STAT 511 fa 2019 Final Exam

Karl B. Gregory

Do not open this test until told to do so; no calculators allowed; no notes allowed; no books allowed; show your work so that partial credit may be given.

Remember, remember! $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var} X+b^{2} \operatorname{Var} Y+2 a b \operatorname{Cov}(X, Y)$.

1. Customers of the pre-paid mobile provider Talk-is-Cheap will be randomly assigned to win a prize: 80% of the customers will receive 50 free text messages; 15% will receive 100 free text messages, and 5% will receive 200 free text messages. Suppose you are a Talk-is-Cheap customer and let X be the number of free text messages you receive.
(a) Make a table showing the probability distribution of X.
(b) Find $\mathbb{E} X$.
(c) Give an expression for the $\operatorname{cdf} F(x)$ of X for all $x \in \mathbb{R}$.
(d) Draw a detailed picture of the cdf.
2. Hungry bear commutes to work either by biking or driving, and midmorning he sometimes eats a banana. On 80% of the days on which he bikes he eats a banana, and he eats a banana on 30% of the days on which he drives. He bikes on 90% of days.
(a) On what proportion of days does hungry bear eat a banana midmorning?
(b) If you see hungry bear eating a banana midmorning, what is the probability that he biked to work?
(c) Are the events that hungry bear bikes to work and that he eats a banana independent?
3. Let X be a random variable with cdf given by

$$
F(x)= \begin{cases}1, & 9 \leq x \\ \sqrt{x} / 3, & 0 \leq x<9 \\ 0, & x<0\end{cases}
$$

(a) Give $P(X=4)$.
(b) Give $P(X>2)$.
(c) Find the pdf of X.
(d) Find $\mathbb{E} X$.
4. Let $X \sim \operatorname{Poisson(5)~and~} Y \sim \operatorname{Poisson}(6)$ and suppose X and Y are independent.
(a) Find $\mathbb{E}(10 X+5)$.
(b) Find $\operatorname{Var}(10 X+5)$.
(c) Find the distribution of $X+Y$ using the fact that $M_{X+Y}(t)=M_{X}(t) M_{Y}(t)$.
(d) Find $\operatorname{Var}(X+Y)$.
(e) Write down the joint pmf of X and Y.
5. Let (U, V) be a pair of random variables with joint pdf given by

$$
f(u, v)=\frac{2}{\pi} \exp \left(-\frac{u^{2}+v^{2}}{2}\right) \quad \text { for } u>0, v>0
$$

(a) State whether U and V are independent and give your reasoning.
(b) Give $\operatorname{Cov}(U, V)$.
(c) The marginal pdf of V is $f_{V}(v)=(\sqrt{2} / \pi) \exp \left(-v^{2} / 2\right)$, for $v>0$. Use this and the fact that U and V are independent to find the marginal pdf of U.
6. Suppose $X \sim \operatorname{Normal}(2,1)$ and $Y \sim \operatorname{Normal}(0,2)$ and $\operatorname{Cov}(X, Y)=1 / 2$.
(a) Find $\mathbb{E}(3 X+4 Y)$.
(b) Find $\operatorname{Var}(3 X+4 Y)$.
7. Let T_{1} and T_{2} be independent random variables representing the times until failure of two components (component 1 and component 2, respectively) of a dishwasher. In order for the dishwasher to operate, both components must be functioning. The cdfs of T_{1} and T_{2} are plotted in the figure below.

(a) What is the probability that component 1 fails in the first 2 years?
(b) What is the probability that the dishwasher will still function after 6 years?
(c) A 1-year warranty is offered with the dishwasher, under which the dishwasher will be replaced if either component fails during the 1-year period following the purchase. What is the probability that a customer may claim a replacement under the warranty?
8. Let X and Y be random variables such that

$$
\begin{aligned}
Y \mid X & \sim \operatorname{Uniform}(0, X) \quad\left(\quad \text { so } f(y \mid x)=\frac{1}{x} \mathbf{1}(0<y<x)\right. \\
X & \sim \operatorname{Exponential}(\lambda)
\end{aligned}
$$

Note that the mean and variance of the Uniform (a, b)-dist. are $(a+b) / 2$ and $(b-a)^{2} / 12$, respectively.
(a) Find $\mathbb{E}(Y \mid X)$.
(b) Find $\operatorname{Var}(Y \mid X)$.
(c) Find $\mathbb{E} Y$ using the fact that $\mathbb{E} Y=\mathbb{E}(\mathbb{E}[Y \mid X])$.
(d) Find Var Y using the fact that $\operatorname{Var} Y=\mathbb{E}(\operatorname{Var}[Y \mid X])+\operatorname{Var}(\mathbb{E}[Y \mid X])$.
(e) Write down the joint pdf of X and Y.
(f) Write down the integral you would need to solve in order to obtain the marginal pdf of Y (do not try to compute the integral).

