STAT 511 su 2020 hw 6

mgfs, quantiles

1. Let $X \sim \operatorname{Poisson}(\lambda)$.
(a) Show that the mgf of X is given by $M_{X}(t)=e^{\lambda\left(e^{t}-1\right)}$.
(b) Use the mgf to find
i. $\mathbb{E} X$.
ii. $\mathbb{E} X^{2}$.
iii. $\operatorname{Var} X$.
(c) Let $Y=3 X+1$. Give the mgf of Y and state whether Y has a Poisson distribution.
2. Let $X \sim \operatorname{Uniform}(0, \theta)$ distribution.
(a) Show that the mgf of X can be written as

$$
1+\frac{t \theta}{2}+\frac{(t \theta)^{2}}{3!}+\frac{(t \theta)^{3}}{4!}+\frac{(t \theta)^{4}}{5!}+\ldots
$$

Hint: Make use of the series representation

$$
e^{a}= \begin{cases}\sum_{i=0}^{\infty} a^{i} / i!, & a \neq 0 \\ 1, & a=0\end{cases}
$$

(b) Identify the distribution of the rv $Y=X / \theta$ by finding its mgf.
3. Let $X \sim \operatorname{Gamma}(2,2)$. Hint: Make use of the pgamma() and qgamma() functions in R.
(a) Give $P(X>2)$.
(b) Give the median of X.
(c) Find the mgf of the rv $Y=2 X-4$ and state whether Y has a Gamma distribution.
(d) Find $P(Y<1)$.
(e) Find the mgf of the rv $W=2 X$ and state whether W has a Gamma distribution.
(f) Find $P(1<W<2)$.
4. Find the quantile function $Q_{X}(\theta):(0,1) \rightarrow \mathcal{X}$ for each of the following random variables (Hint: Set up the equation $F_{X}(q)=\theta$ and solve for q):
(a) $X \sim \operatorname{Exponential}(\lambda)$.
(b) X having cdf given by

$$
F_{X}(x)=\frac{1}{\left[1+e^{-\tau(x-\mu)}\right]^{1 / \nu}}, \quad-\infty<x<\infty .
$$

for some $\tau>0, \nu>0$, and $\mu \in \mathbb{R}$.
5. Consider the set of data points

$$
\begin{array}{cccccccccc}
0.27 & -0.63 & 0.87 & 1.73 & 0.02 & 0.37 & -1.31 & 0.74 & 0.04 & -1.05 .
\end{array}
$$

(a) Find the θ-quantile of the empirical distribution of these data points for $\theta=(i-0.5) / 10$, for $i=1, \ldots, 10$.
(b) Give the θ-quantile for $\theta=(i-0.5) / 10$, for $i=1, \ldots, 10$ of the $\operatorname{Normal}(0,1)$ distribution.
(c) Make a plot of the empirical distribution quantiles (on the vertical axis) versus the $\operatorname{Normal}(0,1)$ quantiles. Use whatever software you want. Print the plot or take a picture of it on your screen.
(d) You should see that the points fall roughly along a straight line. What is your interpretation of this?
6. Let $X \sim \operatorname{Binomial}(3,1 / 2)$.
(a) Make a drawing of the cdf of X.
(b) Find the θ-quantile of X for all the values $\theta=2 / 16,3 / 16,8 / 16,9 / 16,15 / 16$.

Optional (do not turn in) problems for additional study from Wackerly, Mendenhall, Scheaffer, 7th Ed.f:

- 3.145, 3.146, 3.147, 3.148, 3.149, 3.150, 3.153, 3.154
- $4.42,4.61$
- 4.136, 4.139, 4.144, 4.145

[^0]
[^0]: *Ignore all references in the textbook to applets and just use R to compute probabilities that cannot be computed by hand.

