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Normal

The Normal(µ, σ2) pdf is

fX(x;µ, σ2) = 1√
2π

1
σ

exp
[
− (x− µ)2

2σ2

]
, −∞ < x <∞.

In R, we can type ?dnorm into the console to pull up the R documentation about the Normal distribution
functions. We see that we can compute the height of the density curve fX(x;µ, σ2) as dnorm(x = x, mean
= mu, sd = sigma). Note that R takes the parameter σ, which is the standard deviation, instead of σ2.

Normal cdf

We can compute

FX(x;µ, σ2) =
∫ x

−∞

1√
2π

1
σ

exp
[
− (t− µ)2

2σ2

]
dt, −∞ < x <∞

in R as pnorm(q = x , mean = mu, sd = sigma).

Normal quantiles

We can compute
QX(u;µ, σ2) = inf{x : FX(x;µ, σ2) ≥ u}, 0 < u < 1

in R as qnorm(p = u, mean = mu, sd = sigma).

Plots of different Normal pdfs

Let’s plot the pdfs of some different Normal distributions:
# create a sequence of x values at which to compute the Normal pdfs
x.seq <- seq(-10,10, length=500)

# create an empty plot to which we can add several lines
plot(NA,xlim=c(-6,10),ylim=c(0,1.2),ylab="Normal(mu,sigma^2) pdfs",xlab="x")

# plot Normal pdf against sequence of x values for different choices of mu and sigma
lines(dnorm(x.seq,mean = 0, sd = 1)~x.seq,col=1,lwd=2) # mu = 1, sigma = 1
lines(dnorm(x.seq,mean = 0, sd = 1/2)~x.seq,col=2,lwd=2) # mu = 1, sigma = 1/2
lines(dnorm(x.seq,mean = 0, sd = 2)~x.seq,col=3,lwd=2) # mu = 0, sigma = 2
lines(dnorm(x.seq,mean = 2, sd = 2/5)~x.seq,col=4,lwd=2) # mu = 2, sigma = 2/5
lines(dnorm(x.seq,mean = -5, sd = 1/3)~x.seq,col=5,lwd=2) # mu = -5, sigma = 1/3
lines(dnorm(x.seq,mean = 3, sd = 3)~x.seq,col=6,lwd=2) # mu = 3, sigma = 3

# add a legend to the plot
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legend( x = 3,y=1.1, legend=c("mu = 0, sigma = 1",
"mu = 0, sigma = 1/2",
"mu = 0, sigma = 2",
"mu = 2, sigma = 2/5",
"mu = -5, sigma = 1/3",
"mu = 3, sigma = 3"),col=c(1,2,3,4,5,6),lwd=2,bty="n")
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mu = 0, sigma = 1
mu = 0, sigma = 1/2
mu = 0, sigma = 2
mu = 2, sigma = 2/5
mu = −5, sigma = 1/3
mu = 3, sigma = 3

Gamma

The gamma(α, β) pdf is

fX(x;α, β) =
{

1
Γ(α)βαx

α−1 exp
[
− x
β

]
x > 0

0 x ≤ 0.

In R, we can type ?dgamma into the console to pull up the R documentation about the gamma distribution
functions. We see that we can compute the height of the density curve fX(x;α, β) as dgamma(x = x, shape
= alpha, scale = beta).

Gamma cdf

We can compute

FX(x;α, β) =
{ ∫ x

0
1

Γ(α)βα t
α−1 exp

[
− t
β

]
dt 0 < x <∞

0 −∞ < x ≤ 0
in R as pgamma(q = x , shape = alpha, scale = beta).

Gamma quantiles

We can compute
QX(u;α, β) = inf{x : FX(x;α, β) ≥ u}, 0 < u < 1

in R as qgamma(p = u, shape = alpha, scale = beta).
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Plots of different Gamma pdfs

Let’s plot the pdfs of some different gamma distributions:
# create a sequence of x values at which to compute the gamma pdfs
x.seq <- seq(0,20, length=500)

# create an empty plot to which we can add several lines
plot(NA,xlim=c(0,20),ylim=c(0,.5),ylab="gamma(alpha,beta) pdfs",xlab="x")

# plot gamma pdf against sequence of x values for different choices of alpha and beta
lines(dgamma(x.seq,shape = 1, scale = 1/2)~x.seq,col=1,lwd=2) # alpha = 1, beta = 1/2
lines(dgamma(x.seq,shape = 1, scale = 2)~x.seq,col=2,lwd=2) # alpha = 1, beta = 2
lines(dgamma(x.seq,shape = 1, scale = 4)~x.seq,col=3,lwd=2) # alpha = 1, beta = 4
lines(dgamma(x.seq,shape = 2, scale = 2)~x.seq,col=4,lwd=2) # alpha = 2, beta = 2
lines(dgamma(x.seq,shape = 5, scale = 2)~x.seq,col=5,lwd=2) # alpha = 5, beta = 2
lines(dgamma(x.seq,shape = 10, scale = 1/2)~x.seq,col=6,lwd=2) # alpha = 10, beta = 1/2

# add a legend to the plot
legend( x = 10,y=.45, legend=c("alpha = 1, beta = 1/2",

"alpha = 1, beta = 2",
"alpha = 1, beta = 4",
"alpha = 2, beta = 2",
"alpha = 5, beta = 2",
"alpha = 10, beta = 1/2"),col=c(1,2,3,4,5,6),lwd=2,bty="n")
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Exponential

The Exponential(λ) pdf is

fX(x;λ) =
{ 1

λ exp
[
−xλ
]

x > 0
0 x ≤ 0.
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In R, we can type ?dexp into the console to pull up the R documentation about the Normal distribution
functions. We see that we can compute the height of the density curve fX(x;λ) as dexp(x = x, rate =
1/lambda). Note that R parameterizes the exponential distribution differently, such that we must put in 1/λ
instead of λ.

Exponential cdf

We can compute

FX(x;λ) =
{

1− exp[−xλ ] 0 < x <∞
0 −∞ < x ≤ 0

in R as pexp(q = x , rate = 1/lambda).

Exponential quantiles

We can compute
QX(u;λ) = inf{x : FX(x;λ) ≥ u}, 0 < u < 1

in R as qexp(p = u, rate = 1/lambda).

Plots of different Exponential pdfs

Let’s plot the pdfs of some different exponential distributions:
# create a sequence of x values at which to compute the exponential pdfs
x.seq <- seq(0,10, length=500)

# create an empty plot to which we can add several lines
plot(NA,xlim=c(0,10),ylim=c(0,.6),ylab="Exponential(lambda) pdfs",xlab="x")

# plot exponential pdf against sequence of x values for different choices of lambda
lines(dexp(x.seq,rate=1/(.5))~x.seq,col=1,lwd=2) # lambda = 1/2
lines(dexp(x.seq,rate=1/1)~x.seq,col=2,lwd=2) # lambda = 1
lines(dexp(x.seq,rate=1/2)~x.seq,col=3,lwd=2) # lambda = 2
lines(dexp(x.seq,rate=1/3)~x.seq,col=4,lwd=2) # lambda = 3
lines(dexp(x.seq,rate=1/8)~x.seq,col=5,lwd=2) # lambda = 4

# add a legend to the plot
legend( x = 6,y=.55, legend=c("lambda = 1/2",

"lambda = 1",
"lambda = 2",
"lambda = 3",
"lambda = 8"),col=c(1,2,3,4,5),lwd=2,bty="n")
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Chi-squared

The Chi-squared(ν) pdf is

fX(x; ν) =
{ 1

Γ(ν/2)2ν/2x
ν/2−1 exp

[
−x2
]

0 < x <∞
0 −∞ < x ≤ 0.

In R, we can type ?dchisq into the console to pull up the R documentation about the chi-squared distribution
functions. We see that we can compute the height of the density curve fX(x; ν) as dchisq(x = x, df =
nu). The df stands for “degrees of freedom”, which is the name of the parameter we have denoted by ν.

Chi-squared cdf

We can compute

FX(x; ν) =
{ ∫ x

0
1

Γ(ν/2)2ν/2 t
ν/2−1 exp

[
− t

2
]
dt 0 < x <∞

0 −∞ < x ≤ 0

in R as pchisq(q = x , df = nu).

Chi-squared quantiles

We can compute
QX(u; ν) = inf{x : FX(x; ν) ≥ u}, 0 < u < 1

in R as qchisq(p = u, df = nu).

Plots of different Chi-squared pdfs

Let’s plot the pdfs of some different gamma distributions:
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# create a sequence of x values at which to compute the chi-squared pdfs
x.seq <- seq(0,20, length=500)

# create an empty plot to which we can add several lines
plot(NA,xlim=c(0,20),ylim=c(0,.5),ylab="chi-squared(nu) pdfs",xlab="x")

# plot chi-squared pdf against sequence of x values for different choices of nu.
lines(dchisq(x.seq, df = 1)~x.seq,col=1,lwd=2) # nu = 1
lines(dchisq(x.seq, df = 2)~x.seq,col=2,lwd=2) # nu = 1
lines(dchisq(x.seq, df = 3)~x.seq,col=3,lwd=2) # nu = 1
lines(dchisq(x.seq, df = 4)~x.seq,col=4,lwd=2) # nu = 1
lines(dchisq(x.seq, df = 5)~x.seq,col=5,lwd=2) # nu = 1
lines(dchisq(x.seq, df = 6)~x.seq,col=6,lwd=2) # nu = 1
lines(dchisq(x.seq, df = 7)~x.seq,col=7,lwd=2) # nu = 1
lines(dchisq(x.seq, df = 8)~x.seq,col=8,lwd=2) # nu = 1

# add a legend to the plot
legend( x = 12,y=.45, legend=c("nu = 1",

"nu = 2",
"nu = 3",
"nu = 4",
"nu = 5",
"nu = 6",
"nu = 7",
"nu = 8"),col=c(1,2,3,4,5,6,7,8),lwd=2,bty="n")
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Beta

The Beta(α, β) pdf is

fX(x;α, β) = Γ(α+ β)
Γ(α)Γ(β)x

α−1(1− x)β−1, 0 < x < 1.
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In R, we can type ?dbeta into the console to pull up the R documentation about the chi-squared distribution
functions. We see that we can compute the height of the density curve fX(x;α, β) as dbeta(x = x, shape1
= alpha, shape2 = beta).

Beta cdf

We can compute

FX(x;α, β) =


1 1 ≤ x <∞∫ x

0
Γ(α+β)

Γ(α)Γ(β) t
α−1(1− t)β−1dt 0 < x < 1

0 −∞ < x ≤ 0

in R as pbeta(q = x, shape1 = alpha, shape2 = beta).

Beta quantiles

We can compute
QX(u;α, β) = inf{x : FX(x;α, β) ≥ u}, 0 < u < 1

in R as qbeta(p = u, shape1 = alpha, shape2 = beta).

Plots of different Beta pdfs

Let’s plot the pdfs of some different beta distributions:
# create a sequence of x values at which to compute the beta pdfs
x.seq <- seq(0,1, length=500)

# create an empty plot to which we can add several lines
plot(NA,xlim=c(0,1),ylim=c(0,4.5),ylab="Beta(alpha,beta) pdfs",xlab="x")

# plot beta pdf against sequence of x values for different choices of alpha and beta.
lines(dbeta(x.seq, shape1 = 1/2, shape2 = 1/2)~x.seq,col=1,lwd=2) # alpha = 1/2, beta = 1/2
lines(dbeta(x.seq, shape1 = 4, shape2 = 4)~x.seq,col=2,lwd=2) # alpha = 5, beta = 5
lines(dbeta(x.seq, shape1 = 2, shape2 = 1)~x.seq,col=3,lwd=2) # alpha = 2, beta = 1
lines(dbeta(x.seq, shape1 = 1, shape2 = 10)~x.seq,col=4,lwd=2) # alpha = 1, beta = 10
lines(dbeta(x.seq, shape1 = 10, shape2 = 3)~x.seq,col=5,lwd=2) # alpha = 10, beta = 3

# add a legend to the plot
legend( x = .2,y=4.5, legend=c("alpha = 1/2, beta = 1/2",

"alpha = 4, beta = 4",
"alpha = 2, beta = 1",
"alpha = 1, beta = 10",
"alpha = 10, beta = 3"),col=c(1,2,3,4,5),lwd=2,bty="n")
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