STAT 511 fa 2019 Lec 09 slides

Quantiles

Karl B. Gregory
University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.

Quantiles

- Quantiles are percentiles, but not expressed as a percent; e.g. the 90th percentile is the 0.9 quantile.
- A baby whose head circumference is at the 0.9 quantile has a head circumference as great or greater than 90% of all babies.
- Random variables have quantiles. . .

The θ th quantile of a continuous rv with strictly increasing cdf
Let X be a continuous rv with a strictly increasing cdf F_{X}. Then for any $\theta \in(0,1)$, the value q which satisfies

$$
F_{X}(q)=\theta
$$

is the θ-quantile of X.

So $X \leq q$ with probability θ.
Exercises: Find the 0.5, and 0.975 quantiles of
(1) the distribution with cdf given by $F_{Y}(y)=e^{-e^{-y}}$ for all $y \in \mathbb{R}$.
(c) the $\operatorname{Normal}(0,1)$ distribution.

If F_{X} is not continuous and strictly increasing, then q which satisfies $F(q)=\theta$

- may not exist
- may not be unique

Example: How to find the $1 / 2$ quantile of $Y \sim \operatorname{Binomial}(2,1 / 2)$?

So we need a more general definition of quantiles.

Quantile function

The quantile function Q_{X} of a random variable X with $\operatorname{cdf} F_{X}$ is the function

$$
Q_{X}(\theta)=\inf \left\{x: F_{X}(x) \geq \theta\right\} \text { for } \theta \in(0,1)
$$

The θ-quantile of the rv with $\operatorname{cdf} F_{X}$ is defined as $Q_{X}(\theta)$.

- If F_{X} is continuous and strictly increasing then $Q_{X}(\theta)=F_{X}^{-1}(\theta)$.
- $Q_{X}:(0,1) \rightarrow \mathcal{X}$, where \mathcal{X} the support of X.
- Q_{X} is always left-continuous.

Exercises: Find the quantile function of a rv with
(1) the $\operatorname{Binomial}(2,1 / 2)$ distribution.
(2) pdf given by $f_{X}(x)=x / 2 \cdot \mathbf{1}(0<x<2)$.
(3) the Exponential (λ) distribution.
(0) the empirical distribution based the data points x_{1}, \ldots, x_{n}.

Name	Weight (g)
Sevda	2660
Leonie	2920
Laya	3050
Roman Theodor	3100
Zoey	3200
Elisa	3280
Collin Ben	3500
Luna-Cheyenne	3500
weiblich	3610
Johanna	3790
Viva Darnell	3990

Exercise: Find median, 0.25 , and 0.90 quantiles of the empirical distribution.

