STAT 511 fa 2019 Final Exam

Karl B. Gregory

Do not open this test until told to do so; no calculators allowed; no notes allowed; no books allowed; show your work so that partial credit may be given.

pmf/pdf	\mathcal{X}	$M_X(t)$	$\mathbb{E} X$	$\operatorname{Var} X$
$p_X(x;p) = p^x(1-p)^{1-x},$	x = 0, 1	$pe^t + (1-p)$	p	p(1 - p)
$p_X(x; n, p) = \binom{n}{x} p^x (1-p)^{n-x},$	$x = 0, 1, \dots, n$	$[pe^t + (1-p)]^n$	np	np(1-p)
$p_X(x;p) = (1-p)^{x-1}p,$	$x = 1, 2, \dots$	$\frac{pe^t}{1 - (1 - p)e^t}$	p^{-1}	$(1-p)p^{-2}$
$p_X(x; p, r) = {x-1 \choose r-1} (1-p)^{x-r} p^r,$	$x = r, r + 1, \dots$	$\left[\frac{pe^t}{1-(1-p)e^t}\right]^r$	rp^{-1}	$r(1-p)p^{-2}$
$p_X(x;\lambda) = e^{-\lambda} \lambda^x / x!$	$x = 0, 1, \dots$	$e^{\lambda(e^t-1)}$	λ	λ
$p_X(x; N, M, K) = {M \choose x} {N-M \choose K-x} / {N \choose K}$	$x = 0, 1, \dots, K$	¡complicadísimo!	$\frac{KM}{N}$	$\frac{KM}{N} \frac{(N-K)(N-M)}{N(N-1)}$
$p_X(x;K) = \frac{1}{K}$	$x = 1, \dots, K$	$\frac{1}{K} \sum_{x=1}^{K} e^{tx}$	$\frac{K+1}{2}$	$\frac{(K+1)(K-1)}{12}$
$p_X(x;x_1,\ldots,x_n)=\frac{1}{n}$	$x = x_1, \dots, x_n$	$\frac{1}{n} \sum_{i=1}^{n} e^{tx_i}$	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	$\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})^2$
$f_X(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$-\infty < x < \infty$	$e^{\mu t + \sigma^2 t^2/2}$	μ	σ^2
$f_X(x; \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} \exp\left(-\frac{x}{\beta}\right)$	$0 < x < \infty$	$(1-\beta t)^{-\alpha}$	lphaeta	$lphaeta^2$
$f_X(x; \alpha, \beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	0 < x < 1	$ 1 + \sum_{k=1}^{\infty} \frac{t^k}{k!} \left(\prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r} \right) $	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

$$\begin{aligned} & p_{(X_1, \dots, X_K)}(x_1, \dots, x_K; p_1, \dots, p_K) = p_1^{x_1} \cdots p_K^{x_K} \cdot \mathbf{1} \left\{ (x_1, \dots, x_K) \in \{0, 1\}^K : \sum_{k=1}^K x_k = 1 \right\} \\ & p_{(Y_1, \dots, Y_K)}(y_1, \dots, y_K; n, p_1, \dots, p_K) = \left(\frac{n!}{y_1! \cdots y_K!} \right) p_1^{y_1} \cdots p_K^{y_K} \cdot \mathbf{1} \left\{ (y_1, \dots, y_K) \in \{0, 1, \dots, n\}^K : \sum_{k=1}^K y_k = n \right\} \\ & f_{(X,Y)}(x, y; \mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho) = \frac{1}{2\pi} \frac{1}{\sigma_X \sigma_Y \sqrt{1 - \rho^2}} \exp\left(-\frac{1}{2} \left[\left(\frac{x - \mu_X}{\sigma_X} \right)^2 - 2\rho \left(\frac{x - \mu_X}{\sigma_X} \right) \left(\frac{y - \mu_Y}{\sigma_Y} \right) + \left(\frac{y - \mu_Y}{\sigma_Y} \right)^2 \right] \right) \end{aligned}$$

Remember, remember! $Var(aX + bY) = a^2 Var X + b^2 Var Y + 2ab Cov(X, Y)$.

- 1. Customers of the pre-paid mobile provider *Talk-is-Cheap* will be randomly assigned to win a prize: 80% of the customers will receive 50 free text messages; 15% will receive 100 free text messages, and 5% will receive 200 free text messages. Suppose you are a *Talk-is-Cheap* customer and let X be the number of free text messages you receive.
 - (a) Make a table showing the probability distribution of X.
 - (b) Find $\mathbb{E}X$.
 - (c) Give an expression for the cdf F(x) of X for all $x \in \mathbb{R}$.
 - (d) Draw a detailed picture of the cdf.
- 2. Hungry bear commutes to work either by biking or driving, and midmorning he sometimes eats a banana. On 80% of the days on which he bikes he eats a banana, and he eats a banana on 30% of the days on which he drives. He bikes on 90% of days.
 - (a) On what proportion of days does hungry bear eat a banana midmorning?
 - (b) If you see hungry bear eating a banana midmorning, what is the probability that he biked to work?
 - (c) Are the events that hungry bear bikes to work and that he eats a banana independent?
- 3. Let X be a random variable with cdf given by

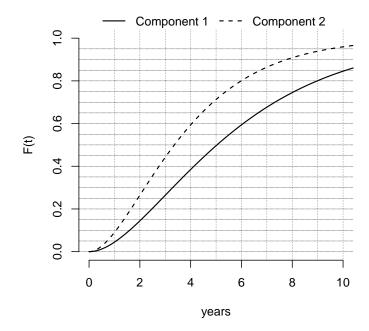
$$F(x) = \begin{cases} 1, & 9 \le x \\ \sqrt{x}/3, & 0 \le x < 9 \\ 0, & x < 0 \end{cases}$$

- (a) Give P(X=4).
- (b) Give P(X > 2).
- (c) Find the pdf of X.
- (d) Find $\mathbb{E}X$.
- 4. Let $X \sim \text{Poisson}(5)$ and $Y \sim \text{Poisson}(6)$ and suppose X and Y are independent.
 - (a) Find $\mathbb{E}(10X + 5)$.
 - (b) Find Var(10X + 5).
 - (c) Find the distribution of X + Y using the fact that $M_{X+Y}(t) = M_X(t)M_Y(t)$.
 - (d) Find Var(X + Y).
 - (e) Write down the joint pmf of X and Y.

5. Let (U, V) be a pair of random variables with joint pdf given by

$$f(u, v) = \frac{2}{\pi} \exp\left(-\frac{u^2 + v^2}{2}\right)$$
 for $u > 0, v > 0$.

- (a) State whether U and V are independent and give your reasoning.
- (b) Give Cov(U, V).
- (c) The marginal pdf of V is $f_V(v) = (\sqrt{2}/\pi) \exp(-v^2/2)$, for v > 0. Use this and the fact that U and V are independent to find the marginal pdf of U.
- 6. Suppose $X \sim \text{Normal}(2,1)$ and $Y \sim \text{Normal}(0,2)$ and Cov(X,Y) = 1/2.
 - (a) Find $\mathbb{E}(3X + 4Y)$.
 - (b) Find Var(3X + 4Y).
- 7. Let T_1 and T_2 be independent random variables representing the times until failure of two components (component 1 and component 2, respectively) of a dishwasher. In order for the dishwasher to operate, both components must be functioning. The cdfs of T_1 and T_2 are plotted in the figure below.



- (a) What is the probability that component 1 fails in the first 2 years?
- (b) What is the probability that the dishwasher will still function after 6 years?
- (c) A 1-year warranty is offered with the dishwasher, under which the dishwasher will be replaced if *either* component fails during the 1-year period following the purchase. What is the probability that a customer may claim a replacement under the warranty?

8. Let X and Y be random variables such that

$$Y|X \sim \text{Uniform}(0, X)$$
 $\left(\text{so } f(y|x) = \frac{1}{x}\mathbf{1}(0 < y < x)\right)$
 $X \sim \text{Exponential}(\lambda)$

Note that the mean and variance of the Uniform (a, b)-dist. are (a + b)/2 and $(b - a)^2/12$, respectively.

- (a) Find $\mathbb{E}(Y|X)$.
- (b) Find Var(Y|X).
- (c) Find $\mathbb{E}Y$ using the fact that $\mathbb{E}Y = \mathbb{E}(\mathbb{E}[Y|X])$.
- (d) Find $\operatorname{Var} Y$ using the fact that $\operatorname{Var} Y = \mathbb{E}(\operatorname{Var}[Y|X]) + \operatorname{Var}(\mathbb{E}[Y|X])$.
- (e) Write down the joint pdf of X and Y.
- (f) Write down the integral you would need to solve in order to obtain the marginal pdf of Y (do not try to compute the integral).