STAT 511 su 2020 hw 1

Basics of sets and probability

1. An experiment consists of flipping a coin and rolling a 6-sided die. Define the events

- A = ``coin toss is a head''B = ``coin toss is a tail''C = ``odd number rolled''D = ``even number rolled''E = ``number greater than 3 rolled''
- (a) List all the points the sample space \mathcal{S} for the experiment.

 $\mathcal{S} = \left\{ \begin{array}{ccc} (H, \textcircled{\bullet}), & (H, \textcircled{\bullet}), \\ (T, \textcircled{\bullet}), & (T, \textcircled{\bullet}), \end{array} \right\}$

(b) List the sample points in the set $A \cup C$.

$$A \cup C = \left\{ \begin{array}{cc} (H, \textcircled{\bullet}), & (H, \textcircled{\bullet}), \\ (T, \textcircled{\bullet}), & (T, \textcircled{\bullet}), & (T, \textcircled{\bullet}) \end{array} \right\}$$

(c) List the sample points in the set $A \cap C$.

$$A \cap C = \left\{ (H, \boxdot), (H, \boxdot), (H, \boxdot) \right\}$$

(d) List the sample points in E^C .

$$E^{C} = \left\{ \begin{array}{cc} (H, \bigodot), & (H, \textcircled{.}), & (H, \textcircled{.}) \\ (T, \boxdot), & (T, \boxdot), & (T, \textcircled{.}) \end{array} \right\}$$

(e) List the sample points in $A \cap C \cap E$.

$$A \cap C \cap E = \{(H, \mathbf{S})\}$$

(f) List the sample points in $A \cap (C \cup E)$.

 $A \cap (C \cup E) = \left\{ \begin{array}{cc} (H, \boxdot), & (H, \boxdot), \end{array} \right. (H, \boxdot), \quad (H, \boxdot), \quad (H, \boxdot), \quad (H, \boxdot) \end{array} \right\}$

(g) List the sample points in $(E \cap A) \cup (E \cap B)$.

Since $A^C = B$, we have $(E \cap A) \cup (E \cap B) = E = \left\{ \begin{array}{cc} (H, \textcircled{i}), & (H, \textcircled{i}), & (H, \textcircled{i}) \\ (T, \textcircled{i}), & (T, \Huge{i}), & (T, \Huge{i}) \end{array} \right\}$

(h) List the sample points in $(E^C \cap C) \cup (E^C \cap D)$.

Since $C^C = D$, we have $(E^C \cap C) \cup (E^C \cap D) = E^C = \left\{ \begin{array}{cc} (H, \textcircled{\bullet}), & (H, \textcircled{\bullet}), & (H, \textcircled{\bullet}) \\ (T, \textcircled{\bullet}), & (T, \textcircled{\bullet}), & (T, \textcircled{\bullet}) \end{array} \right\}$

(i) Give two pairs of events in which the events are disjoint.

The events A and B are disjoint and the events C and D are disjoint.

(j) Give two different partitions of S consisting of sets from among A, B, C, D, and E.

The pair events A and B, as these are complement events, is a partition of S. The same is true of the pair of events C and D.

(k) How can we represent the set $A \cap B$?

The set $A \cap B$ contains no elements, so we can represent it with the empty set symbol \emptyset .

- 2. For two events A and B use our elementary set operations \cup , \cap , and the complement to give representations of the following:
 - (a) Both A and B occur.

 $A \cap B$

(b) Neither A nor B occurs; give two representations of this.

 $(A \cup B)^C$ or $A^C \cap A^C$.

(c) At least one of the events A and B occurs.

 $A \cup B$

(d) At least one of the events A and B does not occur; give two representations of this.

 $A^C \cup B^C$ or $(A \cap B)^C$

(e) One of the events A and B occurs but not the other.

 $(A \cap B^C) \cup (B \cap A^C).$

- 3. For some events A_1, A_2, \ldots, A_n , use $\bigcup_{i=1}^n$ and $\bigcap_{i=1}^n$ and the complement to give representations of the following:
 - (a) None of the events A_1, \ldots, A_n occur.

 $\bigcap_{i=1}^{n} A_i^C$ or $\left(\bigcup_{i=1}^{n} A_i\right)^C$

(b) All of the events A_1, \ldots, A_n occur.

$$\bigcap_{i=1}^n A_i$$

(c) At least one of the events A_1, \ldots, A_n occurs.

$$\bigcup_{i=1}^n A_i$$

(d) At least one of the events A_1, \ldots, A_n does not occur.

 $\bigcup_{i=1}^{n} A_i^C$ or $\left(\bigcap_{i=1}^{n} A_i\right)^C$

- 4. For some events B_1, \ldots, B_n , interpret the following in words:
 - (a) $\left(\bigcap_{i=1}^{n} B_{i}\right)^{C}$

Not all the events occur, or, at least one event does not occur.

(b)
$$\left(\bigcup_{i=1}^{n} B_{i}\right)^{C}$$

None of the events occur.

(c) $\bigcup_{i=1}^{n} B_i$

At least one of the events occurs.

- (d) $\bigcap_{i=1}^{n} B_i$
 - All of the events occur.

5. For two events A and B, draw Venn diagrams to illustrate the following identities:

- (a) $A = (A \cap B) \cup (A \cap B^C).$
- (b) If $A \subset B$ then $A = A \cap B$.
- (c) If $A \subset B$ then $B = A \cup (B \setminus A)$.
- 6. Merit raises are to be given to two employees from among five candidate employees. Three of the employees are women and two are men. Define the following events:

A = "at least one man is selected for a merit raise"

B = "one man and one woman are selected for a merit raise"

(a) List all the sample points in the sample space S of the experiment of selecting two employees to receive merit raises.

Hint: denote the three women by W_1 , W_2 , and W_3 and the two men by M_1 and M_2 .

 $\mathcal{S} = \left\{ \begin{array}{cccc} W_1 W_2 & W_1 W_3 & W_1 M_1 & W_1 M_2 & W_2 W_3 \\ W_2 M_1 & W_2 M_2 & W_3 M_1 & W_3 M_2 & M_1 M_2 \end{array} \right\}$

(b) Use operations on A and B to express the event that two women receive merit raises.

 A^C

(c) Use operations on A and B to express the event that two men receive merit raises.

```
A\cap B^C
```

(d) Interpret in words the event $A^C \cup B$.

The recipients of the merit raise are not both men.

(e) If the recipients of merit raises are randomly selected such that each outcome in S is equally likely, with what probability will one woman and one man receive the raise?

6/10 = 3/5.

7. Assume that the distribution of blood types in the US is the following:

		antigens in RBCs					
		A	B	AB	O		
Rh factor	_	0.063	0.015	0.006	0.066		
	+	0.357	0.085	0.034	0.374		

The following table indicates which recipient/donor combinations are possible:

		Donor								
		O-	O+	A–	A+	B-	B+	AB-	AB+	
Recipient	0–	\checkmark								
	O+	\checkmark	\checkmark							
	A-	\checkmark		\checkmark						
	A+	\checkmark	\checkmark	\checkmark	\checkmark					
	B-	\checkmark				\checkmark				
	B+	\checkmark	\checkmark			\checkmark	\checkmark			
	AB-	\checkmark		\checkmark		\checkmark		\checkmark		
	AB+	\checkmark								

(a) Find the probability that an individual randomly selected from the US population can donate blood to an AB- recipient.

0.066 + 0.063 + 0.015 + 0.006 = 0.15

(b) Find the probability that an individual randomly selected from the US population can receive blood from an AB- donor.

0.006 + 0.034 = 0.04

(c) Find the probability that an individual randomly selected from the US population is Rh+.

0.357 + 0.085 + 0.034 + 0.374 = 0.85

(d) Find the probability that an individual randomly selected from the US population is Rh+ or has the B antigen in his or her red blood cells.

0.357 + 0.085 + 0.034 + 0.374 + 0.015 + 0.006 = 0.871.

8. Consider flipping a coin four times and recording the sequence of heads and tails.

(a) Letting H denote "heads" and T denote "tails", list all elements in the sample space \mathcal{S} .

$$\mathcal{S} = \left\{ \begin{array}{ccc} HHHH & HHHT & HHTT & TTTH & TTTT \\ HHTH & TTHH & TTHT \\ HTHH & THTH & THTT \\ HTHHH & HTHT & HTTT \\ THHH & HTHT \\ HTTH \end{array} \right\}$$

(b) Assuming that each point in the sample space is equally likely, what is the probability of observing exactly three heads?

$$4/16 = 1/4.$$

(c) List the sample points in the event A = "exactly two heads come up".

$$A = \{HHTT, TTHH, THTH, HTHT, THHT, HTTH\}$$

(d) Give the probability of A^C .

$$P(A^{C}) = 1 - P(A) = 1 - 6/16 = 10/16 = 5/8.$$

- (e) Give the probability that at least two tails come up.
 - 11/16.
- 9. Use the Kolmogorov axioms to show that for any two events A and B

$$P(A) = P(A \cap B) + P(A \cap B^C).$$

We have

$$P(A) = P(A \cap S) \quad (\text{since } A \cap S = A)$$

= $P(A \cap (B \cup B^C)) \quad (\text{since } B \text{ and } B^C \text{ form a partition of } S)$
= $P((A \cap B) \cup (A \cap B^C)) \quad (\text{by the distributive property})$
= $P(A \cap B) + P(A \cap B^C) \quad (\text{by Kolmogorov axiom } 3).$

- 10. Suppose Kobe Bryant could make free throws with a success rate of 83.69%.
 - (a) Give a lower bound for the probability with which he would make 5 out of 5 free throws.

Letting A_1, \ldots, A_5 be the events that he makes the free throws, respectively. Then we have $P(\bigcap_{i=1}^5 A_i) \ge 1 - \sum_{i=1}^5 P(A_i^C) = 1 - 5(1 - 0.8369) = 0.1845.$

(b) Give a lower bound for the probability with which he would make 10 out of 10 free-throws.

Letting A_1, \ldots, A_10 be the events that he makes the free throws, respectively. Then we have $P(\bigcap_{i=1}^{10} A_i) \ge 1 - \sum_{i=1}^{10} P(A_i^C) = 1 - 10(1 - 0.8369) = -0.631.$

(c) Comment on the usefulness of these bounds.

The second bound gives a negative number, so it is useless, as we know that probabilities are bounded from below by zero. The first bound is useful.