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Review from STAT 704

Consider a linear regression problem:

Yi = β0 + β1xi1 + β2xi2 + εi ,

where e1, . . . , en
iid∼ N(0, σ2).

Diagnostics (residual plots, added variable plots) might
indicate poor fit of the basic model above.

Remedial measures might include transforming the response,
transforming one or both predictors, or both.

One also might consider adding quadratic terms and/or an
interaction term.
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When considering a transformation of one predictor, an added
variable plot can suggest a transformation (e.g. log(x), 1/x) that
might work if the other predictor is “correctly” specified.

In general, a transformation is given by a function x∗ = g(x). Say
we decide that xi1 should be log-transformed and the reciprocal of
xi2 should be used. Then the resulting model is

Yi = β0 + β1 log(xi1) + β2/xi2 + εi

= β0 + gβ1(xi1) + gβ2(xi2) + εi ,

where gβ1(x) and gβ2(x) are two functions specified by β1 and β2.
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Here we are specifying forms for g1(x |β1) and g2(x |β2) based on
exploratory data analysis, but we could from the outset specify
models for g1(x |θ1) and g2(x |θ2) that are rich enough to capture
interesting and predictively useful aspects of how the predictors
affect the response and estimate these functions from the data.

One example of this is through a basis expansion; for the jth
predictor the transformation is:

gj(x) =

Kj∑
k=1

θjkψjk(x),

where {ψjk(·)}Kj

k=1 are B-spline basis functions, sine/cosine
functions, etc. This is not the approach taken in SAS PROC GAM.
PROC GAM makes use of cubic smoothing splines.

This is an example of “nonparametric regression,” which ironically
connotes the inclusion of lots of parameters rather than fewer.
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For simple regression data {(xi , yi )}ni=1, a cubic spline smoother
g(x) minimizes

n∑
i=1

(yi − g(xi ))2 + λ

∫ ∞
−∞

g ′′(x)2dx .

Good fit is achieved by minimizing the sum of squares∑n
i=1(yi − g(xi ))2. The

∫∞
−∞ g ′′(x)2dx term measures how wiggly

g(x) is and λ ≥ 0 is how much we will penalize g(x) for being
wiggly.

So the spline trades off between goodness of fit and wiggliness.

Although not obvious, the solution to this minimization is a cubic
spline: a piecewise cubic polynomial with the pieces joined at the
unique xi values.
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Cubic spline basis

Cubic splines are piecewise cubic polynomial functions with knots
{τk}, where the knots are typically defined as unique values of X .
Assume each of the n observed values of X are unique in the
following discussion.

The basis consists of truncated cubic polynomials “centered”
at each of the knots, augmented by lower order polynomials.

φ1(t) = 1, φ2(t) = t, φ3(t) = t2, φ4(t) = t3,

φk+4(t) = (t − τk)3+, k = 1, . . . , n
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Cubic spline basis

The piecewise cubic polynomial components are continuous
and have continuous first and second derivatives.

The cubic polynomial “joins” are smooth to the eye.

Natural cubic spline bases are linear beyond the knots; PROC
GAM estimates a natural cubic spline basis.

The truncated power basis can result in a nearly singular X
matrix; B-spline bases are more numerically stable.
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Hastie and Tibshirani (1986, 1990) point out that the meaning of
λ depends on the units xi is measured in, but that λ can be picked
to yield an “effective degrees of freedom” df or an “effective
number of parameters” being used in g(x). Then the complexity
of g(x) is equivalent to (df − 1)-degree polynomial, but with the
coefficients “spread out”, yielding a more flexible function that fits
data better.

Alternatively, λ can be picked through cross validation, by
minimizing

CV (λ) =
n∑

i=1

(yi − g−iλ (xi ))2.

Both options are available in SAS.
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We have {(xi , yi )}ni=1, where y1, . . . , yn are normal, Bernoulli or
Poisson. The generalized additive model (GAM) is given by

h {E (Yi )} = β0 + g1(xi1) + . . .+ gp(xip).

Each of g1(x), . . . , gp(x) are modeled via cubic smoothing splines,
each with their own smoothness parameters λ1, . . . , λp either
specified as df1, . . . , dfp or estimated through cross-validation. The
model is fit through back-fitting and local scoring. See Hastie and
Tibshirani (1990) or the SAS documentation for details.
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PROC GAM in SAS

SAS actually fits gj(xj) = βjxj + g̃j(xj), where g̃j(xj) integrates to
zero over the range of xj . Thus one can test H0 : g̃j(·) = 0, i.e. the
usual linear predictor is sufficient for xj .

In analyzing whether to reject Ho : g̃j(·) = 0, we would like to look
at the plot of gj(xj) = βjxj + g̃j(x) versus x spanning the range of
x1j , . . . , xnj . This is provided in the R package GAM (also in
DPpackage, a Bayesian version), but not in SAS (SAS plots only
g̃j(x) versus x , as we will see).
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Satellite counts Yi

Let’s fit a GAM to the horseshoe crab mating data:

proc gam plots(unpack)=components(clm) data=crabs;

class spine color;

model satellite=param(color) spline(width) / dist=poisson;

run;

This fits the model
Yi ∼ Pois(µi ),

log(µi ) =β0 + β1I{ci = 1}+ β2I{ci = 2}+ β3I{ci = 3}
+ β4 × widthi + g̃4(widthi ).
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SAS parameter estimates

Regression Model Analysis

Parameter Estimates

Parameter Standard

Parameter Estimate Error t Value Pr > |t|

Intercept -3.09884 0.60839 -5.09 <.0001

color 1 0.39679 0.20871 1.90 0.0590

color 2 0.23341 0.16249 1.44 0.1528

color 3 -0.00422 0.18041 -0.02 0.9814

color 4 0 . . .

Linear(width) 0.15032 0.02270 6.62 <.0001

Smoothing Model Analysis

Analysis of Deviance

Sum of

Source DF Squares Chi-Square Pr > ChiSq

Spline(width) 3.00000 11.777666 11.7777 0.0082
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The Analysis of Deviance table gives a χ2-test from comparing the
deviance between the full model and the model with this variable
dropped: here the model with color (categorical) plus only a linear
effect in weight. We see that width is significantly nonlinear at the
5% level. The default df = 3 corresponds to a smoothing spline
with the complexity of a cubic polynomial.

The following plot has the estimated smoothing spline function
with the linear effect subtracted out. The plot includes a 95%
confidence band for the whole curve. We visually inspect which
portions of this band do not include zero to get an idea where
significant nonlinearity occurs. This plot can suggest simpler
transformations of predictor variables than use of the full-blown
smoothing spline: here maybe a quadratic?
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The band shows a pronounced deviation from linearity for weight.
The plot spans the range of weight values in the data set and
becomes highly variable at the ends. Do you think extrapolation is
a good idea using GAMs?

Note: You can get predicted values out of SAS with CIs. Just
stick to representative values.

15 / 19



Generalized additive models
Additive predictors
Poisson example
GAM in R

GAM in R

The package gam was written by Trevor Hastie (one of the
inventors of GAM) and (in your instrucgtor’s opinion) is easier to
use and provides better output than SAS PROC GAM.

Just as in PROC GAM, you provide the function gam a list of
transformed and untransformed predictors. Note that it does not
make sense to consider a transformation of a categorical predictor.

The gam function provies plots of the ful transformation gj(·), not
just the “wiggly” part g̃j(·).

16 / 19



Generalized additive models
Additive predictors
Poisson example
GAM in R

O-ring data

Motivation: explosion of USA Space Shuttle Challenger on
January 28, 1986.

Rogers commission concluded that the Challenger accident
was caused by gas leak through the six o-ring joints of the
shuttle.

Dalal, Fowlkes & Hoadley (1989) looked at the number of
distressed o-rings (among 6) versus launch temperature
(Temperature) and pressure (Pressure) for 23 previous shuttle
flights, launched at temperatures between 53 ◦F and 81 ◦F.
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O-ring variables

ThermalDistress: a numeric vector indicating whether the
o-ring experienced thermal distress.

Temperature: a numeric vector giving the launch temperature
(◦F).

Pressure: a numeric vector giving the leak-check pressure
(psi).

Flight: a numeric vector giving the temporal order of flight.

Dalal, S.R., Fowlkes, E.B., and Hoadley, B. (1989). Risk analysis
of space shuttle: Pre-Challenger prediction of failure. Journal of
the American Statistical Association, 84, 945-957.
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Analysis in R

library(DPpackage); library(gam)

data(orings)

?orings

plot(orings) # note that pressure only has three values

fit-gam(ThermalDistress~s(Temperature)+Pressure+s(Flight),

family=binomial(link=logit),data=orings)

par(mfrow-c(2,2))

plot(fit,se=TRUE)

summary(fit)

This fits the model

logit(πj) = β0 + β1Tj + β2Pj + β3Fj + g̃1(Tj) + g̃3(Fj).
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