INDEPENDENCE OF RANDOM VARIABLES

Recall: Two events A and B are independent if $P(A \cap B)=P(A) P(B)$.
Def: Let (X, Y) be a pair of random variables where X has ${ }^{\text {support }} X X$ and $P Y$ has support y. Then X and $Y \in$ are celled independent random variables if for any sets $A \in \underbrace{}_{x}$ and $B \in \underbrace{}_{y}$

Speacid collections of sets of interact in I ma dy

$$
P(x \in A, y \in B)=P(x \in A) P(y \in B) .
$$

Basically, we consider all possible events concerning X and all possible events concerning Y. If every pair of X-and- Y events is independent, we call the r.v.s X and Y independent r.u.s.
Theorem: If (x, y) is a pair of discrete roves with joint pent p and margine. 1 pets pair p_{x} and p_{y}, then X and y are

$$
p(x, y)=p_{x}(x) p_{y}(y) \text { for all }(x, y) \in \mathbb{R}^{2} .
$$

If (x, y) is a pair of continuous r.v.s with joint pit f and marginal pair ts of f_{X} continuous and five. f_{Y}, then X with X and Y are $p_{\text {if }}^{\text {ind }}$ are
independent

$$
f(x, y)=f_{x}(x) f_{y}(y) \quad \text { for all } \quad(x, y) \in \mathbb{R}^{2} .
$$

* It is equivalent to soy that X and Y are independent iff
that is if the conditional pols/pmots ave equal t the marginal $p^{p t s} / p$ mints.
E.. There are 6 chars in a circle numbered $1, \ldots, 6$.
${ }^{5} 0^{6} 0^{1}$ - Let X be the roll of a die and sit in chair X
${ }^{4} 0$. Roll die again and move that many chairs dockwose
- Lat Y be the number of the chair in which you now sit Are X and Y independent?
- Tabulate the joint distribution of (x, y).

To begin in chair 1 and end in chair 1 , we must roll $(1,6)$, which we do with probability $1 / 36$

Must roll $(5,5)$, which we do with probability $1 / 36$

We find that $P((x, y)=(x, y))=\frac{1}{36}$ for all $(x, y) \in\{1, \ldots, 6\} x\{1, \ldots, 6\}$

- Get marginds: $P_{x}(x=x)=1 / 6$ for $x \in\{1, \ldots, 6\}$

$$
P_{y}(Y=y)=1 / 6 \quad \text { for } \quad y \in\{1, \ldots, 6\}
$$

- Check: $P((x, y)=(x, y))=P_{x}(x=x) P_{y}(y=y)$ for .ll (x, y),

So yes, X and Y are independent, meaning that the chair you end on is not affected by the chair you started on.
E.g. Suppose X and Y are independent c.v.s with marginal

$$
\begin{aligned}
& p_{x}(x)=p^{x}(1-p)^{1-x} \mathbb{1}(x \in\{0,1\}) \\
& p_{y}(y)=\binom{3}{y} \eta^{y}(1-q)^{3-y} \mathbb{I}(y \in\{0,1,2,3\})
\end{aligned}
$$

Then the joint punt of X and P is the product
of the marginals:
E.g. Let (x, y) be a continuous pair of r.v.s with joint pdf given by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{6}{5}\left[1-(x-y)^{2}\right] & \text { if } 0 \leq x \leq 1 \\
0 & \text { otherwise. }
\end{array}\right.
$$

Are X and Y independent?

- Find marginal pots:
(See lee 11) l_{1} :

$$
f_{x}(x)=\int_{\mathbb{R}} \frac{6}{5}\left[1-(x-y)^{2}\right] \mathbb{1}(0 \leq x \leq 1,0 \leq y \leq 1) d y
$$

$$
=\frac{2}{5}\left(2+3 x-3 x^{2}\right) 1(0 \leq x=1)
$$

We get the same for Y :

$$
f_{y}(y)=\frac{2}{5}\left(2+3 y-3 y^{2}\right) \mathbb{1}(0 \leq y \leq 1) .
$$

Now $\quad f_{x}(x) f_{y}(y)=\frac{4}{25}\left(2+3 x-3 x^{2}\right)\left(2+3 y-3 y^{2}\right) \mathbb{I}(0 \leq x \leq 1,0 \leq y \leq 1)$.

$$
\begin{aligned}
& \text { This is }{ }^{n_{0}+} \text { equal } t_{0} f(x, y)=\frac{6}{5}\left[1-(x-y)^{2}\right] 1(0 \leq x \leq 1,0 \leq y \leq 1) \text {, } \\
& \text { for example, for }(x, y)=\left(k, k_{2}\right) \text {. }
\end{aligned}
$$

It may be a hassle to compote the marginals f_{x}, f_{y} or p_{x}, p_{y}. There is an easier way to check independence:

Theorem: Let (X, Y) be a pair of either discrete or continuous r.v.s with joint punt p or joint pdf f. Then X and Y are independent ifs there exists functions g and h sod that

$$
p(x, y)=g(x) h(y) \quad \text { for } \text {.ll }(x, y) \in \mathbb{R}^{2}
$$

or $f(x, y)=g(x) h(y)$ for all $(x, y) \in \mathbb{R}^{2}$.

* So instead of finding the marginal punts or pods, we must only find the functions g and h in order to establish independence of x and y.
E.f. Let (x, y) have the joint pdf

$$
f(x, y)=48 x y(y-x y) \mathbb{1}(0 \leq x \leq 1,0 \leq y \leq 1) .
$$

We con write $\quad f(x, y)=48 x(1-x)^{2} \mathbb{Z}(0 \leq x \leq 1) \cdot y^{3} \mathbb{1}(0 \leq y=1)$,
3. putting $g(x)=\underbrace{48 x(1-x)^{2} \mathbb{B}(0 \leq x \leq 1)}_{\approx}$ and $h(y)=\underbrace{y^{3} \mathbb{\mathbb { R }}(0 \leq y \leq 1) \text {, }}_{7}$

$$
f(x, y)=g(x) h(y) .
$$

These do not have to br pelts,
ie. the nee on
not. intone +1

Egg. Let (X, y) have the joint pot

$$
f(x, y)=\frac{1}{4 \pi} \exp \left[-\frac{x^{2}+y^{2}-2 x+1}{4}\right] .
$$

Then $\quad f(x, y)=g(x) \cdot h(y) \quad$ for

$$
\partial(x)=\frac{1}{4 \pi} \exp \left[-\frac{x^{2}-2 x+1}{4}\right], \quad h(y)=\exp \left[-\frac{y^{2}}{4}\right],
$$

so X and Y are independent.
E.j. Let (x, y) have the joint pit

$$
f(x, y)=\frac{6}{5}\left[1-(x-y)^{2}\right] \mathbb{1}(0 \leq x \leq 1,0 \leq y \leq 1) .
$$

We cannot find $g(x)$ and $h(y)$ such that $f(x, y)=g(x) \cdot h(y)$, so X and Y are not independent.
The next theorem says that if two rus are independent, then the expected value of their product is equal to the product of their expected values. This comes from the fact that their joint pod/punt, when they are independent, is equal to the product of their marginal pdts/pments.

Theorem: Let X and Y be independent random variables. Then

$$
\mathbb{E} X Y=\mathbb{E} X \mathbb{E} Y .
$$

Moreover, for any functions $g: \mathbb{R} \rightarrow \mathbb{R}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\mathbb{E}_{g}(x) h(y)=\mathbb{E}_{g}(x) \mathbb{E} h(y) .
$$

Proof: Let $\gamma: \mathbb{R} \rightarrow \mathbb{R}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$. Then if X and Y are continuous with joint pot $f(x, y)$,

$$
\mathbb{E} g(x) h(y)=\iint_{\mathbb{R}^{2}} g(x) g(y) f_{(x, y)}(x, y) d x d y
$$

$\left(\begin{array}{llllll}\text { If } & X & \text { and } & Y & \text { are } & \text { discrete } \\ \text { do } & \text { the } & \text { same } & \text { steps, } & \text { replacing } \\ \text { pots } & \text { with } & \text { pets } & \text { and } & \text { integrals } \\ \text { with } & \text { sums. } & & & \end{array}\right)$

$$
\begin{aligned}
& =\iint_{\mathbb{R}^{2}} g(x) f_{x}(x) \cdot h(y) f_{y}(y) \cdot d x d y \\
& =\int_{\mathbb{R}} g(x) f_{x}(x) d x \cdot \int_{\mathbb{R}} h(y) f_{y}(y) d y \\
& =\mathbb{E} g(x) \mathbb{E} h(y) .
\end{aligned}
$$

E.j. Let X and Y be independent random variables with

$$
\begin{aligned}
& f_{x}(x)=2 e^{-2 x} \mathbb{1}(x \geqslant 0) \\
& f_{y}(y)=e^{-2|y|} \mathbb{1}(-\infty<y<\infty)
\end{aligned}
$$

Then $\mathbb{E} X Y^{2}=\mathbb{E} X \mathbb{E} Y^{2}$, where $\mathbb{E} X=1 / 2$, since $X \sim$ Exponential $(\lambda=1 / 2)$
and

$$
\mathbb{E} y^{2}=\int_{-\infty}^{\infty} y^{2} e^{-2|y|} d y
$$

$$
\int_{-\infty}^{0} y^{2} e^{2 y} d y=-\int_{\infty}^{0} w^{2} e^{-2 w} d w=\int_{0}^{\infty} w^{2} e^{-2 w} d w
$$

$$
w=-y, \quad y=-w,
$$

$d y=(-1) d w$

$$
\begin{aligned}
& =2 \int_{0}^{\infty} y^{2} e^{-2 y} d y \quad \begin{array}{l}
x=2 y, \quad y=\frac{1}{2} x \\
=\frac{1}{4} \int_{0}^{\infty} x^{2} e^{-x} d x
\end{array} \quad d y=\frac{1}{2} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\Gamma(3) / 4 \\
& =\frac{1}{2}
\end{aligned}
$$

So $\mathbb{E} X Y^{2}=\mathbb{E} X \mathbb{E} Y^{2}=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}$.
The following result helps us find the distribution of sums of independent random variables. It says that the mgr of the sum of two independent r.v.s is equal to the product of the two mots.

Theorem: Let X and Y be independent random variables with mots M_{X} and M_{Y}, respectively. Then the mgf of the random variable $V=X+Y$ is given by

$$
M_{V}(t)=M_{X}(t) M_{Y}(t)
$$

Proof: $\quad M_{V}(t)=\mathbb{E} e^{t V}=\mathbb{E} e^{t(x+y)}=\mathbb{E} e^{t x} e^{t y}=\mathbb{E} e^{t x} \mathbb{E} e^{t y}=M_{X}(t) M_{y}(t)$. by independence of X and Y

Egg. Let X and Y be independent r.v.s such that $X \sim \operatorname{Binomial}(n, p)$ and $Y \sim \operatorname{Binomial}(m, p)$ and let $U=X+Y$.

Then $U=\#$ successes in $n+m$ Bernoulli: trials with success probability p, so $U \sim$ Binomial $(n+m, p)$.

Indeed, the mat of U is given by

$$
\begin{aligned}
M_{U}(t)=M_{x}(t) M_{y}(t) & =\left[p e^{t}+(1-p)\right]^{n}\left[p e^{t}+(1-p)\right]^{m} \\
& =\left[p e^{t}+(1-p)\right]^{n+m},
\end{aligned}
$$

which is the mgf of the Binomial $(n+m, p)$ distribution.
E.g.(Sum of independent Normal r.v.s): Let X and Y be independent r.v.s such that

$$
X \sim \operatorname{Normal}\left(\mu_{X}, \sigma_{X}^{2}\right) \quad \text { and } \quad Y \sim N_{\text {ormal }}\left(\mu_{Y}, \sigma_{Y}^{2}\right) .
$$

Then $U=X+Y$ has the $\operatorname{Normal}\left(\mu_{x}+\mu_{y}, \sigma_{x}^{2}+\sigma_{y}^{2}\right)$ distribution, since

$$
\begin{aligned}
M_{v}(t)=M_{x}(t) \mu_{y}(t) & =e^{\mu_{x} t+\sigma_{x}^{2} t^{2} / 2} e^{\mu_{y} t+\sigma_{y}^{2} t^{2} / 2} \\
& =e^{\left(\mu_{x}+\mu_{y}\right) t+\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right) t^{2} / 2}
\end{aligned}
$$

which is the mot of the $\operatorname{Normal}\left(\mu_{x}+\mu_{y}, \sigma_{x}^{2}+\sigma_{y}^{2}\right)$ distribution.
Eff. (Sum of independent Poisons) Lat X_{1} and X_{2} be independent rives

$$
X_{1} \sim \operatorname{Poisson}\left(\lambda_{1}\right) \quad \text { and } \quad X_{2} \sim \operatorname{Poisson}\left(\lambda_{2}\right) .
$$

Then $Y=X_{1}+X_{2} \sim \operatorname{Poisson}\left(\lambda_{1}+\lambda_{2}\right)$, since

$$
M_{y}(t)=M_{x_{1}}(t) M_{x_{2}}(t)=e^{\lambda_{1}\left(e^{t}-1\right)} \cdot e^{\lambda_{2}\left(e^{t}-1\right)}=e^{\left(\lambda_{1}+\lambda_{2}\right)\left(e^{t}-1\right)},
$$

which is the mut of the Poisson $\left(\lambda_{1}+\lambda_{2}\right)$ distribution.

