COUNTING RULES

For experiments for which all sample points (outcomes) are
equelly likely, we compute
$$P(A) = \frac{\# S \text{ sample points in } AS}{\# S \text{ sample points}}$$

I. Top 5 of 60 students to recieve \$\$5, \$\$4, \$\$3, \$\$2, \$\$1 according
to rank
(0voR)
\$\$ ways = 60 * 59 * 58 * 57 * 56 =
$$\frac{60!}{55!}$$
 = 655, 381, 440

$$\frac{\text{Formula}}{\text{Formula}}: \qquad \text{Number of views to draw r things from N, ordered,} \\ \text{with out replacement, is} \qquad \frac{N!}{(N-r)!}$$

I. Top 5 of 60 students each th recieve \$13.
(UveR) It verys =
$$\frac{60!}{55!} / 5!$$
 Pivide by the reducted ordered (permitting)
= 5,461,512
Founda: Number of verys to drew r things from N, vereduced,
without replacement, is
 $\binom{N}{r} := \frac{N!}{(N-r)!} r!$
 $\frac{N}{r}$ deter r to be define address
II. Student class at reaction during each of 5 class periods.
(OveR) chosen student recieves according to the day the amounts
Dry 1 Dry 2 Dry 3 Dry 4 Dry 5
\$16.82 \$14.30 \$2.45 \$16.03 \$1.28
It verys to chosen 5 students from 60, with replacement
uhen the order within is
 $O = 60 = 60 = 60 = 60^{5} = 777,600,000$
Formula: Number of verys to draw r things from N, ordered
N
II. Is defler bills distributed among 60 students.
(UVR) Like bills distributed among 60 students.
(UVR) Like displacement is
N

Each unique possibility corresponds to an arrangement of the bin walls and the dollar bills:

$$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$$

without replacement with replacement
Ordered
$$\frac{N!}{(N-r)!}$$
 N
Unordered $\binom{N}{r}$ $\binom{N+r-1}{r}$

Some poter examples: 5 cards drawn from 52-card deck

1. It heads with acc of diamonds
• It of vers to draw 4 cords from remaining 51 is

$$\binom{51}{4} = \frac{51 \cdot 50 \cdot 49 \cdot 48}{4 \cdot 3 \cdot 2} = 17 \cdot 25 \cdot 49 \cdot 12 = 249,900$$

2. # full house hands

• draw 5 cards from 52
• full horse: 3 cards of one rank and 2 of another
There are 13+12 ordered pairs of ranks
Each pair of ranks can be dealt in

$$\binom{4}{3} + \binom{4}{2}$$
 ways
Chose 3 of the 4 eights, for example.
So the total # of full house heads is
 $\binom{4}{3} + \binom{4}{2} + 13 + 12 = 3744$

3. # Aush hands

• Hush: 5 cards of same suit but not requestial
4 possible suits.
For each suit,
$$\begin{pmatrix} 13\\5 \end{pmatrix} - 10$$
 flushes possible
varys to draw
5 cards from 13 st of sequences:
80 # flush heads is
 $10-14$ (Ace can be high or low)
 $4/*\left[\begin{pmatrix} 13\\5 \end{pmatrix} - 10 \right] = 5,108$

4. # straight hands
• Straight: 5 cards in sequence, rotall of same suit
There are 1D sequences possible, 1-5,..., 10-14
(an make 1-5 with
(4 choices of Ace)× (4 choices of two) × ... × (4 choices of two)
So # ways to make 1-5 is
$$4^5$$
.
But 4 of these are sequences of a single suit.
So # straight hands is
 $10 + (4^5 - 4) = 10, 200$.
If possible for each sequence,
sequences of ways with same suit.

Application of counting to probability

Recall the point of counting:
For experiments for which all sample points (outcomes) are
equelly likely, we compute

$$P(A) = \frac{\# S \text{ sample points in } AS}{\# S \text{ sample points}}$$

Probability for poker examples:

Experiment: Draw 5 cards from 52-card deck
Sample space
$$S = \begin{cases} All possible \\ poker hands \end{cases}$$

How many sample points in S?

$$\binom{52}{5} = \frac{52 \cdot 51 \cdot 50 \cdot 47 \cdot 48}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 26 \cdot 17 \cdot 10 \cdot 49 \cdot 12 = 2598,960$$

At possible hards

1.
$$P(\text{get Ace of diamonds}) = \frac{249,900}{2,598,960} = .0962$$

2. $P(\text{full house}) = 3,7441/2,598,960 = .001441$
3. $P(\text{flush}) = 5,108/2,598,960 = .001965$
4. $P(\text{straight}) = 10,200/2,598,960 = .003925$

 $\frac{Formula:}{8izes} The number of ways to partition N things into K groups of$ $<math>8izes N_1, ..., N_K, where N_1 + ... + M_K = N, is$ $\frac{N!}{N_1! \cdots N_K!}$

Enge 12 passengers traveling in 3 rehicher taking 4, 5, and 3 passengers, resp.

12! ways to sit in all 12 passange sents.

So
$$\frac{12!}{4!5!3!} = \frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{4! \cdot 3 \cdot 2 \cdot 1 \cdot 3 \cdot 2 \cdot 1} = 3 \cdot 11 \cdot 5 \cdot 3 \cdot 8 \cdot 7 = 27,720$$

En (prev. cont.) If every partition equally likely, then

It { You two in 1st car}: It setting arrangements for

$$\frac{10!}{2!5!3!} = \frac{10-9-8-7-6}{2\cdot1\cdot3\cdot2\cdot1} = 5\cdot9\cdot8\cdot7 = 2,520$$
It remaining
sit arrangement in your car

$$\frac{10!}{4!3!3!} = \frac{10\cdot 9\cdot 8\cdot 7\cdot 6\cdot 5}{3\cdot 2\cdot 1\cdot 3\cdot 2\cdot 1} = 5\cdot 3\cdot 8\cdot 7\cdot 5 = 4,200$$

#{You two in 3rd car}:
$$\frac{10!}{4!5!2!} = \frac{10.9.8.7.6}{4!3.2.1} = 5.3.2.7.6 = 1260$$

So #{{vays you ride u/ friend} = 2520 + 4200 + 1260 = 7,980 and

$$P(Y_{ov ride with friend}) = \frac{7,980}{27,720} = .2879$$