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25.1 One-way random cell means model

If treatment levels come from a larger population, their effects are
best modeled as random. A one-way random cell means model is

Yij = µi + εij ,

where

µ1, . . . , µr
iid∼ N(µ·, σ

2
µ) independent of εij

iid∼ N(0, σ2).

As usual, i = 1, . . . , r and j = 1, . . . , ni .

The test of interest is H0 : σ2µ = 0.

We can re-express the model as a random effects model, by writing

µi = µ· + τi , where τ1, . . . , τr
iid∼ N(0, σ2µ).

τ1, . . . , τr are called random effects and σ2µ and σ2 are termed
variance components. This model is an example of a random
effects model, because it has only random effects beyond the
intercept µ· (which is fixed).
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Model properties

The random cell means model has some quite different properties
from the fixed cell means model.

1 E (Yij) = µ·
2 σ2 {Yij} = σ2 + σ2µ (Hence the term variance components)

3 σ
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Testing H0 : σµ = 0

The MSE and MSTR are defined as they were before. One can
show E (MSE ) = σ2 and E (MSTR) = σ2 + nσ2µ when n = ni for
all i . Most packages provides symbolic forms of expected mean
squares for random/mixed models if requested.

If σµ = 0 we expect F ∗ = MSTR/MSE to be somewhat larger
than 1. In fact, just like the fixed-effects case,
F ∗ ∼ F (r − 1, nT − r). This is the test given by proc glm when
you add a random A; statement.

One can also fit the model in proc mixed, but this procedure
provides a slightly cruder test of H0 : σµ = 0.
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Other tests and estimates

We can derive estimates for µ·, σ
2 and

σ2
µ

σ2+σ2
µ

because pivotal

quantities are readily available. It is an open question whether we
are interested in inference on µ· in most practical applications.

Other quantities of interest tended to require moment-based
estimates (old school)–e.g., the variance component σ2µ. Methods
to provide point estimates and/or standard errors include

Satterthwaite Procedure (still old school)

Modified Large Sample (still old school)

Maximum Likelihood (biased)

Restricted Maximum Likelihood

5 / 21



Musical competition

r = 4 judges were selected at random to review students’ musical
performances on trumpet. Four students were randomly selected
to have their performances reviewed by a given judge. Yij is the
rating of the ith judge on the jth student.

Since the judges are chosen randomly from a large population of
available judges, the random-effects one-way model applies.
data music;

input rating judge @@;

datalines;

76 1 65 1 85 1 74 1 59 2 75 2 81 2 67 2

49 3 63 3 61 3 46 3 74 4 71 4 85 4 89 4

;

run;

proc glm; class judge; * Chapter 16, fixed-effects approach;

model rating=judge; run;

proc glm; class judge; * Chapter 25, mixed-effects approach;

model rating=judge;

random judge; run;

proc glimmix; class judge; * Tim prefers method=mle;

model rating= / s cl;

random judge / g cl;

covtest zerog; * tests H0: sigma_mu=0 vs. H0: sigma_mu>0;
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25.2 Random factor effects and mixed factor effects

In the two-factor random effects model, we specify

Yijk = µ·· + αi + βj + (αβ)ij + εijk

where µ·· is a constant, αi
iid∼ N(0, σ2α), βj

iid∼ N(0, σ2β), (αβ)ij
iid∼

N(0, σ2αβ) and εijk
iid∼ N(0, σ2) are pairwise independent.

As mentioned in class, these models can be useful when studying
sources of measurement error, e.g., in an industrial R & R study
(Repeatability and Reproducibility–I’ll bet those weren’t your first
two guesses).
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25.2 Random factor effects and mixed factor effects

The Expected Mean Squares suggests a different set of F tests to
test variance components.

Source df EMS
A a-1 σ2 + nσ2αβ + nbσ2α
B b-1 σ2 + nσ2αβ + naσ2β

AB (a-1)(b-1) σ2 + nσ2αβ
Error ab(n-1) σ2

Total abn-1
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25.2 Drug case study

On-line prices for several drugs were checked at multiple local
pharmacies. Is this a random effects two-factor study? Are model
assumptions satisfied?

Medicine
Walmart Mart Target Longs Agape CVS

Lasix 29.76 31.52 31.52 31.71 32.22 31.92
Nardil 18.50 23.13 24.54 23.23 24.89 17.62

Procardia 23.25 25.53 32.88 25.53 29.62 23.72
Naprosyn 187.58 184.75 185.81 185.45 185.45 188.90
Danazol 139.39 135.30 148.19 135.40 251.02 153.30

Lidocaine 239.75 157.24 216.36 157.14 157.14 145.07
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25.2 Drug case study

data pharmacy;

length Drug $10;

input Drug $ Pharmacy $ Price;

datalines;

Lasix Walmart 29.76 Lasix MedMart 31.52 & Lasix Target 31.52 Lasix Longs 31.71

Lasix Agape 32.22 Lasix CVS 31.92

...

Lidocaine Walmart 239.75 Lidocaine MedMart 157.24 Lidocaine Target 216.36

Lidocaine Longs 157.14 Lidocaine Agape 157.14 Lidocaine CVS 145.07

;

run;

proc glm data=pharmacy; class drug pharmacy;

model price=drug pharmacy;

random drug pharmacy/test; run;

proc glimmix data=pharmacy; class drug pharmacy;

model price= / s cl;

random drug pharmacy / g cl;

covtest zerog;

run;
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25.2 Mixed factor effects model

The book focuses on a restricted version of the factor effects
model. This approach is rarely used any more, perhaps because an
intellectual inconsistency–it is never generalized to models with
more fixed and random effects.

Yijk = µ·· + αi + βj + (αβ)ij + εijk

where µ·· is a constant, αi are fixed effects,

βj
iid∼ N(0, σ2β), (αβ)ij

iid∼ N(0, σ2αβ) and εijk
iid∼ N(0, σ2) are pairwise

independent.
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25.2 Random factor effects and mixed factor effects

The Expected Mean Squares for the unrestricted model uses
MSAB for the error term for both random and fixed effects. This
has important consequences for analysis of the fixed effect.

Source df EMS

A a-1 σ2 + nσ2αβ +
nb

∑
i α

2
i

a−1

B b-1 σ2 + nσ2αβ + naσ2β
AB (a-1)(b-1) σ2 + nσ2αβ

Error ab(n-1) σ2

Total abn-1

In the restricted model, the error term for the random effect B is
MSE!
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25.2 Inference for fixed effect in mixed effects model

Inference on the marginal mean µi · is more difficult since there is
no ready estimate for the variance of µ̂i · = Ȳi ··. However, inference
on the fixed effect αi is straightforward. We can show

α̂i = Ȳi ·· − Ȳ··· has variance σ2(α̂i ) =
σ2+nσ2

αβ

bn , which is readily
estimated by MSAB/bn. This result leads to ready results for
LSMEANS and pairwise differences, since µ̂i · − µ̂i ′· = α̂i − α̂i ′ .
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25.5 & 27.2 Random block effects and repeated measures

When block levels come from a large population, we can consider a
complete randomized block design with random block effects. One
very important example of this is the repeated measures design,
where each block is an experimental unit in which all treatment
levels are randomly applied. In fact, the blocks are retermed
“subjects” and we consider a sample of subjects from their
population.

Yij = µ·· + ρi︸︷︷︸
subject

+ τj︸︷︷︸
level

+εij ,

where

ρ1, . . . , ρnb
iid∼ N(0, σ2ρ) independent of εij

iid∼ N(0, σ2).

There are i = 1, . . . , nb subjects receiving each of j = 1, . . . , r
treatments.
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Random block effects

Note that the model can be extended to factorial treatment
structure, e.g.

Yijk = µ·· + ρi + αj + βk + (αβ)jk + εijk ,

Examples of subjects include people, animals, families, cities, and
clinics.

This is an example of a mixed effects model; there is a mix of
random (ρi ’s) and fixed (αj ’s, βk ’s, and (αβ)jk ’s) effects in the
model.
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Random blocks, comments

We assume subject effects and treatment effects do not
interact. We can check via Tukey’s 1 df test for additivity.
Also look at interaction plots as in fixed-effects RCBD designs.

ANOVA table and sums of squares are exactly the same,
except now the F-test for blocks tests H0 : σρ = 0 instead of
H0 : ρ1 = · · · = ρnb = 0.

Test for treatment is same H0 : τ1 = · · · = τr = 0.

Every treatment is given to every experimental unit in
randomized order.

Two sets of residuals to consider. Both should be normal; eij
should have constant variance.

1 eij = Yij − {µ̂+ ρ̂i + τ̂j}, and
2 ρ̂i .

corr(Yij1 ,Yij2) = σ2ρ/(σ2 + σ2ρ) for j1 6= j2 tells you how
correlated the repeated measures are.

We will use proc glimmix to fit these models.
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Road paint wear (p. 1082)

These are problems 25.19 and 25.20.

A state highway department studied wear of five paints at eight
randomly picked locations. The standard is paint 1. Paints 1, 3,
and 5 are white; paints 2 and 4 are yellow. At each location a
random ordering of the paints were applied to the road. After an
exposure period, a combined measure of wear Yij was recorded.
The higher the score, the better the wearing characteristics.

Recall the model

Yij = µ+ ρi︸︷︷︸
location

+ τj︸︷︷︸
paint

+εij ,

where

ρ1, . . . , ρnb
iid∼ N(0, σ2ρ) independent of εij

iid∼ N(0, σ2).

Here r = 5 and n = 8.
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Road paint wear in SAS

data road;

input wear location paint @@;

datalines;

11.0 1 1 13.0 1 2 10.0 1 3 18.0 1 4 15.0 1 5

20.0 2 1 28.0 2 2 15.0 2 3 30.0 2 4 18.0 2 5

8.0 3 1 10.0 3 2 8.0 3 3 16.0 3 4 12.0 3 5

30.0 4 1 35.0 4 2 27.0 4 3 41.0 4 4 28.0 4 5

14.0 5 1 16.0 5 2 13.0 5 3 22.0 5 4 16.0 5 5

25.0 6 1 27.0 6 2 26.0 6 3 33.0 6 4 25.0 6 5

43.0 7 1 46.0 7 2 41.0 7 3 55.0 7 4 42.0 7 5

13.0 8 1 14.0 8 2 12.0 8 3 20.0 8 4 13.0 8 5

;

proc glm plots=all; class location paint; * interaction plot to check additivity;

model wear=location|paint;

proc glimmix plots=all; class location paint; * 25.20(b,c,d)

model wear=paint; * only include fixed effects;

random location; * only include random effects;

lsmestimate paint "1 vs 2" 1.00 -1.00 0.00 0.00 0.00,

"1 vs 3" 1.00 0.00 -1.00 0.00 0.00,

"1 vs 4" 1.00 0.00 0.00 -1.00 0.00,

"1 vs 5" 1.00 0.00 0.00 0.00 -1.00 / adjust=bon cl alpha=0.9;

estimate "W vs Y" paint 2 -3 2 -3 2/ divisor=6;

18 / 21



Wine tasting

r = 4 Chardonnary wines of the same vintage were judged by
n = 6 judges. Each wine was blinded and given to each judge in
randomized order. The wines were scored on a 40-point scale Yij ,
with higher scores meaning better wine.

The six judges are considered to come from a large population of
wine-tasting judges and so a repeated measures model is
appropriate.

The analysis of these data are carried out in your textbook on pp.
1132–1137.
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Wine tasting in SAS proc glm

data wine;

input rating judge wine @@;

datalines;

20 1 1 24 1 2 28 1 3 28 1 4 15 2 1 18 2 2 23 2 3 24 2 4

18 3 1 19 3 2 24 3 3 23 3 4 26 4 1 26 4 2 30 4 3 30 4 4

22 5 1 24 5 2 28 5 3 26 5 4 19 6 1 21 6 2 27 6 3 25 6 4

;

* spaghetti plot figure 27.2 on p. 1133;

proc sgplot noautolegend;

series x=wine y=rating / group=judge;

scatter x=wine y=rating / group=judge markerchar=judge;

run;

* glm works, but is not really designed for repeated measures;

* this duplicates what is in your book;

proc glm plots=all; * gives figure 27.3 on p. 1133;

class wine judge;

model rating=wine judge;

random judge; * need to include ’judge’ in model using glm;

lsmeans wine / pdiff adjust=tukey alpha=0.05 cl;

run;
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Analysis in proc glimmix

* proc mixed or proc glimmix is a better choice overall;

* note that Tukey intervals are essentially the same;

* conditional residuals are r_ij;

proc glimmix plots=all;

class wine judge;

model rating=wine / s chisq; * model includes only ’fixed’ effects;

random judge; * random includes only ’random’ effects;

lsmeans wine / pdiff adjust=tukey alpha=0.05;

covtest zerog; * tests H0: sigma_rho=0 vs. H0: sigma_rho>0;

run;

* obtain estimates of rho_i;

ods listing close; ods output SolutionR=rand; * sends the rho_i to ’rand’;

proc glimmix data=wine;

class wine judge;

model rating=wine;

random judge / s; * ask for rho_i;

run;

ods output close; ods listing;

* check that rho_i estimates are approximately normal;

proc print data=rand; run;

proc univariate data=rand normal; var estimate;

run;
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