STAT 511 fa 2019 Final Exam

Karl B. Gregory

Do not open this test until told to do so; no calculators allowed; no notes allowed; no books allowed; show your work so that partial credit may be given.

Remember, remember! $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var} X+b^{2} \operatorname{Var} Y+2 a b \operatorname{Cov}(X, Y)$.

1. Customers of the pre-paid mobile provider Talk-is-Cheap will be randomly assigned to win a prize: 80% of the customers will receive 50 free text messages; 15% will receive 100 free text messages, and 5% will receive 200 free text messages. Suppose you are a Talk-is-Cheap customer and let X be the number of free text messages you receive.
(a) Make a table showing the probability distribution of X.

Solution:

x	50	100	200
$P_{X}(X=x)$	0.80	0.15	0.05

(b) Find $\mathbb{E} X$.

Solution:

$$
\mathbb{E} X=50(0.80)+100(0.15)+200(0.05)=40+15+10=65 .
$$

(c) Give an expression for the $\operatorname{cdf} F(x)$ of X for all $x \in \mathbb{R}$.

Solution:

$$
F(x)= \begin{cases}1, & 200 \leq x \\ 0.95, & 100 \leq x<200 \\ 0.80, & 50 \leq x<100 \\ 0, & x<50\end{cases}
$$

(d) Draw a detailed picture of the cdf.

Solution:

2. Hungry bear commutes to work either by biking or driving, and midmorning he sometimes eats a banana.

On 80% of the days on which he bikes he eats a banana, and he eats a banana on 30% of the days on which he drives. He bikes on 90% of days.
(a) On what proportion of days does hungry bear eat a banana midmorning?

Solution:

$$
\begin{aligned}
P(\text { Banana }) & =P(\text { Banana } \cap \text { Bike })+P(\text { Banana } \cap \text { Drive }) \\
& =P(\text { Banana } \mid \text { Bike }) P(\text { Bike })+P(\text { Banana } \mid \text { Drive }) P(\text { Drive }) \\
& =0.80(0.90)+(0.30)(0.10) \\
& =0.75
\end{aligned}
$$

(b) If you see hungry bear eating a banana midmorning, what is the probability that he biked to work?

Solution:

$$
\begin{aligned}
P(\text { Bike } \mid \text { Banana }) & =P(\text { Banana } \cap \text { Bike }) / P(\text { Banana }) \\
& =P(\text { Banana } \mid \text { Bike }) P(\text { Bike }) / P(\text { Banana }) \\
& =0.80(0.90) / 0.75 \\
& =0.96
\end{aligned}
$$

(c) Are the events that hungry bear bikes to work and that he eats a banana independent?

Solution: They are not independent since $P($ Banana $)=0.75 \neq P($ Banana \mid Bike $)=0.80$.
3. Let X be a random variable with cdf given by

$$
F(x)= \begin{cases}1, & 9 \leq x \\ \sqrt{x} / 3, & 0 \leq x<9 \\ 0, & x<0\end{cases}
$$

(a) Give $P(X=4)$.

Solution: Since the cdf is continuous, X is a continuous random variable, so $P(X=9)=0$.
(b) Give $P(X>2)$.

Solution: $P(X>2)=1-P(X \leq 2)=1-\sqrt{2} / 3$.
(c) Find the pdf of X.

Solution: Taking the first derivative with respect to x of $F(x)$ for $0<x<9$ gives

$$
f_{X}(x)=\frac{1}{6 \sqrt{x}} \mathbf{1}(0<x<9) .
$$

(d) Find $\mathbb{E} X$.

Solution:

$$
\mathbb{E} X=\int_{0}^{9} x \cdot \frac{1}{6 \sqrt{x}} d x=\left.\frac{x^{3 / 2}}{9}\right|_{0} ^{9}=3 .
$$

4. Let $X \sim$ Poisson(5) and $Y \sim$ Poisson(6) and suppose X and Y are independent.
(a) Find $\mathbb{E}(10 X+5)$.

Solution: $\mathbb{E}(10 X+5)=10 \mathbb{E} X+5=10(5)+5=55$
(b) Find $\operatorname{Var}(10 X+5)$.

Solution: $\operatorname{Var}(10 X+5)=100 \operatorname{Var} X=100(5)=500$.
(c) Find the distribution of $X+Y$ using the fact that $M_{X+Y}(t)=M_{X}(t) M_{Y}(t)$.

Solution: The mgf of $X+Y$ is given by

$$
M_{X+Y}(t)=e^{5\left(e^{t}-1\right)} e^{6\left(e^{t}-1\right)}=e^{11\left(e^{t}-1\right)}
$$

which is the mgf of the Poisson(11) distribution.
(d) Find $\operatorname{Var}(X+Y)$.

Solution: Since $X+Y \sim$ Poisson(11), $\operatorname{Var}(X+Y)=11$.
(e) Write down the joint pmf of X and Y.

Solution: Since X and Y are independent, their joint pmf is given by

$$
p(x, y)=\frac{e^{-5} \cdot 5^{x}}{x!} \cdot \frac{e^{-6} \cdot 6^{y}}{y!} \quad \text { for } x=0,1,2, \ldots, \quad y=0,1,2, \ldots
$$

5. Let (U, V) be a pair of random variables with joint pdf given by

$$
f(u, v)=\frac{2}{\pi} \exp \left(-\frac{u^{2}+v^{2}}{2}\right) \quad \text { for } u>0, v>0
$$

(a) State whether U and V are independent and give your reasoning.

Solution: They are independent because we can factor $f(u, v)$ as

$$
f(u, v)=\underbrace{\frac{2}{\pi} \exp \left(-\frac{u^{2}}{2}\right) \mathbf{1}(u>0)}_{g(u)} \underbrace{\exp \left(-\frac{v^{2}}{2}\right) \mathbf{1}(v>0)}_{h(v)},
$$

which is the product of a function of only u and a function of only v.
(b) Give $\operatorname{Cov}(U, V)$.

Solution: Since the random variables U and V are independent, $\operatorname{Cov}(U, V)=0$.
(c) The marginal pdf of V is $f_{V}(v)=\sqrt{2 / \pi} \exp \left(-v^{2} / 2\right)$, for $v>0$. Use this and the fact that U and V are independent to find the marginal pdf of U.

Solution: Since U and V are independent, the joint is the product of the marginals; that is, $f(u, v)=f_{U}(u) f_{V}(v)$. Therefore

$$
f_{U}(u)=f(u, v) / f_{V}(v)=\sqrt{2 / \pi} \exp \left(-u^{2} / 2\right)
$$

6. Suppose $X \sim \operatorname{Normal}(2,1)$ and $Y \sim \operatorname{Normal}(0,2)$ and $\operatorname{Cov}(X, Y)=1 / 2$.
(a) Find $\mathbb{E}(3 X+4 Y)$.

Solution: $\mathbb{E}(3 X+4 Y)=3(2)+4(0)=6$.
(b) Find $\operatorname{Var}(3 X+4 Y)$.

Solution: We have

$$
\begin{aligned}
\operatorname{Var}(3 X+4 Y) & =9 \operatorname{Var} X+16 \operatorname{Var} Y+2(3)(4) \operatorname{Cov}(X, Y) \\
& =9(1)+16(2)+2(3)(4)(1 / 2) \\
& =9+32+12 \\
& =53
\end{aligned}
$$

7. Let T_{1} and T_{2} be independent random variables representing the times until failure of two components (component 1 and component 2, respectively) of a dishwasher. In order for the dishwasher to operate, both components must be functioning. The cdfs of T_{1} and T_{2} are plotted in the figure below.

(a) What is the probability that component 1 fails in the first 2 years?

Solution: This is $P\left(T_{1} \leq 2\right)=0.15$.
(b) What is the probability that the dishwasher will still function after 6 years?

Solution: For the dishwasher to function after 6 years, the events $T_{1}>6$ and $T_{2}>6$ must both occur. We have
$P\left(T_{1}>6 \cap T_{2}>6\right)=P\left(T_{1}>6\right) P\left(T_{2}>6\right)=\left(1-P\left(T_{1} \leq 6\right)\right)\left(1-P\left(T_{2} \leq 6\right)\right)=0.4(0.2)=0.08$,
where we have used the fact that T_{1} and T_{2} are independent.
(c) A 1-year warranty is offered with the dishwasher, under which the dishwasher will be replaced if either component fails during the 1-year period following the purchase. What is the probability that a customer may claim a replacement under the warranty?

Solution: We must find the probability of the event $P\left(T_{1} \leq 1 \cup T_{2} \leq 1\right)$. This is given by

$$
\begin{aligned}
P\left(T_{1} \leq 1 \cup T_{2} \leq 1\right) & =\left(P\left(T_{1} \leq 1\right)+P\left(T_{2} \leq 1\right)-P\left(T_{1} \leq 1 \cap T_{2} \leq 1\right)\right. \\
& =0.05+0.10-0.05(0.10 \\
& =0.145
\end{aligned}
$$

8. Let X and Y be random variables such that

$$
\begin{aligned}
Y \mid X & \sim \operatorname{Uniform}(0, X) \quad\left(\quad \text { so } f(y \mid x)=\frac{1}{x} \mathbf{1}(0<y<x)\right. \\
X & \sim \operatorname{Exponential}(\lambda)
\end{aligned}
$$

Note that the mean and variance of the Uniform (a, b)-dist. are $(a+b) / 2$ and $(b-a)^{2} / 12$, respectively.
(a) Find $\mathbb{E}(Y \mid X)$.

Solution: $\mathbb{E}(Y \mid X)=X / 2$.
(b) Find $\operatorname{Var}(Y \mid X)$.

Solution: $\operatorname{Var}(Y \mid X)=X^{2} / 12$.
(c) Find $\mathbb{E} Y$ using the fact that $\mathbb{E} Y=\mathbb{E}(\mathbb{E}[Y \mid X])$.

Solution: $\mathbb{E} Y=\mathbb{E}(\mathbb{E}[Y \mid X])=\mathbb{E}(X / 2)=\lambda / 2$.
(d) Find Var Y using the fact that $\operatorname{Var} Y=\mathbb{E}(\operatorname{Var}[Y \mid X])+\operatorname{Var}(\mathbb{E}[Y \mid X])$.

Solution: We have

$$
\begin{aligned}
\operatorname{Var} Y & =\mathbb{E}\left(X^{2} / 12\right)+\operatorname{Var}(X / 2) \\
& =(1 / 12)\left(\operatorname{Var} X+(\mathbb{E} X)^{2}\right)+(1 / 4) \operatorname{Var} X \\
& =(1 / 12)\left(\lambda^{2}+\lambda^{2}\right)+(1 / 4) \lambda^{2} \\
& =(2 / 12) \lambda^{2}+(3 / 12) \lambda^{2} \\
& =(5 / 12) \lambda^{2}
\end{aligned}
$$

(e) Write down the joint pdf of X and Y.

Solution:

$$
f(x, y)=\frac{1}{x} \frac{1}{\lambda} e^{-x / \lambda} \quad \text { for } x>0,0<y<x
$$

(f) Write down the integral you would need to solve in order to obtain the marginal pdf of Y (do not try to compute the integral).

Solution:

$$
f_{Y}(y)=\int_{y}^{\infty} \frac{1}{x} \frac{1}{\lambda} e^{-x / \lambda} d x
$$

