD designs, comments

With thoughtful blocking, a RCBD can provide more precise
results than completely randomized design.

There is only one replication for each pairing of treatment and
block; we need to assume no interaction between treatments
and blocks to obtain an estimate of σ2.

Note, as in the example above, that some experiments lend
themselves to a single replication by the nature of their
response variable.

If interaction were present, it has troubling implications for
inference on the treatment.

The blocking variable is observational, not experimental. We
cannot infer a causal relationship. This is usually not a
problem, since the experimenter cares more about the
treatment. It’s a source of endless debates among statisticians
though!
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Model and inference

One observation per block/treatment combination gives nT = nbr .
We need to fit model IV to get SSE > 0

Yij = µ·· + ρi︸︷︷︸
Bl

+ τj︸︷︷︸
Trt

+εij , i = 1, . . . , nb, j = 1, . . . , r .

Estimates are obtained via LS as usual,

Q(ρ, τ ) =

nb∑
i=1

r∑
j=1

(Yij − [µ·· + ρi + τj ])
2

minimized subject to ρnb = τr = 0.
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ANOVA table

Source SS df MS F

Block SSBL = r
∑nb

i=1(Ȳi· − Ȳ··)2 nb − 1 SSBL
nb−1

MSBL
MSBL.TR

Trt SSTR = nb
∑r

j=1(Ȳ·j − Ȳ··)2 r − 1 SSTR
r−1

MSB
MSE

Error SSBL.TR =
∑nb

i=1

∑r
j=1(Yij − Ȳi· − Ȳ·j + Ȳ··)2 (nb − 1)(r − 1) SSBL.TR

(nb−1)(r−1)

Total SSTO =
∑nb

i=1

∑r
j=1(Yij − Ȳ··)2 nb r − 1

Here, F = MSBL
MSBL.TR tests H0 : ρ1 = · · · = ρnb = 0 (no blocking

effect) and F = MSTR
MSBL.TR tests H0 : τ1 = · · · = τr = 0 (no

treatment effect). These appear in SAS as Type III tests.

If we reject H0 : τj = 0, then we obtain inferences in treatment
effects as usual, e.g. lsmeans B / pdiff adjust=tukey cl;
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Diagnostics

1 Profile (spaghetti) plots of the Yij vs. treatment j , connected
by block i are useful. They should be somewhat parallel if the
additive model is okay, but there is a lot of sampling
variability here as µ̂ij = Yij . For this reason, the book actually
recommends using µ̂ij = Ȳi · + Ȳ·j − Ȳ·· for inference.

2 Standard SAS diagnostic panel: eij vs. Ŷij , normal probability
plot of the {eij}, etc. Can also look at eij vs. either i or j ,
should show constant variance within blocks and treatments.

3 Friedman’s test is a nonparametric test based on within-block
ranks. Yes, it’s named after Milton Friedman. This can be
readily analyzed in PROC FREQ.

4 Tukey’s test for additivity.
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Diagnostics

1 Blocking can be assessed post hoc to see whether it was
efficient. You can compare the error term in a blocked design
(σ2

b, estimated by MSBL.TR ) to σ2
r , the error term in a

completely randomized design. The estimator for σ2
r can be

written a couple ways:

σ̂2
r =

(nb − 1)MSBL + nb(r − 1)MSBL.TR

(nbr − 1)

=
dfblocksMSblocks + (dfTrt + dferror )MSE

dfBlocks + dfTrt + dferror

2 The relative efficiency of blocking E = σ̂2
r /MSBL.TR

measures the increase in sample size needed for a CRD to
match the RCBD in efficiency.
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RCBD model extensions

nij > 1

Factorial treatment structure (e.g., τjk = βj + γk + (βγ)jk) is
a straightforward extension of RCBD.

Multiple blocking variables require a little more consideration

A couple of these topics are explored further in STAT 706
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