## STAT 511 fa 2019 Exam I

## Karl B. Gregory

- Do not open this test until told to do so.
- No calculators allowed; no notes allowed; no books allowed.
- Simplify all answers.
- SHOW YOUR WORK so that PARTIAL CREDIT may be given.

**Chebychev's inequality:** For any random variable X with mean  $\mu_X$  and variance  $\sigma_X^2$  and any constant K > 0, we have

$$P_X(|X - \mu_X| < K\sigma_X) \ge 1 - \frac{1}{K^2}.$$

1. Consider rolling a 6-sided die with sides  $\overline{\bigcirc}$ ,  $\overline{\bigcirc}$ ,  $\overline{\bigcirc}$ ,  $\overline{\bigcirc}$ ,  $\overline{\odot}$ ,  $\overline{\odot}$ , and  $\overline{\blacksquare}$  and define the random variable

$$X(s) = \begin{cases} 1 & \text{if } s \in \{ \bigcirc, \bigcirc, \bigcirc \} \\ 2 & \text{if } s \in \{ \boxdot, \boxdot \} \\ 3 & \text{if } s \in \{ \blacksquare \}. \end{cases}$$

- (a) Give the support of X.
- (b) Tabulate the probability distribution of X with a table of the form

$$\begin{array}{c|cc} x & \cdots \\ \hline P_X(X=x) & \cdots \end{array}$$

- (c) Write down the cdf  $F_X$  of X, making sure to define  $F_X(x)$  for all  $x \in \mathbb{R}$ .
- (d) Draw a detailed picture of the cdf  $F_X$ .
- (e) Give the following probabilities:

i. 
$$P_X(X \le 1/2)$$

11. 
$$P_X(X \le 2.5)$$

iii. 
$$P_X(1 < X \le 3)$$

- (f) Compute the expected value  $\mathbb{E}X$  of X.
- (g) Compute the variance  $\operatorname{Var} X$  of X.
- (h) Use Chebychev's inequality to give an interval within which X will fall with probability at least 1 1/16 = 0.9375.
- (i) Comment on whether you think the interval you gave in part (h) is useful for this random variable.
- 2. One of the two plots below shows the cdf of a random variable X and the other shows the pdf of the same random variable.



- (a) Which plot shows the cdf?
- (b) Is the random variable X discrete or continuous?

- (c) Give the support of X.
- (d) Give the following probabilities:
  - i.  $P_X(X \le 1)$ ii.  $P_X(X = 7/5)$ iii.  $P_X(4/5 < X < 2)$
- (e) Give the height of the function in the left-hand plot over the intervals (2/5, 4/5) and (7/5, 2).
- 3. (a) Give the number of unique sequences of letters that can be created with the letters in *borogoves*. You do not need to simplify your answer.
  - (b) Consider the following set of words:

jaws the that claws the catch bite that

- i. Suppose you draw two words without replacement from the above set of words. Give the probability that you draw the words *claws* and *the*. The order in which you draw them does not matter. Simplify your answer.
- ii. Suppose you draw one word at a time from the above set of words until you have drawn all the words. Give the probability that your sequence of draws results in the phrase *the jaws that bite the claws that catch*. You do not have to simplify your answer.
- 4. Suppose 1/10 of all the text messages you receive come from family members, and 1/5 of the messages from family members come before 8:00 am. In addition, suppose that 19/20 of the messages you receive from non-family members come after 8:00 am.
  - (a) What is the proportion of text messages you receive before 8:00 am?
  - (b) If you receive a text message before 8:00 am, what is the probability that it is from a family member?