RANDOM VARIABLES

A random variable is a numeric encoding of the outcome of a statistical experiment. Precisely: A <u>random variable</u> is a function from a sample space 5 to the real numbers. <u>Defn</u>: rondom variable R= (-0,0) I.e. a r.v. X is a function X: 5 -> R X takes outcomes in S and returns real numbers "script" X Denote by X the range of X, the specific set of values that X may take Eq. Flip a coin. $S = \{H, T\}$ Let X be 2 if H and 0 if T: $X(s) = \begin{cases} 2 & \text{if } g = H \\ 0 & \text{if } g = T \end{cases}$ Range of X is $X = \{0, 1\}$. Ezz 3 coin flips. $S = \begin{cases} HHH & HHT & TTH \\ HHH & HTH & THT & TTT \\ THH & HTT \end{cases}$ het X be # of heads: $\chi(s) = \begin{cases} 0 & \text{if } s = TTT \\ 1 & \text{if } s \in \{TTH, THT, HTT\} \\ 2 & \text{if } s \in \{HHT, HTH, THH\} \\ 1 & \text{if } s \in \{HHT, HTH, THH\} \end{cases}$ Range of X is X = {0, 1, 2, 3}.

Ein chip chimal, record dist. travelled. $S = [0, \infty)$ Lot X be dist. travelled: X(s) = sRange of X is $X = [0, \infty)$ + We most of the time write X instead of X(s). * Range I also called the "support" of X Expressing probabilities about a r.v. X: <u>X</u> finite: e.g. $X = \{0, 1\}, X = \{1, 2, ..., n\}$ Let X be a r.v. on the sample space $S = \{s_1, ..., s_n\}$ which takes values in $X = \{x_1, ..., x_m\}$. Then for any $x \in X$, we write $P_X(X=x) = P(1 \le \le \le : x(s) = x^3)$ Event on which X=x, i.e. set of optiones s little & represents any specific vilue bij X is the symbol for our r.v. for which X(5) = x $P_X(X = x)$ is the probability that X takes the value x. g. $E_{2} = 3$ coin flips, X = 4 heads. So $X = \{0, 1, 2, 3\}$. Then $P_{X}(X=0) = P(TTT) = \frac{1}{8}$ $P_{X}(X=1) = P(\{TTH, THT, HTT\}) = \frac{3}{8}$ $P_{x}(x=2) = P(\{HHT, HTH, THH\}) = 3/8$ $P_{x}(x=3) = P(HHH) = \frac{1}{8}$ We often tabulate Px(X=x) like this: $\frac{x}{P_{X}(x=x)} \frac{0}{1} \frac{1}{2} \frac{2}{3} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{1}{2} \frac{1$

$$\frac{X \text{ countrable}: e_{3}, X = \mathbb{Z}^{+} \left(\mathbb{Z}^{+} \{i, j, \dots\}\right)$$

$$\Rightarrow \text{ The source is done by $S = \{S_{i}, S_{2}, \dots\}, X = \{X_{i}, X_{2}, \dots\}, \text{ see}$
when S and X are contable, as in the $X - \text{finite ence}$

$$\frac{X \text{ finite search table, or uncontable}}{X \text{ finite search table, or uncontable}} e_{3}, X = \{Z^{+}, X = (-\varphi, \varphi).$$
Let X be a r.v. on any sample space S which tables $Y = \{Y \in A\} = r(\varphi, \varphi)$.
Let X be a r.v. on any sample space S which $Y = (-\varphi, \varphi)$.
Let X be a r.v. on any sample space S which $Y = (-\varphi, \varphi)$.
Let X be a r.v. on any sample space S which $Y = (-\varphi, \varphi)$.
Let X be a r.v. on any sample space S which $Y = (-\varphi, \varphi)$.
Let X be a r.v. on any sample space S which $Y = (-\varphi, \varphi)$.
Let $X = A$ is $Y = P(\{S \in S : X(s) \in A\})$.
The one of $Y = Y(X \in A)$ is the probability that X takes a value in A .
Eq. (X $\in A$) is the probability that X takes a value in A .
Eq. (X $\in A$) is the probability that X takes a value in A .
Eq. (X $\in (1, 2)$) = $P(\{S \in [0, p] : X(s) \in (1, 2)\} = P((1, 2))$
(How might we assign probability distribution of X .
THE CUMULATIVE DISTRIBUTION FUNCTION
Dether the somulative distribution function (ref. Y_{X} of a r.w X is
 $F_{X}(X) = P_{X}(X \in X)$ for all $X \in \mathbb{R}$.
Teach write $P_{X}(X \in (-p, \pi)$)
Eq. S can the Y_{S} by Y_{S} by Y_{S} and $Y = P_{X}(x) = \begin{cases} \varphi_{S} - \varphi_{S} + \varphi_{S} - \varphi_{S} + \varphi_{S} \\ \varphi_{S} - \varphi_{S} + \varphi_{S} - \varphi_{S} \end{cases}$
Eq. S can the Y_{S} by Y_{S} by Y_{S} and Y_{S} by Y_{S} be Y_{S} by Y_{S} b$$

So we get
$$P_{X}(X=x) = (1-p)^{X-1} + f_{x} = 1_{1}Z_{1}...$$

so for $x = 1_{1}Z_{1}...$
 $P_{X}(X \le x) = P_{X}(X=1) + ... + P_{X}(X=x)$
 $= \sum_{i=1}^{X} P_{X}(X=i)$
 $= \sum_{i=1}^{X} (1-p)^{i-1} + ... + P_{X}(X=x)$
 $= \sum_{i=1}^{X} (1-p)^{i-1} + ... + P_{X}(X=x)$
 $= p \sum_{i=1}^{X} (1-p)^{i-1} + ... + P_{X}(X=x)$
 $P_{x}(X=i)$
 $P_{x}(X=i)$
 $= p \sum_{i=1}^{X} (1-p)^{i-1} + ... + P_{x}(X=x)$
 $P_{x}(X=i)$
 $P_$

So for $x \in \mathbb{R}$, $F_{X}(x) = \begin{cases} 1 - (1 - p)^{i} & \text{for } x \in [i, i+1) & i=0, 1, 2, ... \\ o & \text{for } x \in 0 \end{cases}$, Or we may equivalently write "flow" function $F_{X}(x) = [1 - (1 - p)^{L_{XS}}] \mathbb{1}(x \neq 0)$ where LxS is the greatest integer not exceeding x, e.g. $\lfloor 0.25 \rfloor = 0$, $\lfloor 1.87 \rfloor = 1$ and $\mathbb{1}(x \in A) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$ is called the indicator function. "Indicates" whether $x \in A$ by returning 1 or 0

<u>Defn</u>: A r.v. X with $cdf F_X(x)$ is called a <u>continuous r.v.</u> if $F_X(x)$ is a continuous function of x and a <u>discrete r.v.</u> if $F_X(x)$ is a step function of x.

Let X be a continuous r.v.; consider event
$$\{X=x\}$$
:
 $\{X=x\} \subset \{X-E < X \le x\}$ for every $E \ge 0$

gives

$$0 \notin P_X(X=x) \notin P_X(x-\varepsilon \land X \notin x) = F_X(x) - F_X(x-\varepsilon)$$

for every $\varepsilon > 0$, and
 $continuity \text{ of } F_X => can pass limit inside$
 $\lim_{\varepsilon \to 0} F_X(x) - F_X(x-\varepsilon) \stackrel{d}{=} F_X(x) - F_X(\lim_{\varepsilon \to 0} x-\varepsilon) = F_X(x) - F_X(x) = 0.$
This gives $P_X(X=x) = 0.$

Illustration :

We are very often interested in more than one r.v. at a time.
Define: Two r.v.s X and Y on the same sample space S with
the same range X are identically distributed it for every
$$A \in E_{X}$$

 $P(X \in A) = P_{Y}(Y \in A)$ All events of interest
in the range I
Theorem: The following two statements are equivalent
(a) The r.u.s X and Y are identically distributed
(b) $F_{X}(x) = F_{Y}(x)$ for every x
 $Y = E_{Y}vivalence means each statement implies the other.
 $F_{Y}(x) = home = coff.$
E.g. $X = dF$ coin thips th get a head on Monday
 $Y = dF$ coin thips th get a head on Tuesday
Then $F_{X}(x) = F_{Y}(x)$ for every x .$

Because the universe is like that.