STAT 511 fa 2019 Lec 06 slides

Expected value of a random variable

Karl B. Gregory
University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.

Expected value of a random variable
The expected value $\mathbb{E} X$ of a random variable X is defined as

$$
\mathbb{E} X= \begin{cases}\sum_{x \in \mathcal{X}} x \cdot p_{X}(x) & \text { if } X \text { discrete with pmf } p_{X} \text { and support } \mathcal{X} \\ \int_{-\infty}^{\infty} x \cdot f_{X}(x) d x & \text { if } X \text { continuous with pdf } f_{X}\end{cases}
$$

- The average of many realizations of X should be close to $\mathbb{E} X$.
- $\mathbb{E} X$ is the "balancing point" of the pmf/pdf.
- We often use μ_{X} to denote $\mathbb{E} X$.
- We often call $\mathbb{E} X$ the mean of X

Exercise: Let $X \sim p_{X}(x)=p^{x}(1-p)^{1-x}$ for $x=0,1$. Find $\mathbb{E} X$.

Exercise: Let $X=$ up-face of one roll of a K-sided die. Find $\mathbb{E} X$.

Exercise: Let $X \sim f_{X}(x)=\mathbf{1}(0 \leq x \leq 1)$. Find $\mathbb{E} X$.

Exercise: Let $X \sim f_{X}(x)=2 x^{-3} \mathbf{1}(x \geq 1)$. Find $\mathbb{E} X$.

Expected value of a function of a random variable
The expected value $\mathbb{E} g(X)$ of the $r v g(X)$, where g is any function, is

$$
\mathbb{E} g(X)= \begin{cases}\sum_{x \in \mathcal{X}} g(x) \cdot p_{X}(x) & \text { if } X \text { discrete with pmf } p_{X} \text { and support } \mathcal{X} \\ \int_{-\infty}^{\infty} g(x) \cdot f_{X}(x) d x & \text { if } X \text { continuous with pdf } f_{X}\end{cases}
$$

Exercise: Let $X=$ up-face of one roll of a K-sided die. Find $\mathbb{E} X^{2}$.

Exercise: Let $X \sim f_{X}(x)=2 x^{-3} \mathbf{1}(x \geq 1)$. Find $\mathbb{E} \sqrt{X}$.

Variance of a random variable

The variance $\operatorname{Var} X$ of a random variable X is defined as

$$
\operatorname{Var} X=\mathbb{E}\left(X-\mu_{X}\right)^{2},
$$

where $\mu_{X}=\mathbb{E} X$.

- $\operatorname{Var} X$ is the expected squared deviation of X from μ_{X}.
- Measure of "spread" for the distribution of X.
- Often use σ_{X}^{2} to denote $\operatorname{Var} X$.
- Use σ_{X} to denote $\sqrt{\operatorname{Var} X}$, which is called the standard deviation of X.

Useful expression: $\operatorname{Var} X=\mathbb{E} X^{2}-(\mathbb{E} X)^{2}$

Exercise: Let $X \sim p_{x}(x)=p^{x}(1-p)^{1-x}$ for $x=0,1$. Find $\operatorname{Var} X$.

Exercise: Let $X \sim f_{X}(x)=1(0 \leq x \leq 1)$. Find $\operatorname{Var} X$.

Theorem (Mean and variance of shifted and scaled random variables)
Let X be an rv with finite mean and variance. Then for any constants a and b

- $\mathbb{E}(a X+b)=a \mathbb{E} X+b$
- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var} X$

Exercise: Let $X \sim f_{X}(x)=\mathbf{1}(0 \leq x \leq 1)$ and suppose $Y=4 X-2$.
(1) $\mathbb{E} Y$.
(2) $\operatorname{Var} Y$.

Theorem (Чебышёв's inequality)

For any $r v X$ with mean μ_{X} and var. $\sigma_{X}^{2}<\infty$ and any constant $K>0$, we have

$$
P_{X}\left(\left|X-\mu_{X}\right|<K \sigma_{X}\right) \geq 1-\frac{1}{K^{2}} .
$$

- Any rv X lies within K st'd dev's of its mean with prob. at least $1-1 / K^{2}$.
- E.g. any rv X lies within 4 st'd dev's of its mean at least 93.75% of the time (since $1-1 / 4^{2}=0.9375$).

Prove the result.

