
 

MENTS I
Det Let X be a v.v For each integer h

the tentabouttheoriginn of X is

EXk
jennetand the h entb.tt of X is

µ EG µ
where

µ µ

Reize War X µ r is the Id moment about the mean

We borrow the term moment from physics where in
classical mechanic a moment is the turning effect
of a force

Other quantities involving moments
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A moment generating function is a function that
generates moments
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How does the mgt generate moments

Theorem If X is a r.ir with mgt My then

EX MYLO

where

µ D f Mx It
This means we evaluate the
foregoing expression attzo



Thus to get µ EX we find the k derivative
of Mylt and evaluate it at to

Proof Begin with Taylor expansion of e around F o writing
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Use it
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ACTVALLY Mgfs are more useful for characterizing distributions
than for computing moments

the Let X Fx and 4 Fy and suppose EX d and EYkend
for all k 1,2
Then if Mx and My exist and Mxlt Mylt for all
t in a neighborhood of 0 then Fx Ey that is
X and Y are identically distributed



R.rs with the same mgt have same dist

Wer will later use mgfs to prove a version of the
Central Limit Theorem Basically

If I is the mean of a sample drawn
from a distribution with an mgt then

behaves more and more like Z NormalCo
own

as n We can show this by showing that
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But we aren't quite ready for this yet

But let's find Mz
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The following theorem will let us write Myfor Xv Normal µ r in terms of Mz



Theorem For any constants a and b the mgt of AX tb is
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We can write X µ to Z where Zu Normal a

Then Mxlt Mmrzlt ÄMzlot

so Mxlt etre expften II
Use it

Ex expften II
für

expften 4 µ tot
für

µ

Ex d expften II

da exp tut oft µ tot
für

exp tut oft µ tot exp tut 4 in
t.ro

µ t r

So WarX EX LEXY µ tot µ r


