
STAT 511 fa 2019 Final Exam

Karl B. Gregory

Do not open this test until told to do so; no calculators allowed; no notes allowed; no books allowed; show
your work so that partial credit may be given.
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Remember, remember! Var(aX + bY ) = a2 VarX + b2 VarY + 2abCov(X, Y ).
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1. Customers of the pre-paid mobile provider Talk-is-Cheap will be randomly assigned to win a prize: 80%
of the customers will receive 50 free text messages; 15% will receive 100 free text messages, and 5% will
receive 200 free text messages. Suppose you are a Talk-is-Cheap customer and let X be the number of
free text messages you receive.

(a) Make a table showing the probability distribution of X.

Solution:

x 50 100 200

PX(X = x) 0.80 0.15 0.05

(b) Find EX.

Solution:
EX = 50(0.80) + 100(0.15) + 200(0.05) = 40 + 15 + 10 = 65.

(c) Give an expression for the cdf F (x) of X for all x ∈ R.

Solution:

F (x) =



1, 200 ≤ x

0.95, 100 ≤ x < 200

0.80, 50 ≤ x < 100

0, x < 50.

(d) Draw a detailed picture of the cdf.

Solution:

50 100 200

0.8

0.95
1

x

FX(x)

2. Hungry bear commutes to work either by biking or driving, and midmorning he sometimes eats a banana.
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On 80% of the days on which he bikes he eats a banana, and he eats a banana on 30% of the days on
which he drives. He bikes on 90% of days.

(a) On what proportion of days does hungry bear eat a banana midmorning?

Solution:

P (Banana) = P (Banana ∩ Bike) + P (Banana ∩Drive)

= P (Banana|Bike)P (Bike) + P (Banana|Drive)P (Drive)

= 0.80(0.90) + (0.30)(0.10)

= 0.75.

(b) If you see hungry bear eating a banana midmorning, what is the probability that he biked to work?

Solution:

P (Bike|Banana) = P (Banana ∩ Bike)/P (Banana)

= P (Banana|Bike)P (Bike)/P (Banana)

= 0.80(0.90)/0.75

= 0.96

(c) Are the events that hungry bear bikes to work and that he eats a banana independent?

Solution: They are not independent since P (Banana) = 0.75 6= P (Banana|Bike) = 0.80.

3. Let X be a random variable with cdf given by

F (x) =


1, 9 ≤ x
√
x/3, 0 ≤ x < 9

0, x < 0

(a) Give P (X = 4).

Solution: Since the cdf is continuous, X is a continuous random variable, so P (X = 9) = 0.

(b) Give P (X > 2).

Solution: P (X > 2) = 1− P (X ≤ 2) = 1−
√

2/3.
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(c) Find the pdf of X.

Solution: Taking the first derivative with respect to x of F (x) for 0 < x < 9 gives

fX(x) =
1

6
√
x
1(0 < x < 9).

(d) Find EX.

Solution:

EX =

∫ 9

0

x · 1

6
√
x
dx =

x3/2

9

∣∣∣9
0

= 3.

4. Let X ∼ Poisson(5) and Y ∼ Poisson(6) and suppose X and Y are independent.

(a) Find E(10X + 5).

Solution: E(10X + 5) = 10EX + 5 = 10(5) + 5 = 55

(b) Find Var(10X + 5).

Solution: Var(10X + 5) = 100 VarX = 100(5) = 500.

(c) Find the distribution of X + Y using the fact that MX+Y (t) = MX(t)MY (t).

Solution: The mgf of X + Y is given by

MX+Y (t) = e5(et−1)e6(et−1) = e11(et−1),

which is the mgf of the Poisson(11) distribution.

(d) Find Var(X + Y ).

Solution: Since X + Y ∼ Poisson(11), Var(X + Y ) = 11.

(e) Write down the joint pmf of X and Y .

Solution: Since X and Y are independent, their joint pmf is given by

p(x, y) =
e−5 · 5x

x!
· e
−6 · 6y

y!
for x = 0, 1, 2, . . . , y = 0, 1, 2, . . .
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5. Let (U, V ) be a pair of random variables with joint pdf given by

f(u, v) =
2

π
exp

(
−u

2 + v2

2

)
for u > 0, v > 0.

(a) State whether U and V are independent and give your reasoning.

Solution: They are independent because we can factor f(u, v) as

f(u, v) =
2

π
exp

(
−u

2

2

)
1(u > 0)︸ ︷︷ ︸

g(u)

exp

(
−v

2

2

)
1(v > 0)︸ ︷︷ ︸

h(v)

,

which is the product of a function of only u and a function of only v.

(b) Give Cov(U, V ).

Solution: Since the random variables U and V are independent, Cov(U, V ) = 0.

(c) The marginal pdf of V is fV (v) =
√

2/π exp(−v2/2), for v > 0. Use this and the fact that U and
V are independent to find the marginal pdf of U .

Solution: Since U and V are independent, the joint is the product of the marginals; that is,
f(u, v) = fU(u)fV (v). Therefore

fU(u) = f(u, v)/fV (v) =
√

2/π exp(−u2/2).

6. Suppose X ∼ Normal(2, 1) and Y ∼ Normal(0, 2) and Cov(X, Y ) = 1/2.

(a) Find E(3X + 4Y ).

Solution: E(3X + 4Y ) = 3(2) + 4(0) = 6.

(b) Find Var(3X + 4Y ).

Solution: We have

Var(3X + 4Y ) = 9 VarX + 16 VarY + 2(3)(4) Cov(X, Y )

= 9(1) + 16(2) + 2(3)(4)(1/2)

= 9 + 32 + 12

= 53.
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7. Let T1 and T2 be independent random variables representing the times until failure of two components
(component 1 and component 2, respectively) of a dishwasher. In order for the dishwasher to operate,
both components must be functioning. The cdfs of T1 and T2 are plotted in the figure below.
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(a) What is the probability that component 1 fails in the first 2 years?

Solution: This is P (T1 ≤ 2) = 0.15.

(b) What is the probability that the dishwasher will still function after 6 years?

Solution: For the dishwasher to function after 6 years, the events T1 > 6 and T2 > 6 must
both occur. We have

P (T1 > 6∩T2 > 6) = P (T1 > 6)P (T2 > 6) = (1−P (T1 ≤ 6))(1−P (T2 ≤ 6)) = 0.4(0.2) = 0.08,

where we have used the fact that T1 and T2 are independent.

(c) A 1-year warranty is offered with the dishwasher, under which the dishwasher will be replaced if
either component fails during the 1-year period following the purchase. What is the probability
that a customer may claim a replacement under the warranty?
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Solution: We must find the probability of the event P (T1 ≤ 1 ∪ T2 ≤ 1). This is given by

P (T1 ≤ 1 ∪ T2 ≤ 1) = (P (T1 ≤ 1) + P (T2 ≤ 1)− P (T1 ≤ 1 ∩ T2 ≤ 1)

= 0.05 + 0.10− 0.05(0.10

= 0.145.

8. Let X and Y be random variables such that

Y |X ∼ Uniform(0, X)

(
so f(y|x) =

1

x
1(0 < y < x)

)
X ∼ Exponential(λ)

Note that the mean and variance of the Uniform(a, b)-dist. are (a+ b)/2 and (b− a)2/12, respectively.

(a) Find E(Y |X).

Solution: E(Y |X) = X/2.

(b) Find Var(Y |X).

Solution: Var(Y |X) = X2/12.

(c) Find EY using the fact that EY = E(E[Y |X]).

Solution: EY = E(E[Y |X]) = E(X/2) = λ/2.

(d) Find VarY using the fact that VarY = E(Var[Y |X]) + Var(E[Y |X]).

Solution: We have

VarY = E(X2/12) + Var(X/2)

= (1/12)(VarX + (EX)2) + (1/4) VarX

= (1/12)(λ2 + λ2) + (1/4)λ2

= (2/12)λ2 + (3/12)λ2

= (5/12)λ2.

(e) Write down the joint pdf of X and Y .

Solution:

f(x, y) =
1

x

1

λ
e−x/λ for x > 0, 0 < y < x.
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(f) Write down the integral you would need to solve in order to obtain the marginal pdf of Y (do not
try to compute the integral).

Solution:

fY (y) =

∫ ∞
y

1

x

1

λ
e−x/λdx.

Page 8


