STAT 511 su 2020 hw 1

Basics of sets and probability

- 1. An experiment consists of flipping a coin and rolling a 6-sided die. Define the events
 - A = "coin toss is a head"
 - B = "coin toss is a tail"
 - C = "odd number rolled"
 - D = "even number rolled"
 - E = "number greater than 3 rolled"
 - (a) List all the points the sample space S for the experiment.
 - (b) List the sample points in the set $A \cup C$.
 - (c) List the sample points in the set $A \cap C$.
 - (d) List the sample points in E^C .
 - (e) List the sample points in $A \cap C \cap E$.
 - (f) List the sample points in $A \cap (C \cup E)$.
 - (g) List the sample points in $(E \cap A) \cup (E \cap B)$.
 - (h) List the sample points in $(E^C \cap C) \cup (E^C \cap D)$.
 - (i) Give two pairs of events in which the events are disjoint.
 - (j) Give two different partitions of S consisting of sets from among A, B, C, D, and E.
 - (k) How can we represent the set $A \cap B$?
- 2. For two events A and B use our elementary set operations \cup , \cap , and the complement to give representations of the following:
 - (a) Both A and B occur.
 - (b) Neither A nor B occurs; give two representations of this.
 - (c) At least one of the events A and B occurs.
 - (d) At least one of the events A and B does not occur; give two representations of this.
 - (e) One of the events A and B occurs but not the other.
- 3. For some events A_1, A_2, \ldots, A_n , use $\bigcup_{i=1}^n$ and $\bigcap_{i=1}^n$ and the complement to give representations of the following:
 - (a) None of the events A_1, \ldots, A_n occur.
 - (b) All of the events A_1, \ldots, A_n occur.
 - (c) At least one of the events A_1, \ldots, A_n occurs.
 - (d) At least one of the events A_1, \ldots, A_n does not occur.

- 4. For some events B_1, \ldots, B_n , interpret the following in words:
 - (a) $\left(\bigcap_{i=1}^{n} B_i\right)^C$
 - (b) $\left(\bigcup_{i=1}^{n} B_i\right)^C$
 - (c) $\bigcup_{i=1}^n B_i$
 - (d) $\bigcap_{i=1}^n B_i$
- 5. For two events A and B, draw Venn diagrams to illustrate the following identities:
 - (a) $A = (A \cap B) \cup (A \cap B^C)$.
 - (b) If $A \subset B$ then $A = A \cap B$.
 - (c) If $A \subset B$ then $B = A \cup (B \setminus A)$.
- 6. Merit raises are to be given to two employees from among five candidate employees. Three of the employees are women and two are men. Define the following events:

A = "at least one man is selected for a merit raise"

B = "one man and one woman are selected for a merit raise"

(a) List all the sample points in the sample space S of the experiment of selecting two employees to receive merit raises.

Hint: denote the three women by W_1 , W_2 , and W_3 and the two men by M_1 and M_2 .

- (b) Use operations on A and B to express the event that two women receive merit raises.
- (c) Use operations on A and B to express the event that two men receive merit raises.
- (d) Interpret in words the event $A^C \cup B$.
- (e) If the recipients of merit raises are randomly selected such that each outcome in S is equally likely, with what probability will one woman and one man receive the raise?
- 7. Assume that the distribution of blood types in the US is the following:

		antigens in RBCs						
		A	B	AB	O			
Rh factor	_	0.063	0.015	0.006	0.066			
	+	0.063 0.357	0.085	0.034	0.374			

The following table indicates which recipient/donor combinations are possible:

		Donor							
		O-	O+	A-	A+	B-	B+	AB-	AB+
Recipient	O-	√							
	O+	\checkmark	\checkmark						
	A-	\checkmark		\checkmark					
	A+	\checkmark	\checkmark	\checkmark	\checkmark				
	В-	\checkmark				\checkmark			
	B+	\checkmark	\checkmark			\checkmark	\checkmark		
	AB-	\checkmark		\checkmark		\checkmark		\checkmark	
	AB+	\checkmark							

- (a) Find the probability that an individual randomly selected from the US population can donate blood to an AB- recipient.
- (b) Find the probability that an individual randomly selected from the US population can receive blood from an AB- donor.
- (c) Find the probability that an individual randomly selected from the US population is Rh+.
- (d) Find the probability that an individual randomly selected from the US population is Rh+ or has the B antigen in his or her red blood cells.
- 8. Consider flipping a coin four times and recording the sequence of heads and tails.
 - (a) Letting H denote "heads" and T denote "tails", list all elements in the sample space S.
 - (b) Assuming that each point in the sample space is equally likely, what is the probability of observing exactly three heads?
 - (c) List the sample points in the event A = "exactly two heads come up".
 - (d) Give the probability of A^C .
 - (e) Give the probability that at least two tails come up.
- 9. Use the Kolmogorov axioms to show that for any two events A and B

$$P(A) = P(A \cap B) + P(A \cap B^C).$$

- 10. Suppose Kobe Bryant could make free throws with a success rate of 83.69%.
 - (a) Give a lower bound for the probability with which he would make 5 out of 5 free throws.
 - (b) Give a lower bound for the probability with which he would make 10 out of 10 free-throws.
 - (c) Comment on the usefulness of these bounds.