(Measure of "heavy -triled ness")

MOMENT - GENERATING FUNCTIONS

Defn: The moment-generating function (mgf)
$$M_X$$
 of a rix X is
 $M_X(t) = \mathbf{E} \exp[tX],$

provided the expectation is finite for t in a neighborhood of 0, that is, provided there exists a $C \ge 0$ such that $M_X(t) \le \infty$ for all $-C \le t \le C$. In particular,

$$M_{\chi}(t) = \begin{cases} \int_{-\varphi}^{\varphi} e^{t\chi} f_{\chi}(\chi) d\chi & \text{if } \chi \text{ cont } u/p \text{if } f_{\chi} \\ \int_{-\varphi}^{\varphi} e^{t\chi} f_{\chi}(\chi) d\chi & \text{if } \chi \text{ cont } u/p \text{if } f_{\chi} \\ \sum_{X \in \mathcal{X}} e^{t\chi} f_{\chi}(\chi) & \text{if } \chi \text{ disc. } u/p \text{mf } f_{\chi}. \end{cases}$$

It How does the mgf generate moments?
Theorem: If X is a r.v. with mgf
$$M_X$$
, then
 $EX^k = M_X^{(k)}(o)$,

where

$$\mathcal{M}_{X}^{(k)}(\circ) = \begin{pmatrix} J \\ \overline{J} \\ \overline{J} \end{pmatrix}^{k} \mathcal{M}_{X}(t) \Big|_{t=0}$$

This means we evaluate the foregoing expression at t=0

+ Thus, to get
$$M_{\chi} = E \times^{k}$$
, we find the k^{th} derivative
of $M_{\chi}(t)$ and evaluate it at $t=0$.
Proof: Begin with a Taylor expansion of $e^{t\chi}$ around $\chi=0$, writing
 $e^{t\chi} = \sum_{j=0}^{\infty} \frac{t^{j}}{j!} \chi^{j}$.
Provided $E \chi^{j} \in \mathcal{O}$ for all $j=1,2,...$, we have
 $M_{\chi}(t) = \sum_{j=0}^{\infty} \frac{t^{j}}{j!} E \chi^{j}$
 $= 1 + tE \chi + \frac{t^{2}}{2} E \chi^{2} + \frac{t^{3}}{3!} E \chi^{3} + ...$
We see that the k^{th} derivative with respect to t is

$$M_{X}^{(k)}(o) = E X^{k} + E X^{k+1} + \frac{t}{2} E X^{k+2} + \frac{t}{3} E X^{k+3} + \dots$$

So $M_{X}^{(k)}(o) = E X^{k}$.

We have

$$E = \int_{0}^{\infty} e^{tX} - \frac{2}{\lambda} e^{-\frac{2}{\lambda}} dx$$

$$= \int_{0}^{\infty} \frac{1}{\lambda} e^{-\frac{2}{\lambda}} dx$$

$$= \int_{0}^{\infty} \frac{1}{\lambda} e^{-\frac{2}{\lambda}} dx$$

$$= \frac{1}{\lambda} \left(\frac{\lambda}{1-\lambda t}\right) \int_{0}^{\infty} \left(\frac{\lambda}{1-\lambda t}\right)^{-1} e^{-\frac{2}{\lambda}} dt$$

$$= \frac{1}{\lambda} \left(\frac{\lambda}{1-\lambda t}\right) \int_{0}^{\infty} \left(\frac{\lambda}{1-\lambda t}\right)^{-1} e^{-\frac{2}{\lambda}} dt$$

$$= \frac{1}{\lambda} \left(\frac{\lambda}{1-\lambda t}\right) \int_{0}^{\infty} \left(\frac{\lambda}{1-\lambda t}\right)^{-1} e^{-\frac{2}{\lambda}} dt$$
Note: $\frac{\lambda}{1-\lambda t} \ge 0 \iff 1-\lambda t \ge 0 \iff t \le \frac{1}{\lambda}$

$$= (1 - \lambda t)^{-1}.$$

$$S_{0} \qquad M_{\chi}(t) = (1 - \lambda t)^{-1} \quad \text{for} \quad t \leq \frac{1}{\lambda}$$

$$\underbrace{\text{Use } :t}_{\text{d}t}:$$

$$E \times = \frac{1}{dt} (1 - \lambda t)^{-1} \Big|_{t=0} = -(1 - \lambda t)^{-2}(-\lambda) \Big|_{t=0} = \lambda.$$

$$E \times^{2} = \left(\frac{d}{dt}\right)^{2} (1 - \lambda t)^{-1} \Big|_{t=0} = -2\lambda (1 - \lambda t)^{-3}(-\lambda) \Big|_{t=0} = 2\lambda^{2}.$$

$$S_{0}$$

V.,
$$X = E X^{2} - (E X)^{2} = 2\lambda^{2} - \lambda^{2} = \lambda^{2}$$
.

$$\begin{array}{l} \overbrace{P}^{\infty} & M_{q}f \quad of \quad X \sim framma \left(d, \beta \right) \\ M_{\chi}(t) &= \int_{0}^{\infty} \exp\left[tx \right] \frac{1}{p'(\sigma)} \frac{x}{p^{\alpha}} \quad x^{\alpha-1} \exp\left[-\frac{x}{p} \right] dx \\ &= \int_{0}^{\infty} \frac{1}{p'(\sigma)} \frac{x}{p^{\alpha}} \quad x^{\alpha-1} \exp\left[-\frac{x}{p} + tx \right] dx \\ &= -x \left(\frac{1}{p} - t \right) = -x \left(\frac{1-pt}{p} \right) = \frac{-x}{\left(\frac{p}{1-pt} \right)} \\ &= \left(\frac{\beta}{1-pt} \right)^{\alpha} \frac{1}{p^{\alpha}} \int_{0}^{\infty} \frac{1}{p'(\sigma)} \left(\frac{\beta}{1-pt} \right)^{\alpha} \quad x^{\alpha-1} \exp\left[-\frac{x}{\left(\frac{\beta}{1-pt} \right)} \right] dx \\ &= \left(1-pt \right)^{-\alpha} \quad f_{or} \quad t \in \frac{1}{\beta} \quad = \begin{cases} 1 & \text{if } t \in \frac{1}{\beta} \\ \sigma & \text{if } t > \frac{1}{p} \end{cases}$$

<u>Use ;t</u>:

$$E X = \frac{d}{dt} (1 - \beta t)^{-\alpha} \Big|_{t=0}$$

$$= (-\alpha) (1 - \beta t)^{-\alpha - 1} (-\beta) \Big|_{t=0}$$

$$= \alpha \beta$$

$$E x^{2} = \left(\frac{d}{dt}\right)^{2} (1 - \beta t)^{-\alpha} \Big|_{t=0}$$

$$= \frac{d}{dt} \alpha \beta (1 - \beta t)^{-\alpha - 1} \Big|_{t=0}$$

$$= \alpha \beta (-\alpha - 1) (1 - \beta t)^{-\alpha - 2} (-\beta) \Big|_{t=0}$$

$$= \alpha \beta^{2} (\alpha + 1)$$

So
$$Var X = EX^2 - (EX)^2 = \alpha \beta^2 (d+1) - (\alpha \beta)^2 = \alpha \beta^2$$
.
Exp. Myf of X ~ Binomial (n,p)

$$M_{\chi}(t) = \sum_{x=0}^{n} e^{tx} {\binom{n}{x}} p^{\chi} (1-p)^{n-\chi}$$

$$= \sum_{x=0}^{n} {\binom{n}{x}} (pe^{t})^{\chi} (1-p)^{n-\chi}$$
Binomial Theorem: for any real numbers a and b,
$$(a+b)^{n} = \sum_{x=0}^{n} {\binom{n}{x}} a^{\chi} b^{n-\chi}$$

$$= \left[pe^{t} + (1-p) \right]^{n}$$

$$U_{\underline{st}} = \frac{1}{dt} \left[pe^{t} + (i-p)^{n} \right]_{t=0}^{t}$$

$$= n \left[pe^{t} + (i-p)^{n-1} pe^{t} \right]_{t=0}^{t}$$

$$= np$$

$$E x^{2} = \left(\frac{1}{dt} \right)^{2} \left[pe^{t} + (i-p) \right]^{n} \Big|_{t=0}^{t}$$

$$= \frac{1}{dt} n \left[pe^{t} + (i-p) \right]^{n-1} pe^{t} \Big|_{t=0}^{t}$$

$$= n(n-i) \left[pe^{t} + (i-p) \right]^{n-2} (pe^{t})^{2} + n \left[pe^{t} + (i-p) \right]^{n-1} pe^{t} \Big|_{t=0}^{t}$$

$$= n(n-i) \left[pe^{t} + (i-p) \right]^{n-2} (pe^{t})^{2} + n \left[pe^{t} + (i-p) \right]^{n-1} pe^{t} \Big|_{t=0}^{t}$$

$$= n(n-i) p^{2} + np$$

$$= (np)^{2} + np(i-p)$$
So $V_{er} X = E x^{2} - (E x)^{2} = (np)^{2} + np(i-p) - (np)^{2} = np(i-p)$
Actually: Mufs are more useful for characterizing distributions

Theorem: Let $X \sim F_X$ and $Y \sim F_Y$ and suppose $E \times^k < \infty$ and $E \times^k < \infty$ for all k = 1, 2, ...Then if M_X and M_Y exist and $M_X(t) = M_Y(t)$ for all t in a neighborhood of 0, then $F_X = F_Y$; that is X and Y are identically distributed. * R.v.s with the same mat have same dist.

+ We will later use mets to prove a version of the Central Limit Theorem. Basically: If \overline{X} is the mean of a sample drawn from a distribution with an magf, then $\overline{X-x}$ behaves more and more like $\overline{Z} \sim Normal(0, 1)$ as $n \ge 0^\circ$. We can show this by showing that $\lim_{n\to\infty} M_{\overline{X-x}}(t) = M_{\overline{Z}}(t)$ But we aren't quite ready for this yet. But let's find $M_{\overline{Z}}$: $M_{\overline{Z}}(t) = \int_{-\infty}^{\infty} exp[tz] \frac{1}{\sqrt{2\pi}} exp[-\frac{z^2}{2}] dz$ $= \int_{-\infty}^{\infty} \frac{1}{1-exp} exp[-\frac{z^2}{2} + tz] dz$

 Υ The following theorem will let us write M_{χ} for $\chi \sim Normal(\mu, \sigma^2)$ in terms of M_{χ} .

There is For any constants a and b, the angle of a X+b is

$$M_{X+b}(t) = e^{tb} M_X(st)$$
Prof:

$$M_{AX+b}(t) = E \exp \left[t(aX+b) \right] = E \exp \left[(ta) X \right] \exp \left[tb \right] = e^{tb} M_X(st)$$
Exponential the most of X ~ Normal (μ, σ^2).
We can write $X = \mu + \sigma Z$, where $Z \sim Normal(\sigma_1)$.
Thus $M_X(t) = M_{\mu+\sigma Z}(t) = e^{\mu t} M_Z(\sigma t)$,
So $M_X(t) = e^{t\mu} e^{(\sigma t)^2/2} = \exp \left[t\mu + \sigma^2 t^2 \right]$
Use it:

$$E X = \frac{1}{At} \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= \lambda$$

$$EX^2 = \left(\frac{1}{At} \right)^2 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$

$$= 4 \exp \left[t\mu + \sigma^2 t^2 \right] \Big|_{t=0}$$