COUNTING RULES
For experiments for which all sample points (outcomes) are
equally we compute

$$
P(A)=\frac{\#\{\text { sample point in } A\}}{\#\{\text { sample point }\}\}}
$$

Theorem (Fundamental theorem of counting):
If a job consist of K tasks, such that the turks may be completed in n_{1}, \ldots, n_{k} wars, then there are $c^{\prime \prime}$ "times"

$$
n_{1} * \cdots * n_{k}
$$

wars to do the 0^{-0}.

Many counting station are like drawing r things from N things...
I. ordered, without repleament (Ow R)
II. Unordered, without replacement (Uwo R)
III. ordered, with replacement (O,R)
II. unordered, with replacement ($\left.U_{W} R\right)$

C"orde dou not nether to ss"
E. 15 dollars to be disbursed among students ...
I. Top 5 of 60 student to mice $\$ 5, \$ 4, \$ 3, \$ 2, \$ 1$ according
($0,0 \mathrm{R}$)

$$
\# \text { ways }=60+59+58+57+56=\frac{60!}{55!}=655,381,440
$$

Formula: Number of ways to draw r things from N, ordered, without replacement, is

$$
\frac{N!}{(N-r)!}
$$

II. Top 5 of 60 students each to recieve $\$ 3$.
(NOR)

$$
\begin{aligned}
& \text { A ways }=60!/ \text { Divide by redindent orderings (permentations) } \\
& \text { 生 ways }=\frac{60!}{55!} / 5!\quad\left(\begin{array}{c}
\text { There are } 5! \\
\text { students ways in which the top } 5 \\
\text { cen rented. }
\end{array}\right) \\
& =5,461,512
\end{aligned}
$$

Formula: Number of ways to draw r things from N, unordered, without replacement, is

$$
\binom{N}{r}:=\frac{N!}{(N-r)!r!}
$$

"N choose $r^{"}$ we use ": $:$ " to define notation
III. Student chosen at random during each of 5 class periods. (O, R^{R}) chosen student recieves according to the day the amounts

$$
\begin{array}{lllll}
D y y & D_{y y} 2 & D_{y y} 3 & D_{y y} 4 & D_{y y} 5 \\
\$ 6.82 & \$ 4.36 & \$ 2.45 & \$ 1.09 & \$.28
\end{array}
$$

\# ways to choose 5 students from 60, with replaument when the order matters is

$$
60 * 60 * 60 * 60 \times 60=60^{5}=777,600,000
$$

Formula: Number of ways to draw r things from N, ordered with replacement, is

$$
N^{r}
$$

IV. 15 dollar bills distributed among 60 students.
(UwR) Like dropping is dollar bills into 60 bins;
Each unize possibility corresponds to an arrangement of the bin walls and the dollar bills:

We can arouse the bin walls and dollar bills in this many ways:

Formula: Number of ways to draw r things from N, unordered, with replacement, is

$$
\frac{(N-1+r)!}{(N-1)!r!}=\binom{N+r-1}{r}
$$

Sumer example: Distribute 3 dollar bills among 4 people
Enumerate of 0 足 0 Each possibility conupumds

There are 20 possibilities,

$$
\left.\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 2 & 1
\end{array}\right) \rightarrow \quad \begin{array}{llllll}
\$ & 1 & 1 & \$ & \$ & 1 \\
1 & \$ & 1 & \$ & \$ & 1 \\
1 & 1 & \$ & \| & \$ & 1
\end{array}
$$ which agrees with the formula:

$$
\frac{(4-1+3)!}{(4-1)!3!}=\frac{6!}{3!3!}=\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 2 \cdot 1}=5 \cdot 4=20
$$

In summary, the numbers of ways to draw r things from N are:
without replacement with replacement
Ordered

$$
\frac{N!}{(N-r)!}
$$

$$
N^{r}
$$

Unordered

$$
\binom{N}{r} \quad\binom{N+r-1}{r}
$$

Some poler examples: 5 cards drawn from 52 -cord deck

1. \#t hands with ace of diamonds

- \# of ways to draw 4 cards from remaining 51 is

$$
\binom{51}{4}=\frac{51 \cdot 50 \cdot 49 \cdot 48}{4 \cdot 3 \cdot 2}=17 \cdot 25 \cdot 49 \cdot 12=249,900
$$

2. \# full house hands

- draw 5 cards from 52
- foll house: 3 cards of one rank and 2 of another There are $13 * 12$ ordered pairs of rats Each pair of ranks can be dealt in

$$
\begin{aligned}
& \binom{4}{3}+\binom{4}{2} \text { ways } \\
& \text { n }^{2} \text { chose } 3 \text { of the } 4 \text { Aces, for exan-ph } 2 \text { of the } 4
\end{aligned}
$$

So the total \# of fill hose hods is

$$
\binom{4}{3} *\binom{4}{2}+13+12=3,744
$$

3. \# flush hands

- Hush: 5 cards of same suit but not sequential 4 possible suits.
Fur each suit, $\binom{13}{5}-10$ flushes possible

> \# ware to dow
S cards from 13 \# of sequences:

So \# flush hands is

$$
\left.\begin{array}{c}
1-5 \\
\vdots \\
10-14
\end{array}\right)-10 \text { sequences }(\text { Ace cen be high ... low) }
$$

$$
4 *\left[\binom{13}{5}-10\right]=5,108
$$

4. 4 straight hands

- Straight: 5 cards in sequence, not all of same suit There are 10 sequences possible, $1-5, \ldots, 10-14$
Can make 1-5 with

$$
(4 \text { choices of Ace }) \times(4 \text { choicer of two }) \times \cdots \times(4 \text { chorus of five })
$$

so $\#$ ways to make $1-5$ is 4^{5}.
But 4 of these are sequences of a singh suit.
So \# straight hands is

$$
\begin{aligned}
& 10 *(\underbrace{4^{5}-4})=10,200 . \\
& \text { \# positithemers for ecah sergunce, } \\
& \text { \# ware with same sort. }
\end{aligned}
$$

Application of counting to probability
Recall the point of counting:
For experiments for which all sample points (outcomes) are equally likely, we compute

$$
P(A)=\frac{\#\{\text { sample point in } A\}}{\#\{\text { sample point }\}}
$$

Probability for poler examples:
Experimat: Draw 5 cards from 52 -card deck Sample space

$$
S=\left\{\begin{array}{l}
\text { All possible } \\
\text { poler hands }
\end{array}\right\}
$$

How many sample points in S ?

$$
\begin{aligned}
& \binom{52}{5}=\frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=26 \cdot 17 \cdot 10 \cdot 49 \cdot 12=\underset{\uparrow}{2,598,960} \\
& \text { \# possible pads }
\end{aligned}
$$

1. $P($ get Ace ot diamonds $)=\frac{249,900}{2,598,960}=.0962$
2. $P($ foll hour $)=3,744 / 2,598,960=.001441$
3. $p(f l u s h)=5,108 / 2,598,960=.001965$
4. $P($ straight $)=10,200 / 2,598,960=.003925$

One more counting rule (Partitioning)
Formala: The number of ways to partition N things into K groups of sizes n_{1}, \ldots, n_{k}, where $n_{1}+\ldots+n_{k}=N$, is

$$
\frac{N!}{n_{1}!\cdot \cdots \cdot n_{k}!}
$$

Ey 12 pasenges traveling in 3 vehichas tiking 4,5, and 3 passengen, rapo.

12! weys to sit in cll 12 pessenger seats.
So \# ways to aplit up (pactition) is

$$
\frac{12!}{4!5!3!}=\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{4 \cdot 3 \cdot 2 \cdot 1 \cdot 3 \cdot 2 \cdot 1}=3 \cdot 11 \cdot 5 \cdot 3 \cdot 8 \cdot 7=27,720
$$

Ey (prev. cont.) If every partition efully likely, then

$$
P(\text { You ride with friend })=\frac{\text { ways you ride with friend }\}}{27,720}
$$

\# \{ You two in $1^{\text {st }}$ car $\}$: \#seting arrangumats for

$$
\frac{10!}{2!5!3!}=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1}=5 \cdot 9 \cdot 8 \cdot 7=2,520
$$

\#\{You two in $2^{n 0}$ cor $\}: \frac{10!}{4!3!3!}=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1 \cdot 3 \cdot 2 \cdot 1}=5 \cdot 3 \cdot 8 \cdot 7 \cdot 5=4,200$
\#\{You two in $3^{\text {rd }}$ cor\}: $\frac{10!}{4!5!2!}=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{4 \cdot 3 \cdot 2 \cdot 1}=5 \cdot 3 \cdot 2 \cdot 7 \cdot 6=1,260$

$$
\text { So } \mathbb{E} \text { \{ways you ride of friend }\}=2520+4200+1260=7,980
$$

and

$$
P(\text { You ride with friend })=\frac{7,980}{27,720}=.2879
$$

