RANDOM VARIABLES
A random variable is a numeric encoding of the outcome of a statistical experiment. Precisely:
Defun: A random variable is a function from a sample space S to the real numbers.
random variable
I.e. a $\tilde{r . v} \quad X$ is a function $\quad \begin{array}{rl}\quad \mathbb{R} & \mathbb{L}, ~ \\ \mathbb{R}\end{array}$

$$
\mathbb{R}=(-\infty, \infty)
$$

x tokes outcomes in S
and natures mol numbers
Denote by $\stackrel{\downarrow}{x}$ the range of x, the specific set of values that x may take.
E. Flip a coin. $S=\{H, T\}$

Lat X be 1 if H and O if T :

$$
X(s)=\left\{\begin{array}{lll}
1 & \text { if } s=H \\
0 & \text { if } s=T
\end{array}\right.
$$

Rang of X is $X=\{0,1\}$.
E 3 coin flips.

$$
S=\left\{\begin{array}{llll}
& H H T & T T H & \\
H & \begin{array}{ll}
H H T & T H T
\end{array} \\
& T H H & H T T & T T T
\end{array}\right\}
$$

Lat X be \# of heads:

$$
X(s)= \begin{cases}0 & \text { if } s=T T T \\ 1 & \text { if } s \in\{T T H, T H T, H T T\} \\ 2 & \text { if } s \in\{H H T, H T H, T H H\} \\ 3 & \text { if } s=H H H\end{cases}
$$

Range of x is $x=\{0,1,2,3\}$.

Eff chip animal, record dist. travelled.

$$
S=[0, \infty)
$$

Lat X be dist. travelled:

$$
x(s)=s
$$

Rang of X is $x=[0, \infty)$

* We most of the time write X instead of $X(s)$.
* Range X also called the "support" of X

Expressing probabilities about a riv. X :
x finite: e.g. $x=\{0,1\}, x=\{1,2, \ldots, n\}$
Let X be a riv. on the sample space $S=\left\{s_{1}, \ldots, s_{n}\right\}$ which takes values in $X=\left\{x_{1}, \ldots, x_{m}\right\}$. Then for any $x \in X$, we write

$$
P_{X}(X=x)=P(\{s \in S: X(s)=x\})
$$

Event on which $X=x$,
ie. set of ot tomes s
for which $X(s)=x$
little x represents any specific value
S. $P_{x}(X=x)$ is the probability that X takes the value x.

E 3 coin flips, $X=\#$ heads. So $X=\{0,1,2,3\}$.
Then $\quad P_{x}(x=0)=P(T T T)=1 / 8$

$$
\begin{aligned}
& P_{x}(x=1)=P(\{T T H, T H T, H T T\})=3 / 8 \\
& P_{x}(x=2)=P(\{H H T, H T H, T H H\}=3 / 8 \\
& P_{x}(x=3)=P(H H H)=1 / 8
\end{aligned}
$$

We often tabulate $P_{X}(X=x)$ like this:

x	0	1	2	3
$P_{X}(X=x)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

X countable: e.j. $x=\mathbb{Z}^{+} \quad\left(\mathbb{Z}^{+}=\{1,2, \ldots\}\right)$

* The same is done for $\delta=\left\{s_{1}, s_{2}, \ldots\right\}, X=\left\{x_{1}, x_{2}, \ldots\right\}$, ie. when S and x are countable, as in the x-finite case
x finite, countable, or uncountable e.g. $x=\{0,1\}, x=\mathbb{Z}^{+}, x=(-\infty, \infty)$.
Let X be a riv. on any sample space S which takes values in X. Then for any set $A \in \xi_{x}$, we write

$$
P_{X}(X \in A)=P(\{s \in s: X(s) \in A\})
$$

$\tau_{\text {special collection of sets }}^{\text {of interest in }}$
$\tau_{\text {set of values }} X$ may take
So $P_{x}(x \in A)$ is the probability that X takes a value in A.
Egg chip animal, record dist. travelled

$$
\begin{gathered}
S=[0, \infty), X=[0, \infty) . \\
P_{X}(x \in(1,2))=P(\{s \in[0, \infty): X(s) \in(1,2))=P((1,2))
\end{gathered}
$$

How might we assign probabilities to intervals?
(More on this soon
(Mow on might on this soon sign probe

* For a riv. X, we call P_{X} the probability distribution of X.

THE CUMULATIVE DISTRIBUTION FUNCTION
Deft: The cumulative distribution function (cd) F_{X} of a riv. X is $F_{x}(x)=P_{x}(x \leqslant x)$ for all $x \in \mathbb{R}$ $\uparrow_{\text {could write }} P_{x}(x \in(-\infty, x])$
Eq 3 coin flips, $x=\#$ heads.

$$
\begin{array}{c|cccc}
x & 0 & 1 & 2 & 3 \\
\hline P_{x}(X=x) & 1 / 8 & 3 / 8 & 3 / 8 & 1 / 8
\end{array} \Rightarrow F_{x}(x)=\left\{\begin{array}{cl}
0 & -\infty<x<0 \\
1 / 8 & 0 \leq x<1 \\
4 / 8 & 1 \leq x<2 \\
7 / 8 & 2 \leq x<3 \\
1 & 3 \leq x<\infty
\end{array}\right.
$$

Note:

* $F_{X}(x)$ defined for $\| l x \in \mathbb{R}$, not just $x \in \mathcal{X}$
e... $\quad F_{x}(1 / 2)=P_{x}(x \leq 1 / 2)=P(\{s \in S: X(s) \leq 1 / 2\})=P(\{T T T\})=1 / 8$
* $F_{X}(x)$ has jumps at $x \in X$ with jump sizes $P_{X}(x=x), x \in X$
* $F_{x}(x)=0 \quad \forall x<0, \quad F_{x}(x)=1 \quad \forall x \geqslant 3$ s "if and only if"
Theorem: The function $F_{x}(x)$ is a col iff
(i) $\lim _{x \rightarrow-\infty} F_{x}(x)=0$ and $\lim _{x \rightarrow \infty} F_{x}(x)=1$
(ii) $F_{x}(x)$ is nondecreasing in x
(iii) $F_{x}(x)$ is right-continuous; i.e. for every $x_{0}, \lim _{x \downarrow x_{0}} F(x)=F\left(x_{0}\right)$ Right -continuity means jumps are like this:
E.. $X=\#$ win flips to g^{t} a head, where on each flip, $P($ Head $)=p$.
$X=\{1,2, \ldots\}$, and

x	1	2	3	\cdots
$P_{x}(x=x)$	p	$\underbrace{(1-p) p}_{1+=i 1}$ 1 had $^{(1-p})^{2}$	$\underbrace{(1-p}_{\text {tails 1 head }} p$	\cdots

So we get $\quad P_{x}(x=x)=(1-p)^{x-1} p \quad$ for $\quad x=1,2, \ldots$
called the geometric probability distribution
So for $x=1,2, \ldots$

$$
\begin{aligned}
& P_{X}(X \leq x)=P_{X}(X=1)+\cdots+P_{X}(X=x) \\
& =\sum_{i=1}^{x} P_{X}(X=i) \\
& =\sum_{i=1}^{x}(1-p)^{i-1} p \\
& =p \sum_{i=1}^{x}(1-p)^{i-1} \\
& (1-p)^{0}+(1-p)^{1}+\ldots+(1-p)^{x-1} \\
& =p \sum_{i=0}^{x-1}(1-p)^{i} \\
& =p\left[\frac{1-(1-p)^{x}}{1-(1-p)}\right] \\
& =1-(1-p)^{x} \\
& \text { Resort: } \\
& \text { partial geometric series } \\
& \text { For } t \neq 1 \text {, } \\
& \sum_{i=0}^{n} t^{i}=\frac{1-t^{n+1}}{1-t} \text { for } n=1,2, \ldots \\
& \text { Proof: } \\
& \text { Let } S_{n}=\sum_{i=0}^{n} t^{i}=1+t+\ldots+t^{n} \\
& \text { Then } \\
& S_{n}-t S_{n}=1+t+\ldots+t^{n} \\
& -\left(t+t^{2}+\ldots+t^{n+1}\right) \\
& =1-t^{n+1} \\
& \text { s. } \quad S_{n}=\frac{1-t^{n+1}}{1-t}
\end{aligned}
$$

8. for $x \in \mathbb{R}$,

$$
F_{X}(x)=\left\{\begin{array}{cc}
1-(1-p)^{i} & \text { for } x \in[i, i+1) \quad i=0,1,2, \ldots \\
0 & \text { for } x<0
\end{array}\right.
$$

or we may equivalently write
"flor" function $\left.F_{X}(x)=\left[1-(1-p)^{L x}\right]\right] \mathbb{1}(x \geqslant 0)$
where $\lfloor x\rfloor$ is the greatest integer not exceeding x, e.g. $\lfloor 0.25\rfloor=0,\lfloor 1.87\rfloor=1$
and $\mathbb{I}(x \in A)=\left\{\begin{array}{ll}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{array}\right.$ is called the indicator function. $₹$ "Indicates" whether $x \in A$ by petering 1 or 0

For $p=1 / 2, \quad F_{x}(x)$ looks like

Eq. Chip animal, $X=$ dist. travelled.
We might suppose that
This is the $\begin{aligned} & \text { This is the } \\ & \text { coff of a } \\ & \text { probabilility distribution } \\ & \text { called the exponential } \\ & \text { distribution }\end{aligned} \rightarrow F_{x}(x)=\left\{\begin{array}{cll}1-e^{-\frac{x}{\lambda}} & \text { for } & x \geqslant 0 \\ 0 & \text { for } & x<0\end{array}\right.$
for some $\lambda>0$.

For $\quad x=1, \quad F_{x}(x)$ looks like

* $F_{X}(x)$ is continuous (has no jumps); thus it is right -continuous

Defn: A riv. X with edf $F_{X}(x)$ is called a continuous riv. if $F_{X}(x)$ is a continuous function of x and a discrete riv. if $F_{x}(x)$ is a step function of x.

No "point probabilities" for continuous r.v.s
Let x be a continuous r.v.j consider event $\{x=x\}$:

$$
\{X=x\} \subset\{x-\varepsilon<X \leq x\} \text { for every } \varepsilon>0
$$

gives

$$
0 \leq P_{X}(X=x) \leq P_{X}(x-\varepsilon<X \leq x)=F_{X}(x)-F_{X}(x-\varepsilon)
$$

for every $\varepsilon>0$, and

$$
\lim _{\varepsilon \not 0} F_{x}(x)-F_{x}(x-\varepsilon) \stackrel{\text { continuity of } F_{x} \Rightarrow F_{X}(x)-F_{x}\left(\lim _{\varepsilon \neq 0} x-\varepsilon\right)=F_{x}(x)-F_{x}(x)=0 . . . \text { pass limit inside }}{=} \text {. }
$$

This gives $P_{X}(X=x)=0$.
Illustration:
F_{y} continuous:

F_{x} a step function:

Thus for a continuous riv. X, for any $a, b \in \mathbb{R}$,

$$
P(a<x<b)=P(a \leqslant x<b)=P(a<x \leqslant b)=P(a \leqslant x \leqslant b)=F_{x}(b)-F_{x}(a) .
$$

We are very often interested in more then one riv. at a time.
Defn: Two r.v.s X and Y on the same sample space S with the same range x are identically distributed sample space S with $A \in \xi_{x}$

$$
{\underset{X}{X}}^{(X \in A)}=P_{Y}(Y \in A)
$$

All events of interest $?$ in the range x
Theorem: The following two statements are equivalent
(a) The r.v.s X and Y are identically distributed
(b) $F_{X}(x)=F_{Y}(x)$ for every x

* Equivalence means each statement implies the other.
* From now on, say that two r.v.s are identically distributed if they have the same coff.
E.j. $\quad X=$ coin flips to get a head on Monday $Y=$ coir Hips to y^{t} a head on Tuesday

Then $F_{X}(x)=F_{Y}(x)$ for every x.
Because the universe is like that.

