QUANTILES

- 4 Quantiles are percentiles but not expressed as a percent; e.g. the 90th percentile is the 0.9 guantile.
- ¥ A beby whose head circumterence is at the .9 yunitile hes a head circumference <u>as great as or greater than</u> 90% of all babies.
- * Random variables have quantiles.
 - Let X be a continuous r.v. with a strictly increasing edf Fx. Then the grantile of X is the value g which satisfies $F_{X}(g) = 0$.
 - \star 8. \star = 7 with probability 0.
 - E. Suppose X~ Normal (m, 02).

Find the 0.5- grantile (called the median).

We have $g = \mu$, since $P_X(X \in \mu) = \frac{1}{2}$.

If
$$F_{x}$$
 is not both continuous and strictly increasing, then g which
satisfies $F_{x}(g) = 0$
• may not exist
• may not be unique
E:1. Consider F_{x} like:
 $F_{y}(x)$
 y_{h}
 y_{h}

Better definition comes from the zvantik function:

Detai The pointile dometion
$$Q_X$$
 of a rive X with edit F_X is
 $Q_X(0) = \inf \{x : F_X(x) \ge 0\}$
for $0 \in (0, 1)$.
The 0 -guantile of X is defined as $Q_X(0)$.
E: Let $X = up$ -face after rolling - $(0 - sided die.$
Find the 0.45, 0.50, and 0.70 genetics.
 $R_X(X \in x) = \frac{1}{163}$
 $\frac{100}{135} \frac{1}{100}$
 $\frac{100}{135} \frac{1}{100} \frac{1}{100}$
 $\frac{100}{135} \frac{1}{100} \frac{$

Interpretation:
$$g_{.50} = 6$$
: At least 90% of colls are ≤ 6
 $g_{.50} = 3$: At least 50% of colls are ≤ 3
 $g_{.45} = 3$: At least 45% of colls are ≤ 3

Remark: If F_x is continuous and strictly increasing, then $Q_x(0) = F_x^{-1}(0)$.

E.g. A cost with a flat part and a discontinuity.

Cumulative distribution trunction Quartile Junction $F_{x}(x) \xrightarrow{1}{\frac{1}{\sqrt{5}}} \frac{1}{\sqrt{5}} \frac{1}{\sqrt{$

E: Find zoundile function of Y~ Biasonial (2, ½). The edd of Y is given by $F_{y}(y) = \begin{cases} \circ & y < \circ & F_{y}(y) \ 2 + & y \\ y_{1}, & \circ = y < 1 & y_{1} \\ y_{4}, & 1 = y < 2 \\ 2, & 2 = y & y_{1} \\ y_{1} & y_{2} & y_{1} \\ y_{2} & y_{1} & y_{2} \\ y_{1} & y_{2} & y_{1} \\ y_{2} & y_{1} & y_{2} \\ y_{1} & y_{2} & y_{1} \\ y_{2} & y_{1} & y_{2} \\ y_{1} & y_{2} & y_{1} \\ y_{2} & y_{1} & y_{2} \\ y_{1} & y_{2} & y_{1} \\ y_{2} & y_{1} & y_{2} \\ y_{1} & y_{2} & y_{1} \\ y_{2} & y_{1} & y_{2} \\ y_{1} & y_{2} & y_{1} \\ y_{2} & y_{2} & y_{1} \\ y_{1} & y_{2} & y_{2} \\ y_{2} & y_{1} & y_{2} \\ y_{2} & y_{2} \\ y_{3} & y_{1} \\ y_{4} & y_$

Note:
$$Q_X: (0,1) \rightarrow X$$
, and Q_X is left-continuous.

E.g.
$$Q_X$$
 for Exponential (λ):
Let $X = \text{time}$ in years between eruptions of a volcano
Assume $X \sim \frac{1}{\lambda} \exp\left[-\frac{x}{\lambda}\right] \mathbb{1}\left(o < x < o\right)$.

We have

Solve Fx (2 ; x) = 0 for g :

$$|-er_p\left[-\frac{b}{\lambda}\right] = 0 \quad \langle = \rangle \quad |-\phi = er_p\left[-\frac{3}{\lambda}\right]$$

$$\langle = \rangle - \lambda \log(1 - \theta) = g$$

8. $Q_{\chi}(\theta; \lambda) = -\lambda \log(1 - \theta)$ for $\theta \in (0, 1)$.

(b) Suppose $\lambda = 50$ yrs and find the median time between eruptions.

$$Q_{x}(.50;56) = -50 \log(1-.50) = 34.66$$

$$f_{\chi}(x; 50)$$
Area = $\frac{1}{2}$
Recall that for right-steand
distributions, the mean exceeds
the median.
x
 $g_{0,50}$
 x

E.1.
$$Q_X$$
 for Empirical Distribution $(x_{i_1,...,j_n}, x_n)$:
Recall the purf
 $P_X(x; x_{i_1,...,j_n}) = \begin{cases} \frac{1}{n} & \text{for } \pi \in [x_{i_1,...,j_n]} \\ o & \text{otherwise}, \end{cases}$
which gives the edf
 $F_X(x; x_{i_1,...,j_n}) = \frac{\#[x_{i_1,...,j_n} \in \pi]}{n} = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(x_i \in \pi).$

Denote by $X_{(1)}, ..., X_{(n)}$ the data points when reordered such that $X_{(1)} \in X_{(2)} \in ... \in X_{(n)}$. The celf of the empirical distribution based on 12 "data points" looks like:

Then
$$Q_{\mathbf{X}}(\theta) = \inf \{ \pi : \frac{\# \{ \mathbf{X}_{1}, \dots, \mathbf{X}_{n} \in \mathbf{X} \}}{n} \ge \theta \}$$

$$= \min \{ \mathbf{X}_{i} : \frac{\# \{ \mathbf{X}_{1}, \dots, \mathbf{X}_{n} \in \mathbf{X}_{i} \}}{n} \ge \theta \}$$

$$= \mathbf{X}_{([n\theta])} \quad \text{for} \quad \theta \in (o, i),$$

where $\Gamma \cdot 7$ is the cuiling function: $\Gamma \cdot 7 = j$ if $j - i \propto \leq j$, j an integer. E.g. Consider the empirical distribution based on the data points

$$x_1$$
 x_2 x_3 x_{41} x_5 x_6 x_7 x_8 x_9 x_{10}
1.98 1.01 0.86 -0.15 1.55 0.20 -0.90 1.10 -0.34 -0.74
 $x_{(10)}$ $x_{(2)}$ $x_{(3)}$ $x_{(4)}$ $x_{(3)}$ $x_{(5)}$ $x_{(1)}$ $x_{(8)}$ $x_{(3)}$ $x_{(2)}$

Let
$$X \sim p_{\mathbf{x}}(\mathbf{x}; \mathbf{x}_1, ..., \mathbf{x}_n)$$
.

$$= P_{Z}\left(z \leq \frac{3-m}{\sigma}\right)$$

$$= \overline{\Phi}\left(\frac{3-m}{\sigma}\right)$$

$$(=) \quad \overline{\Phi}(0) = \frac{3-m}{\sigma}$$

$$(=) \quad \overline{\delta} = \frac{3-m}{\sigma}$$

$$(=) \quad \overline{\delta} = \frac{3-m}{\sigma} + \sigma \quad \overline{\Phi}(0)$$

$$S_{0} \quad Q_{\chi}(0) = m + \sigma \quad Q_{Z}(0).$$

* Therefore, to get quantiles of X, we transform quantiles of Z.

$$Q_{X}(0.975) = \mu + Q_{Z}(0.975) \sigma = \mu + \overline{P}(0.975) \sigma = \mu + 1.96\sigma$$

Obtain from a table or gnorm (0.975) in R

p+1.960

M

x

1.96

0

z