STAT 511 fa 2019 Exam II

Karl B. Gregory

- Do not open this test until told to do so.
- No calculators allowed; no notes allowed; no books allowed.
- Simplify all answers.
- SHOW YOUR WORK so that PARTIAL CREDIT may be given.

pmf/pdf	\mathcal{X}	$M_{X}(t)$	$\mathbb{E} X$	$\operatorname{Var} X$
$p_{X}(x ; p)=p^{x}(1-p)^{1-x}$,	$x=0,1$	$p e^{t}+(1-p)$	p	$p(1-p)$
$p_{X}(x ; n, p)=\binom{n}{x} p^{x}(1-p)^{n-x}$,	$x=0,1, \ldots, n$	$\left[p e^{t}+(1-p)\right]^{n}$	$n p$	$n p(1-p)$
$p_{X}(x ; p)=(1-p)^{x-1} p$,	$x=1,2, \ldots$	$\frac{p e^{t}}{1-(1-p) e^{t}}$	p^{-1}	$(1-p) p^{-2}$
$p_{X}(x ; p, r)=\binom{x-1}{r-1}(1-p)^{x-r} p^{r}$,	$x=r, r+1, \ldots$	$\left[\frac{p e^{t}}{1-(1-p) e^{t}}\right]^{r}$	$r p^{-1}$	$r(1-p) p^{-2}$
$p_{X}(x ; \lambda)=e^{-\lambda} \lambda^{x} / x!$	$x=0,1, \ldots$	$e^{\lambda\left(e^{t}-1\right)}$	λ	λ
$p_{X}(x ; N, M, K)=\binom{M}{x}\binom{N-M}{K-x} /\binom{N}{K}$	$x=0,1, \ldots, K$	$i \operatorname{complicadísimo!}$	$\frac{K M}{N}$	$\frac{K M}{N} \frac{(N-K)(N-M)}{N(N-1)}$
$p_{X}(x ; K)=\frac{1}{K}$	$x=1, \ldots, K$	$\frac{1}{K} \sum_{x=1}^{K} e^{t x}$	$\frac{K+1}{2}$	$\frac{(K+1)(K-1)}{12}$
$p_{X}\left(x ; x_{1}, \ldots, x_{n}\right)=\frac{1}{n}$	$x=x_{1}, \ldots, x_{n}$	$\frac{1}{n} \sum_{i=1}^{n} e^{t x_{i}}$	$\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$	
$f_{X}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$	$-\infty<x<\infty$	$e^{\mu t+\sigma^{2} t^{2} / 2}$	μ	σ^{2}
$f_{X}(x ; \alpha, \beta)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} \exp \left(-\frac{x}{\beta}\right)$	$0<x<\infty$	$(1-\beta t)^{-\alpha}$	$\alpha \beta$	$\alpha \beta^{2}$
$f_{X}(x ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} 0<x<1$	$1+\sum_{k=1}^{\infty} \frac{t^{k}}{k!}\left(\prod_{r=0}^{k=1} \frac{\alpha+r}{\alpha+\beta+r}\right)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$	

1. Let X be a rv with mgf given by

$$
M_{X}(t)=\sum_{j=1}^{\infty}(t \theta)^{j-1} / j!=1+\frac{t \theta}{2}+\frac{t^{2} \theta^{2}}{3!}+\frac{t^{3} \theta^{3}}{4!}+\frac{t^{4} \theta^{4}}{5!}+\ldots
$$

for some $\theta>0$.
(a) Find $\mathbb{E} X$.

Solution: The first derivative of $M_{X}(t)$ with respect to t is

$$
M_{X}^{(1)}(t)=\frac{\theta}{2}+\frac{2 t \theta^{2}}{3!}+\frac{3 t^{2} \theta^{3}}{4!}+\frac{4 t^{3} \theta^{4}}{5!}+\ldots,
$$

which, when evaluated at $t=0$ returns

$$
\mathbb{E} X=\theta / 2
$$

(b) Find $\operatorname{Var} X$.

Solution: The second derivative of $M_{X}(t)$ with respect to t is

$$
M_{X}^{(1)}(t)=\frac{2 \theta^{2}}{3!}+\frac{3(2) t \theta^{3}}{4!}+\frac{4(3) t^{2} \theta^{4}}{5!}+\ldots
$$

which, when evaluated at $t=0$ returns

$$
\mathbb{E} X^{2}=2 \theta^{2} / 3!=\theta^{2} / 3
$$

Then sing the useful expression $\operatorname{Var} X=\mathbb{E} X^{2}-(\mathbb{E} X)^{2}$ gives

$$
\operatorname{Var} X=\theta^{2} / 3-(\theta / 2)^{2}=\left(4 \theta^{2}-3 \theta^{2}\right) / 12=\theta^{2} / 12
$$

2. For each of the following, find the normalizing constant C (the constant required so that the pdf will integrate to 1). Hint: Identify the type of distribution, i.e. Gamma, Beta, or Normal, and then identify the parameters; you should not have to do any integration.
(a) $f_{Y}(y)=C y^{3} e^{-y / 2}$ for $y>0$.

Solution: When normalized, this will become the pdf of the Gamma distribution with $\alpha=4$ and $\beta=2$. We have

$$
C=\frac{1}{\Gamma(4) 4^{2}}=1 /(3 * 2 * 16)=1 /(3 * 32)=1 / 96
$$

(b) $f_{X}(x)=C e^{-x}$ for $x>0$.

Solution: When normalized, this will become the pdf of the Gamma distribution with $\alpha=1$ and $\beta=1$. We have

$$
C=\frac{1}{\Gamma(1) 1^{1}}=1
$$

(c) $f_{Y}(y)=C y^{3}(1-y)$ for $0<y<1$.

Solution: When normalized, this will become the pdf of the Beta distribution with $\alpha=4$ and $\beta=2$. We have

$$
C=\frac{\Gamma(4+2)}{\Gamma(4) \Gamma(2)}=\frac{5!}{3!1!}=20
$$

(d) $f_{X}(x)=C e^{-x^{2} / 2}$ for $-\infty<x<\infty$.

Solution: When normalized, this will become the pdf of the Normal distribution with $\mu=0$ and $\sigma^{2}=1$. We have

$$
C=\frac{1}{\sqrt{2 \pi}} .
$$

3. Let $(X, Y) \sim f(x, y)=\lambda^{-2} e^{-(x+y) / \lambda}$ for $x, y>0$, where $\lambda>0$.
(a) Find an expression for the joint $\operatorname{cdf} F(x, y)=P(X \leq x, Y \leq y)$ for all $x, y \in \mathbb{R}$.

Solution: For $x>0$ and $y>0$ we have

$$
\begin{aligned}
P(X \leq x, Y \leq y) & =\int_{0}^{x} \int_{0}^{y} \frac{1}{\lambda^{2}} e^{-\left(t_{1}+t_{2}\right) / \lambda} d t_{2} d t_{1} \\
& =\int_{0}^{x} \frac{1}{\lambda} e^{-t_{1} / \lambda} \int_{0}^{y} \frac{1}{\lambda} e^{-t_{2} / \lambda} d t_{2} d t_{1} \\
& =\left(1-e^{-y / \lambda}\right) \int_{0}^{x} \frac{1}{\lambda} e^{-t_{1} / \lambda} d t_{1} \\
& =\left(1-e^{-y / \lambda}\right)\left(1-e^{-x / \lambda}\right)
\end{aligned}
$$

So the joint cdf is given by

$$
F(x, y)= \begin{cases}\left(1-e^{-y / \lambda}\right)\left(1-e^{-x / \lambda}\right) & \text { for } x>0 \text { and } y>0 \\ 0 & \text { otherwise }\end{cases}
$$

(b) Find the marginal pdf of X.

Solution: For $x>0$, we have

$$
f_{X}(x)=\int_{0}^{\infty} \frac{1}{\lambda^{2}} e^{-(x+y) / \lambda} d y=\frac{1}{\lambda} e^{-x / \lambda} \int_{0}^{\infty} \frac{1}{\lambda} e^{-y / \lambda} d y=\frac{1}{\lambda} e^{-x / \lambda}
$$

(c) Give $P(X=\lambda)$.

Solution: This is equal to zero because X is a continuous random variable.
4. Let

$$
(X, Y) \sim f(x, y)= \begin{cases}1 & \text { for } 0<x<1 \text { and } 0<y<1 \\ 0 & \text { otherwise } .\end{cases}
$$

(a) Find $\mathbb{E}(X-Y)^{2}$.

Solution: We have

$$
\begin{aligned}
\mathbb{E}(X-Y)^{2} & =\int_{0}^{1} \int_{0}^{1}(x-y)^{2} \cdot 1 \cdot d x d y \\
& =\int_{0}^{1} \int_{0}^{1}\left(x^{2}-2 x y+y^{2}\right) d x d y \\
& =\left.\int_{0}^{1}\left(x^{3} / 3-x^{2} y+x y^{2}\right)\right|_{0} ^{1} d x d y \\
& =\int_{0}^{1}\left(1 / 3-y+y^{2}\right) d y \\
& =\left.\left(y / 3-y^{2} / 2+y^{3} / 3\right)\right|_{0} ^{1} \\
& =1 / 3-1 / 2+1 / 3 \\
& =1 / 6
\end{aligned}
$$

(b) Find $P(X<Y)$.

Solution: We can see that the answer is $1 / 2$ by drawing a picture.
(c) Find $P(|X-Y|<1 / 2)$. Hint: Draw a picture of this region.

Solution: We can see that the answer is $3 / 4$ by drawing a picture.
5. Let $Y \sim f_{Y}(y)=2 y / \theta^{2}$ for $0<y<\theta$, for some $\theta>0$.
(a) Find the median of Y in terms of θ.

Solution: Solve the following for q :

$$
1 / 2=\int_{0}^{q} 2 y / \theta^{2} d y=y^{2} /\left.\theta^{2}\right|_{0} ^{q}=q^{2} / \theta^{2} \Longleftrightarrow \theta^{2} / 2=q^{2} \Longleftrightarrow q=\theta / \sqrt{2}
$$

so the median is $\theta / \sqrt{2}$.
(b) Find the value of θ under which the 0.25 quantile is equal to 1 .

Solution: Solve the following for θ :

$$
1 / 4=\int_{0}^{1} 2 y / \theta^{2} d y=1 / \theta^{2} \Longleftrightarrow \theta=2
$$

so under $\theta=2$ the 0.25 quantile is equal to 1 .
Hint: Set up the appropriate integrals and solve for the unknown quantity.
6. Let $X \sim \operatorname{Poisson}(\lambda)$.
(a) Give the second moment of X.

Solution: By the useful expression and the fact that $\mathbb{E} X=\lambda$ and $\operatorname{Var} X=\lambda$, we have $\lambda=\mathbb{E} X^{2}-\lambda^{2}$, so

$$
\mathbb{E} X^{2}=\lambda(1+\lambda)
$$

(b) Suppose $\operatorname{Var} X=10$. Find $P(X \geq 1)$.

Solution: If $\operatorname{Var} X=10$ then $\lambda=10$. Then

$$
P(X \geq 1)=1-P(X=0)=1-\frac{e^{-10} 10^{0}}{0!}=1-e^{-10}
$$

7. Suppose $X \sim \operatorname{Beta}(2,2)$ and let $Y=3+4 X$.
(a) Find $\mathbb{E} Y$.

Solution: We have $\mathbb{E} X=2 /(2+2)=1 / 2$, so

$$
\mathbb{E} Y=3+4 \mathbb{E} X=3+4 / 2=5
$$

(b) Find Var Y.

Solution: We have

$$
\operatorname{Var} X=\frac{2 * 2}{(2+2)^{2}(2+2+1)}=\frac{4}{16 * 5}=\frac{4}{80}=\frac{1}{20}
$$

Then

$$
\operatorname{Var} Y=4^{2} \operatorname{Var} X=4^{2} / 20=16 / 20=4 / 5
$$

