STAT 511 fa 2019 Exam II

Karl B. Gregory

- Do not open this test until told to do so.
- No calculators allowed; no notes allowed; no books allowed.
- Simplify all answers.
- SHOW YOUR WORK so that PARTIAL CREDIT may be given.

pmf/pdf	\mathcal{X}	$M_X(t)$	$\mathbb{E}X$	$\operatorname{Var} X$
$p_X(x;p) = p^x(1-p)^{1-x},$	x = 0, 1	$pe^t + (1-p)$	p	p(1-p)
$p_X(x; n, p) = \binom{n}{x} p^x (1-p)^{n-x},$	$x = 0, 1, \dots, n$	$[pe^t + (1-p)]^n$	np	np(1-p)
$p_X(x;p) = (1-p)^{x-1}p,$	$x = 1, 2, \dots$	$\frac{pe^t}{1 - (1 - p)e^t}$	p^{-1}	$(1-p)p^{-2}$
$p_X(x; p, r) = {x-1 \choose r-1} (1-p)^{x-r} p^r,$	$x = r, r + 1, \dots$	$\left[\frac{pe^t}{1 - (1 - p)e^t}\right]^T$	rp^{-1}	$r(1-p)p^{-2}$
$p_X(x;\lambda) = e^{-\lambda} \lambda^x / x!$	$x = 0, 1, \dots$	$e^{\lambda(e^t-1)}$	λ	λ
$p_X(x; N, M, K) = {M \choose x} {N-M \choose K-x} / {N \choose K}$	$x = 0, 1, \dots, K$	¡complicadísimo!	$\frac{KM}{N}$	$\frac{KM}{N} \frac{(N-K)(N-M)}{N(N-1)}$
$p_X(x;K) = \frac{1}{K}$	$x = 1, \dots, K$	$\frac{1}{K} \sum_{x=1}^{K} e^{tx}$	$\frac{K+1}{2}$	$\frac{(K+1)(K-1)}{12}$
$p_X(x;x_1,\ldots,x_n)=\frac{1}{n}$	$x = x_1, \dots, x_n$	$\frac{1}{n} \sum_{i=1}^{n} e^{tx_i}$	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	$ \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 $
$f_X(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$-\infty < x < \infty$	$e^{\mu t + \sigma^2 t^2/2}$	μ	σ^2
$f_X(x; \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} \exp\left(-\frac{x}{\beta}\right)$	$0 < x < \infty$	$(1-\beta t)^{-\alpha}$	lphaeta	$lphaeta^2$
$f_X(x;\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	0 < x < 1	$1 + \sum_{k=1}^{\infty} \frac{t^k}{k!} \left(\prod_{r=0}^{k=1} \frac{\alpha + r}{\alpha + \beta + r} \right)$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

1. Let X be a rv with mgf given by

$$M_X(t) = \sum_{j=1}^{\infty} (t\theta)^{j-1}/j! = 1 + \frac{t\theta}{2} + \frac{t^2\theta^2}{3!} + \frac{t^3\theta^3}{4!} + \frac{t^4\theta^4}{5!} + \dots$$

for some $\theta > 0$.

- (a) Find $\mathbb{E}X$.
- (b) Find Var X.
- 2. For each of the following, find the normalizing constant C (the constant required so that the pdf will integrate to 1). Hint: Identify the type of distribution, i.e. Gamma, Beta, or Normal, and then identify the parameters; you should not have to do any integration.
 - (a) $f_Y(y) = Cy^3 e^{-y/2}$ for y > 0.
 - (b) $f_X(x) = Ce^{-x} \text{ for } x > 0.$
 - (c) $f_Y(y) = Cy^3(1-y)$ for 0 < y < 1.
 - (d) $f_X(x) = Ce^{-x^2/2} \text{ for } -\infty < x < \infty.$
- 3. Let $(X,Y) \sim f(x,y) = \lambda^{-2} e^{-(x+y)/\lambda}$ for x,y>0, where $\lambda>0$.
 - (a) Find an expression for the joint cdf $F(x,y) = P(X \le x, Y \le y)$ for all $x,y \in \mathbb{R}$.
 - (b) Find the marginal pdf of X.
 - (c) Give $P(X = \lambda)$.
- 4. Let

$$(X,Y) \sim f(x,y) = \begin{cases} 1 & \text{for } 0 < x < 1 \text{ and } 0 < y < 1 \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find $\mathbb{E}(X-Y)^2$.
- (b) Find P(X < Y).
- (c) Find P(|X Y| < 1/2). Hint: Draw a picture of this region.
- 5. Let $Y \sim f_Y(y) = 2y/\theta^2$ for $0 < y < \theta$, for some $\theta > 0$.
 - (a) Find the median of Y in terms of θ .
 - (b) Find the value of θ under which the 0.25 quantile is equal to 1.

Hint: Set up the appropriate integrals and solve for the unknown quantity.

- 6. Let $X \sim \text{Poisson}(\lambda)$.
 - (a) Give the second moment of X.
 - (b) Suppose $\operatorname{Var} X = 10$. Find $P(X \ge 1)$.
- 7. Suppose $X \sim \text{Beta}(2,2)$ and let Y = 3 + 4X.
 - (a) Find $\mathbb{E}Y$.
 - (b) Find Var Y.