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Covariance and correlation and bivariate Normal
distribution

Karl B. Gregory
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These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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Covariance
The covariance between two rvs X and Y is defined as

Cov(X ,Y ) = E(X − µX )(Y − µY ) =: σXY ,

where µX = EX and µY = EY .

Useful expression: Cov(X ,Y ) = EXY − EXEY

Exercise: Derive the useful expression for computing covariances.
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Correlation
The correlation between two rvs X and Y is defined as

corr(X ,Y ) =
Cov(X ,Y )√
VarX

√
VarY

=
σXY
σXσY

=: ρXY ,

where σX =
√

VarX and σY =
√

VarY .

We will later show that corr(X ,Y ) ∈ [−1, 1] for any rvs X and Y .
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Exercise: Let (X ,Y ) be a pair of rvs with joint pdf given by

f (x , y) =
1
8

(x + y) · 1(0 < x < 2, 0 < y < 2).

1 Find Cov(X ,Y ).
2 Find corr(X ,Y ).
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Covariance and correlation of linearly transformed rvs
For any two rvs X and Y and constants a, b, c , d ∈ R, we have

Cov(aX + b, cY + d) = ac · Cov(X ,Y )

corr(aX + b, cY + d) = sign(ac) · corr(X ,Y ).

Exercise: Prove the result.
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Sample space for rolling two dice, tabulated as (roll 1, roll 2):

S =



(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)


Exercise: Let X = max and Y = min of rolls.

1 Find Cov(X ,Y ).
2 Find corr(X ,Y ).
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Theorem (independence implies covariance equal to zero)
If X and Y are independent then Cov(X ,Y ) = 0.

If Cov(X ,Y ) = 0, it does not mean that X and Y are independent!

Exercise: Let (X ,Y ) be a pair of rvs with joint pdf given by

f (x , y) =
1

2|x |
e−y/|x|1(x ∈ (−1, 1) \ {0}, y > 0).

1 Check whether X and Y are independent.
2 Compute Cov(X ,Y ).
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Theorem (Variance of linear combination of random variables)
For any a, b ∈ R we have

Var(aX + bY ) = a2 VarX + b2 VarY + 2ab Cov(X ,Y ).

Exercise: Prove the above.
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Exercise: Suppose VarX = 2, VarY = 3 and Cov(X ,Y ) = −3/2.

Find Var(3X − Y ).
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Exercise: Let (X ,Y ) be a pair of rvs with joint pdf given by

f (x , y) =
1
8

(x + y) · 1(0 < x < 2, 0 < y < 2).

1 Find Cov(2X ,Y )

2 Find corr(2X ,Y ).
3 Find Var(X − Y )

4 Find Var(3X + Y /2).
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Theorem (Variance of linear combination of random variables)
Let X1, . . . ,Xn be random variables and let a1, . . . , an ∈ R. Then

Var

(
n∑

i=1

aiXi

)
=

n∑
i=1

a2
i Var(Xi ) + 2

∑
i<j

aiaj Cov(Xi ,Xj).

Exercise: Prove the above.
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Theorem (Variance of mean of independent rvs with same variance)
Let X1, . . . ,Xn be independent rvs all with variance σ2 and let X̄ = n−1∑n

i=1 Xi .

Then

Var(X̄ ) =
σ2

n
.

Exercise: Prove the above.
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Exercise: Let Y1, . . . ,Yn be independent rvs such that

Yi ∼ Normal(µ, σ2
i ), i = 1, . . . , n

and let

Ȳ =
1
n

n∑
i=1

Yi and Ỹ =

∑n
i=1 σ

−2
i Yi∑n

j=1 σ
−2
j

.

1 Find EȲ .
2 Find Var Ȳ .
3 Find EỸ .
4 Find Var Ỹ .
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Exercise: Let Z1, . . . ,Zn have unit variance and suppose

corr(Zi ,Zj) = ρ ∈ (−1, 1) for i 6= j .

Find Var Z̄ , where Z̄ = n−1∑n
i=1 Zi .
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Bivariate Normal distribution
The rvs (X ,Y ) have the bivariate Normal distribution if they have joint pdf

f (x , y ;µX , µY , σX , σY , ρ) =
1
2π

1

σXσY
√

1− ρ2

× exp

[
− 1
2(1− ρ2)

([
X − µX

σX

]
− 2ρ

[
X − µX

σX

] [
Y − µY

σY

]
+

[
Y − µY

σY

]2
)]

.

µX is mean of X .
µY is mean of Y .
σ2
X is variance of X .
σ2
Y is variance of Y .
ρ is corr(X ,Y ).
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Theorem (Cauchy-Schwarz Inequality)
For any rvs X and Y

|EXY | ≤ E|XY | ≤
√
EX 2
√
EY 2.

Exercise: Prove the above.

Exercise: Use the CS inequality to prove corr(X ,Y ) ∈ [−1, 1] for any rvs X , Y .
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