Quantiles

* Quartiles are percentiles but not expressed as a percent; e.g.
the $90^{\text {th }}$ percentile is the 0.9 fuantile.
* A baby whose head circumetevence is at the .9 quartile has a heed circumference as great as or greater than 90% of all babies.
* Random variables have quartiles.
 puantile of X is the value q which satisfies

$$
F_{x}(q)=\theta .
$$

* So $x \leq 8$ with probability θ.
E.j. Suppose $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$.

$$
f_{x}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] \quad F_{x}\left(x ; \mu, \sigma^{2}\right)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \frac{1}{\sigma} \exp \left[-\frac{(t-\mu)^{2}}{2 \sigma^{2}}\right] d t
$$

Find the o.5-guantile (called the median).
We have $f=\mu$, since $P_{x}(x \leq \mu)=1 / 2$.

If F_{x} is not both continuous and strictly increasing, then q which
satisfies $F_{x}(q)=\theta$

- may not exist
- may not be unifue
E.g. Consider F_{x} like:

Better definition comes from the guantik function:
Detn: The quartile function Q_{x} of a riv. X with oof F_{x} is

$$
Q_{x}(\theta)=\inf \left\{x: F_{x}(x) \geqslant \theta\right\}
$$

for $\theta \in(0,1)$.

The θ-guantile of X is defined as $Q_{x}(\theta)$.
E.). Let $X=$ up-face after rolling a 6 -sided die. Find the $0.45,0.50$, and 0.90 quartiles.

Interpertation: $8_{.50}=6$: At least 90% of rills are ≤ 6
$8.50=3$: At least 50% of rolls are ≤ 3
$9.45=3$: At lest 45% of rolls are ≤ 3

Remark: If F_{x} is continuous and strictly increasing, then $Q_{x}(\theta)=F_{x}^{-1}(\theta)$.

Egg. A coff with a that part and a discontinuity.
Cumulative distribution function
Quartile function

E.j. Find quartile function of $Y \sim \operatorname{Binamial}(2, y / 2)$.

The cal of Y is given by

$$
F_{y}(y)=\left\{\begin{array}{lll}
0, & y<0 & F_{y}(y) \\
1 / 1 \\
1 / y, & 0 \leq y<1 & 3 / 4- \\
3 / 4, & 1 \leq y<2 & \\
1, & 2 \leq y & 1 / 4 \\
& & 0 \\
1 & 1 & 2
\end{array}\right.
$$

The quartile function is given b,

$$
Q_{Y}(\theta)=\left\{\begin{array}{lll}
2, & \frac{3}{4}<\theta<1 & Q_{4}^{(\theta)} \\
1, & 1 / 4<\theta \leq 3 / 4 & 2
\end{array}\right]
$$

Note: $Q_{x}:(0,1) \rightarrow x$, and Q_{x} is left-continuous.
E... Q_{X} for Exponential (λ) :

Let $X=$ time in years between eruptions of a volcano

Assume $X \sim \frac{1}{\lambda} \exp \left[-\frac{x}{\lambda}\right] \mathbb{1}(0<x<\infty)$.
(a) Find Q_{x}.

We have

$$
F_{x}(x ; \lambda)=\left\{\begin{array}{lll}
1-\exp \left[-\frac{x}{\lambda}\right] & 0<x<\infty< & \begin{array}{l}
\text { Just focus on support. } \\
0
\end{array} \\
\begin{array}{ll}
\text { Here the cat is continuous } \\
\text { and strictly increasing. }
\end{array}
\end{array}\right.
$$

Solve $F_{x}(q ; \lambda)=\theta$ for q :

$$
1-\exp \left[-\frac{b}{\lambda}\right]=\theta \quad \Leftrightarrow 1-\theta=\exp \left[-\frac{\delta}{\lambda}\right]
$$

$$
\Leftrightarrow-\lambda \log (1-\theta)=q
$$

so $Q_{x}(\theta ; \lambda)=-\lambda \log (1-\theta)$ for $\theta \in(0,1)$.
(b) Suppose $\lambda=50$ yrs and find the median time between eruptions.

$$
\begin{aligned}
& Q_{x}(.50 ; 50)=-50 \log (1-.50)=34.66 \\
& f_{x}(x ; 50)
\end{aligned}
$$

E.g. Q_{x} for Empirical Distribution $\left(x_{1}, \ldots, x_{n}\right)$:

Recall the punt

$$
P_{x}\left(x ; x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{cc}
\frac{1}{n} & \text { for } x \in\left\{x_{1}, \ldots, x_{n}\right\} \\
0 & \text { otherwise },
\end{array}\right.
$$

which gives the coff

$$
F_{x}\left(x ; x_{1}, \ldots, x_{n}\right)=\frac{\#\left\{x_{1}, \ldots, x_{n} \leq x\right\}}{n}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left(x_{i} \leq x\right) .
$$

Denote by $X_{(1)}, \ldots, X_{(n)}$ the data points when reordered such that

$$
x_{(1)}<x_{(2)}<\ldots<x_{(n)}
$$

The cull of the empirical distribution based on 12 "data points" looks like:

Then $Q_{x}(\theta)=\inf \left\{x: \frac{\mathbb{\#}\left\{x_{1}, \ldots, x_{n} \leq x\right\}}{n} \geqslant \theta\right\}$

$$
\begin{aligned}
& =\min \left\{x_{i}: \frac{\left.\mathbb{H}\left\{x_{1}, \ldots, x_{n} \leqslant x_{i}\right\} \geq \theta\right\}}{n} \geq x_{([n \theta 7)} \quad \text { for } \quad \theta \in(0,1),\right.
\end{aligned}
$$

where $\Gamma \cdot 7$ is the ceiling function: $\left.\Gamma_{x}\right\rceil=j$ if $j-1 x \leq j, j$ an integer.
E.g. Consider the empirical distribution based on the data points

x_{1}	x_{2}	x_{3}	x_{21}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}
1.98	1.01	0.86	-0.15	1.55	0.20	-0.90	1.10	-0.37	-0.77
$x_{(10)}$	$x_{(7)}$	$x_{(6)}$	$x_{(1)}$	$x_{(9)}$	$x_{(5)}$	$x_{(1)}$	$x_{(8)}$	$x_{(3)}$	$x_{(2)}$

Let $x \sim p_{x}\left(x ; x_{1}, \ldots, x_{n}\right)$.

Then $q_{0.25}=x_{\left(\Gamma_{10} \cdot 0.257\right)}=x_{(3)}=-0.37$

$$
\begin{aligned}
& q_{0.50}=x_{\left(\Gamma_{10} \cdot 0.57\right)}=x_{(5)}=0.20 \\
& q_{0.75}=x_{\left(\Gamma_{10} \cdot 0.757\right)}=x_{(8)}=1.10
\end{aligned}
$$

E. Q_{x} for $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$:

Begin with $z \sim \operatorname{Normal}(0,1)$.
The cdf of z is $\Phi(z)=\int_{-\infty}^{z} \phi(t) d t, \quad f(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}$.
$\phi(z)$
Area: $\theta=\Phi(q)$
$\Phi(z)$

* $\Phi(z)$ is continuous and strictly increasing, so

$$
Q_{z}(\theta)=\Phi^{-1}(\theta)
$$

* $\Phi^{-1}(\theta)$ does not have a simple expression.
We use tables/ computer.

In $R: \quad$ form (theta)

* If $\quad x \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ then $Q_{x}(\theta)=\mu+\sigma Q_{z}(\theta)$

Derivation: Lat q be the $\theta^{\text {th }}$ guentile of x. Then

$$
\theta=P_{x}(x \leq q)=P_{x}\left(\frac{x-\mu}{\sigma} \leq \frac{\delta-\mu}{\sigma}\right)
$$

$$
\begin{aligned}
& =P_{z}\left(z \leq \frac{q-\mu}{\sigma}\right) \\
& =\Phi\left(\frac{q-\mu}{\sigma}\right) \\
\Leftrightarrow \quad \Phi^{-1}(\theta) & =\frac{q-\mu}{\sigma} \\
\Leftrightarrow \quad q \quad & =\mu+\sigma \Phi^{-1}(\theta)
\end{aligned}
$$

So $Q_{x}(\theta)=\mu+\sigma Q_{z}(\theta)$.

* Therefore to get quartiles of x, we transform quantiles of z.

$$
Q_{x}(0.975)=\mu+Q_{z}(0.975) \sigma=\mu+\Phi^{-1}(0.975) \sigma=\mu+1.96 \sigma
$$

Obtain from a table or gnorm (0.975) in R
(i) Get $\operatorname{Normal}(0,1)$ quartile

Gi) scale and shift to get Normal (μ, σ^{2}) guantile

COMPUTING QUARTILES
R has for every distribution the four functions

