STAT 511 su 2020 hw 1

Basics of sets and probability

1. An experiment consists of flipping a coin and rolling a 6 -sided die. Define the events

$$
\begin{aligned}
& A=\text { "coin toss is a head" } \\
& B=\text { "coin toss is a tail" } \\
& C=\text { "odd number rolled" } \\
& D=\text { "even number rolled" } \\
& E=\text { "number greater than } 3 \text { rolled" }
\end{aligned}
$$

(a) List all the points the sample space \mathcal{S} for the experiment.

$$
\mathcal{S}=\left\{\begin{array}{ccccc}
(H, \odot), & (H, \odot), & (H, \odot), & (H, \because), & (H, \circledast), \\
(T, \odot), & (T, \odot), & (T, \odot), & (T, \because), & (T, \because), \\
(T, \because)
\end{array}\right\}
$$

(b) List the sample points in the set $A \cup C$.

$$
A \cup C=\left\{\begin{array}{cccc}
(H, \odot), & (H, \odot), & (H, \odot), & (H, \circledast), \\
(T, \odot), & (H, \odot), & (H, \odot) & (H, \circledast)
\end{array}\right\}
$$

(c) List the sample points in the set $A \cap C$.

$$
A \cap C=\{(H, \odot), \quad(H, \odot), \quad(H, \odot)\}
$$

(d) List the sample points in E^{C}.

$$
E^{C}=\left\{\begin{array}{cc}
(H, \odot), & (H, \odot), \\
(T, \odot), & (T, \odot), \\
(T, \odot)
\end{array}\right\}
$$

(e) List the sample points in $A \cap C \cap E$.

$$
A \cap C \cap E=\{(H, \circledast)\}
$$

(f) List the sample points in $A \cap(C \cup E)$.

$$
A \cap(C \cup E)=\{(H, \odot), \quad(H, \odot), \quad(H, \because), \quad(H, \circledast), \quad(H, 0)\}
$$

(g) List the sample points in $(E \cap A) \cup(E \cap B)$.

Since $A^{C}=B$, we have

$$
(E \cap A) \cup(E \cap B)=E=\left\{\begin{array}{cc}
(H,:(), & (H, \because), \\
(T, \because), & (T, \because), \\
(T, \because)
\end{array}\right\}
$$

(h) List the sample points in $\left(E^{C} \cap C\right) \cup\left(E^{C} \cap D\right)$.

Since $C^{C}=D$, we have

$$
\left(E^{C} \cap C\right) \cup\left(E^{C} \cap D\right)=E^{C}=\left\{\begin{array}{cc}
(H, \odot), & (H, \odot), \\
(T, \odot), & (T, \odot), \\
(T, \odot)
\end{array}\right\}
$$

(i) Give two pairs of events in which the events are disjoint.

The events A and B are disjoint and the events C and D are disjoint.
(j) Give two different partitions of \mathcal{S} consisting of sets from among A, B, C, D, and E.

The pair events A and B, as these are complement events, is a partition of \mathcal{S}. The same is true of the pair of events C and D.
(k) How can we represent the set $A \cap B$?

The set $A \cap B$ contains no elements, so we can represent it with the empty set symbol \emptyset.
2. For two events A and B use our elementary set operations \cup, \cap, and the complement to give representations of the following:
(a) Both A and B occur.

$$
A \cap B
$$

(b) Neither A nor B occurs; give two representations of this.

$$
(A \cup B)^{C} \text { or } A^{C} \cap A^{C} .
$$

(c) At least one of the events A and B occurs.
$A \cup B$
(d) At least one of the events A and B does not occur; give two representations of this.

$$
A^{C} \cup B^{C} \text { or }(A \cap B)^{C}
$$

(e) One of the events A and B occurs but not the other.

$$
\left(A \cap B^{C}\right) \cup\left(B \cap A^{C}\right)
$$

3. For some events $A_{1}, A_{2}, \ldots, A_{n}$, use $\bigcup_{i=1}^{n}$ and $\bigcap_{i=1}^{n}$ and the complement to give representations of the following:
(a) None of the events A_{1}, \ldots, A_{n} occur.

$$
\bigcap_{i=1}^{n} A_{i}^{C} \text { or }\left(\bigcup_{i=1}^{n} A_{i}\right)^{C}
$$

(b) All of the events A_{1}, \ldots, A_{n} occur.

$$
\bigcap_{i=1}^{n} A_{i}
$$

(c) At least one of the events A_{1}, \ldots, A_{n} occurs.

$$
\bigcup_{i=1}^{n} A_{i}
$$

(d) At least one of the events A_{1}, \ldots, A_{n} does not occur.

$$
\bigcup_{i=1}^{n} A_{i}^{C} \text { or }\left(\bigcap_{i=1}^{n} A_{i}\right)^{C}
$$

4. For some events B_{1}, \ldots, B_{n}, interpret the following in words:
(a) $\left(\bigcap_{i=1}^{n} B_{i}\right)^{C}$

Not all the events occur, or, at least one event does not occur.
(b) $\left(\bigcup_{i=1}^{n} B_{i}\right)^{C}$

None of the events occur.
(c) $\bigcup_{i=1}^{n} B_{i}$

At least one of the events occurs.
(d) $\bigcap_{i=1}^{n} B_{i}$

All of the events occur.
5. For two events A and B, draw Venn diagrams to illustrate the following identities:
(a) $A=(A \cap B) \cup\left(A \cap B^{C}\right)$.
(b) If $A \subset B$ then $A=A \cap B$.
(c) If $A \subset B$ then $B=A \cup(B \backslash A)$.
6. Merit raises are to be given to two employees from among five candidate employees. Three of the employees are women and two are men. Define the following events:

$$
\begin{aligned}
& A=\text { "at least one man is selected for a merit raise" } \\
& B=\text { "one man and one woman are selected for a merit raise" }
\end{aligned}
$$

(a) List all the sample points in the sample space \mathcal{S} of the experiment of selecting two employees to receive merit raises.
Hint: denote the three women by W_{1}, W_{2}, and W_{3} and the two men by M_{1} and M_{2}.

$$
\mathcal{S}=\left\{\begin{array}{lllll}
W_{1} W_{2} & W_{1} W_{3} & W_{1} M_{1} & W_{1} M_{2} & W_{2} W_{3} \\
W_{2} M_{1} & W_{2} M_{2} & W_{3} M_{1} & W_{3} M_{2} & M_{1} M_{2}
\end{array}\right\}
$$

(b) Use operations on A and B to express the event that two women receive merit raises.

```
AC
```

(c) Use operations on A and B to express the event that two men receive merit raises.
$A \cap B^{C}$
(d) Interpret in words the event $A^{C} \cup B$.

The recipients of the merit raise are not both men.
(e) If the recipients of merit raises are randomly selected such that each outcome in \mathcal{S} is equally likely, with what probability will one woman and one man receive the raise?

$$
6 / 10=3 / 5
$$

7. Assume that the distribution of blood types in the US is the following:

		antigens in RBCs			
		A	B	$A B$	O
Rh factor	-	0.063	0.015	0.006	0.066
	+	0.357	0.085	0.034	0.374

The following table indicates which recipient/donor combinations are possible:

(a) Find the probability that an individual randomly selected from the US population can donate blood to an $A B$ - recipient.

$$
0.066+0.063+0.015+0.006=0.15
$$

(b) Find the probability that an individual randomly selected from the US population can receive blood from an $A B$ - donor.

$$
0.006+0.034=0.04
$$

(c) Find the probability that an individual randomly selected from the US population is $\mathrm{Rh}+$.

$$
0.357+0.085+0.034+0.374=0.85
$$

(d) Find the probability that an individual randomly selected from the US population is $\mathrm{Rh}+$ or has the B antigen in his or her red blood cells.

$$
0.357+0.085+0.034+0.374+0.015+0.006=0.871
$$

8. Consider flipping a coin four times and recording the sequence of heads and tails.
(a) Letting H denote "heads" and T denote "tails", list all elements in the sample space \mathcal{S}.

$$
\mathcal{S}=\left\{\begin{array}{lllll}
H H H H & H H H T & \text { HHTT } & \text { TTTH } & \text { TTTT } \\
& H H T H & \text { TTHH } & \text { TTHT } & \\
& \text { HTHH } & \text { THTH } & \text { THTT } & \\
& \text { THHH } & \text { HTHT } & \text { HTTT } & \\
& & \text { THHT } &
\end{array}\right\}
$$

(b) Assuming that each point in the sample space is equally likely, what is the probability of observing exactly three heads?

$$
4 / 16=1 / 4
$$

(c) List the sample points in the event $A=$ "exactly two heads come up".

$$
A=\{H H T T, T T H H, T H T H, H T H T, T H H T, H T T H\}
$$

(d) Give the probability of A^{C}.

$$
P\left(A^{C}\right)=1-P(A)=1-6 / 16=10 / 16=5 / 8 .
$$

(e) Give the probability that at least two tails come up.

11/16.
9. Use the Kolmogorov axioms to show that for any two events A and B

$$
P(A)=P(A \cap B)+P\left(A \cap B^{C}\right)
$$

We have

$$
\begin{aligned}
P(A) & =P(A \cap \mathcal{S}) \quad(\text { since } A \cap \mathcal{S}=A) \\
& =P\left(A \cap\left(B \cup B^{C}\right)\right) \quad\left(\text { since } B \text { and } B^{C} \text { form a partition of } \mathcal{S}\right) \\
& =P\left((A \cap B) \cup\left(A \cap B^{C}\right)\right) \quad \text { (by the distributive property) } \\
& =P(A \cap B)+P\left(A \cap B^{C}\right) \quad \text { (by Kolmogorov axiom 3). }
\end{aligned}
$$

10. Suppose Kobe Bryant could make free throws with a success rate of 83.69%.
(a) Give a lower bound for the probability with which he would make 5 out of 5 free throws.

Letting A_{1}, \ldots, A_{5} be the events that he makes the free throws, respectively. Then we have

$$
P\left(\bigcap_{i=1}^{5} A_{i}\right) \geq 1-\sum_{i=1}^{5} P\left(A_{i}^{C}\right)=1-5(1-0.8369)=0.1845 .
$$

(b) Give a lower bound for the probability with which he would make 10 out of 10 free-throws.

Letting $A_{1}, \ldots, A_{1} 0$ be the events that he makes the free throws, respectively. Then we have

$$
P\left(\bigcap_{i=1}^{10} A_{i}\right) \geq 1-\sum_{i=1}^{10} P\left(A_{i}^{C}\right)=1-10(1-0.8369)=-0.631 .
$$

(c) Comment on the usefulness of these bounds.

The second bound gives a negative number, so it is useless, as we know that probabilities are bounded from below by zero. The first bound is useful.

