CONDITIONAL PROBABILITY \& INDEPENDENCE
So far considercal unconditional probabilities:
I.e. $P(A)$ computed with respect to a sample spae e S with $P(S)=1$.

Can sometimes update S based on new information.
Eff Recall: 12 passengers riding in groups of 4,5 , and 3 in 3 vehicles.

$$
\begin{aligned}
& S=\{\text { All possithe portions }\}, \quad|S|=27,720
\end{aligned}
$$

W. hid

$$
P(\text { You ride with friend })=\frac{7,980}{27,720}=0.2789
$$

Suppose: We know your friend is in group of 5 (in the van)
Gives new sample space $S^{\text {new }}$:

$$
S^{\text {new }}=\{\text { partitions with friend in van }\}
$$

Now
where

$$
\begin{aligned}
\left|S^{\text {new }}\right| & =\text { \{paritions with friend in van\} ~ } \\
& =\frac{11!}{4!4!3!}=\frac{11 \cdot 10 \cdot 9 \cdot 9 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1 \cdot 3 \cdot 2 \cdot 1}=11 \cdot 5 \cdot 3 \cdot 2 \cdot 7 \cdot 5=11,550
\end{aligned}
$$

11: ways to sit in "ll 11 remaining passenger seats.
and

$$
\#\left\{\begin{array}{c}
\text { partitions with you with fried ed } \\
\text { and friend in van }
\end{array}\right\}=\frac{10!}{4!3!3!}=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1 \cdot 3 \cdot 2 \cdot 1}=5 \cdot 3 \cdot 8 \cdot 7 \cdot 5=4,200
$$

10! ways to st in all 10 ! remaining passenger seats.
so

$$
P\left(Y_{\text {oo }} \text { with freed given friend in van }\right)=\frac{4,200}{11,550}=.3636
$$

Defn: If A and B are events in S and $P(B)>0$, then the conditional probability of A given B is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

* Event B becomes new sample space:

\simeq In thin picture it A is move likely to happen

Eg: We have

$$
P\left(Y_{\text {on }} \text { with friend } \mid \text { friend in } V_{\text {an }}\right)=\frac{P\left(Y_{\text {on with friend }} \cap \text { friend in van }\right)}{P(\text { friend in Van })} \text {, }
$$

where from before

$$
P\left(Y_{\text {on two in van }}\right)=\frac{4,200}{27,720}=.1515
$$

and

$$
\begin{aligned}
P(\text { Friend in Van }) & =\frac{\#\{\text { Partitions u/ friend in Ven }\}}{\#\{\text { all partitions }\}} \\
& =\frac{11,580}{27,920}=.4167
\end{aligned}
$$

so

$$
P\left(\text { You with friend } \mid \text { fried in } V_{\text {an }}\right)=\frac{.1515}{.4167}=.3636
$$

Exp: Wale up on find 2 days of semesters $\left(\begin{array}{c}\text { Compare to unconditional } \\ \text { probability ot vididy } w / \\ \text { friend }\end{array}\right)$

$$
\begin{aligned}
& A=\text { overlap on dy } 1 \\
& B=\text { Overlap on dy } 2
\end{aligned}
$$

Sopor $P(A)=\frac{1}{4}$

$$
\begin{aligned}
& P(B)=\frac{1}{3} \\
& P(A \wedge B)=\frac{1}{10}
\end{aligned}
$$

Then
Overstep on dy 2 given you orusclept on day 1

$$
P(B \mid A)=\frac{1 / 10}{1 / 4}=\frac{4}{10}>P(B)
$$

Illustration

$$
P\left(A_{i} \mid B\right)=\underbrace{\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{j=1}^{\infty} P\left(B \mid A_{j}\right) P\left(A_{j}\right)} \leftarrow A \text { reformulation of }}_{R} \begin{aligned}
& P\left(A_{i} \mid B\right)=\frac{P\left(A_{i} \cap B\right)}{P(B)}
\end{aligned}
$$

We know by defy of conditional probability

$$
P\left(A_{i} \mid B\right)=\frac{P\left(A_{i} \cap B\right)}{P(B)}
$$

and $P\left(A_{i} \cap B\right)=P\left(B \mid A_{i}\right) P\left(A_{i}\right)$
Also

$$
P(B)=\sum_{j=1}^{\infty} P\left(B \cap A_{j}\right)=\sum_{j=1}^{\infty} P\left(B \mid A_{i}\right) P\left(A_{i}\right)
$$

Application (Simpler version) of Bayer' Rule:
For any events A and B in S,

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P(A C)} \longleftarrow \text { reformulation of } \quad P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

* Instance of Bayer Rule because A, A^{c} make a partition of S

Illustration:

Note that

$$
\begin{aligned}
P(A \cap B) & =P(B \mid A) P(A) \\
P(B) & =P(B \cap A)+P\left(B \cap A^{C}\right) \\
& =P(B \mid A) P(A)+P\left(B \mid A^{C}\right) P\left(A^{C}\right)
\end{aligned}
$$

Eff Suppose we have "noisy" Morse Code transmission such that

$$
\begin{aligned}
& P\left(-^{\prime} \text { rec } \mid \prime \cdot \operatorname{sen} t\right)=1 / 8 \\
& P(10 \text { rec } \mid \cdot-\operatorname{sen} t)=1 / 8
\end{aligned}
$$

Wat to know

(ii) $P(1-1$ sent $\mid(1)$ rec $)$

Prior m knowledge:
$3^{\prime} \cdot$'s for every 4 (3)'s
' \because ' and (-) sent in proportion 3:4

(i) By Bayes' Rule

$$
\begin{aligned}
& =\frac{(7 / 8)\left(\frac{3}{7}\right)}{(7 / 8)\left(\frac{3}{7}\right)+(1 / 8)\left(\frac{4}{7}\right)} \\
& =\frac{21}{25}
\end{aligned}
$$

(ii) $P($ ' - sut 1 ' ' rec $)=$ Similer, left as exerese $=\frac{28}{31}$
E.f Discase sereening with imperfect assoy

A: positive discese assy, A^{c} : negative discesc cassay D : presence of discese ${ }^{c}$: no discese
Suppose

$$
P(A \mid D)=.92^{6} \text { "sensitivity" of assoy } P\left(A^{c} \mid D^{c}\right)=.98^{5^{" s p e c i f i c i t y " ~ o t ~ a s s-y ~}}
$$

How sure can me be of resolts? Want to find
(i) $P(D \mid A)$
(ii) $P\left(D^{c} \mid A^{c}\right)$

$$
\left(\begin{array}{cc}
A \cap D: " \text { Aside: } \\
A \cap \text { True } & \text { positive" } \\
A \cap D^{2}: " F F a l s e & \text { positive" } \\
A^{A} \cap D^{\circ}: " T r e & \text { negative" } \\
A^{C} \cap D: " F a b e & \text { negative" }
\end{array}\right)
$$

Priorn knouledge: 5% of pop has discese $\Rightarrow P(D)=.05$
(i) By Beyes' rule

$$
\begin{aligned}
& P(A \cap D) \\
& P(D \mid A)=\underbrace{\overbrace{P(A \mid D) P(D)}^{P(A \mid D) P(D)+P\left(A \mid D^{c}\right) P\left(D^{c}\right)}}_{=P(A \cap D)+P\left(A \cap D^{\circ}\right)}=P(A) \quad 1-P\left(A^{c} \mid D^{\circ}\right)=1-.98=.02 \\
& =\frac{(.92)(.05)}{(.92)(.05)+(.02)(.95)} \\
& =.7077
\end{aligned}
$$

(ii) $P\left(D^{c} \mid A^{c}\right)=$ similar, left as exercise $=.9957$

Defy: Two events A and B in S ave called independent if

$$
P(A \cap B)=P(A) P(B)
$$

* Note that the following statements are equivalent:
(i) $P(A \cap B)=P(A) P(B)$
(ii) $P(A)=P(A \mid B) \leftarrow$ probability of A unaltered by
(iii) $P(B)=P(B \mid A)$ occurrence of B

$$
P(A)=P(A \mid B)=\frac{P(A \cap B)}{P(B)} \Leftrightarrow P(A) P(B)=P(A \cap B)
$$

\forall If A, B independent, A, B^{c}, A^{c}, B, and A^{c}, B^{c} are independent

Eye Exp: Flip a coin twice
H_{1} : head on fins flip
H_{2} : head on second $H_{i p}$

$$
P\left(t_{\text {wo heads }}\right)=P\left(H_{1} \cap H_{2}\right)=P\left(H_{1}\right) P\left(H_{2}\right)=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{4}
$$

Deft: A collection of events A_{1}, \ldots, A_{n} are $A_{i} \frac{\text { mutually independent }}{\text { sub collection }} A_{i,}, \ldots, A_{i_{k}}$, we have any

$$
P\left(\bigcap_{j=1}^{k} A_{i_{j}}\right)=\prod_{j=1}^{k} P\left(A_{i_{j}}\right)
$$

Egg. Exp: Flip a coin n times,

$$
H_{i}: \text { head on } i^{\text {th }} \text { flip, } i=1, \ldots, n
$$

$\forall H_{1}, \ldots, H_{n}$ are motully independent
(i) $P($ All heads $)=P\left(\bigcap_{i=1}^{n} H_{i}\right)=\prod_{i=1}^{n} P\left(H_{i}\right)=(1 / 2)^{n}$
(ii) $P($ At least one tail $)=P\left(\{\text { All heads }\}^{c}\right)$

$$
\begin{aligned}
& =1-P(\text { All heads }) \\
& =1-\left(y_{2}\right)^{n}
\end{aligned}
$$

