STAT 511 su 2020 hw 6

mgfs, quantiles

1. Let $X \sim \operatorname{Poisson}(\lambda)$.
(a) Show that the mgf of X is given by $M_{X}(t)=e^{\lambda\left(e^{t}-1\right)}$.

We have

$$
\begin{aligned}
x(t) & =\mathbb{E} e^{t X} \\
& =\sum_{i=0}^{\infty} e^{t x} \cdot \frac{e^{-\lambda} \lambda^{x}}{x!} \\
& =\sum_{i=0}^{\infty} \frac{e^{-\lambda}\left(\lambda e^{t}\right)^{x}}{x!} \\
& =e^{\lambda e^{t}} e^{-\lambda} \underbrace{\sum_{i=0}^{\infty} \frac{e^{-\lambda e^{t}}\left(\lambda e^{t}\right)^{x}}{x!}}_{\text {sum over Poisson }\left(\lambda e^{t}\right) \text { pmf }} \\
& =e^{\lambda\left(e^{t}-1\right)} .
\end{aligned}
$$

(b) Use the mgf to find
i. $\mathbb{E} X$.

We have

$$
M_{X}^{(1)}(t)=\frac{d}{d t} e^{\lambda\left(e^{t}-1\right)}=e^{\lambda\left(e^{t}-1\right)} \lambda e^{t}
$$

We obtain $\mathbb{E} X$ by evaluating this at zero, which gives

$$
M_{X}^{(1)}(0)=\lambda .
$$

ii. $\mathbb{E} X^{2}$.

We have

$$
M_{X}^{(2)}(t)=\left(\frac{d}{d t}\right)^{2} e^{\lambda\left(e^{t}-1\right)}=e^{\lambda\left(e^{t}-1\right)} \lambda e^{t} \cdot \lambda e^{t}+e^{\lambda\left(e^{t}-1\right)} \lambda e^{t} .
$$

We obtain $\mathbb{E} X^{2}$ by evaluating this at zero, which gives

$$
M_{X}^{(2)}(0)=\lambda^{2}+\lambda .
$$

iii. $\operatorname{Var} X$.

By the useful expression we have

$$
\operatorname{Var} X=\mathbb{E} X^{2}-(\mathbb{E} X)^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda
$$

(c) Let $Y=3 X+1$. Give the mgf of Y and state whether Y has a Poisson distribution.

We have

$$
M_{Y}(t)=M_{3 X+1}(t)=e^{t} M_{X}(3 t)=e^{t} e^{\lambda\left(e^{3 t}-1\right)}
$$

This is not the mgf of a Poisson distribution, so Y does not have a Poisson distribution.
2. Let $X \sim \operatorname{Uniform}(0, \theta)$ distribution.
(a) Show that the mgf of X can be written as

$$
1+\frac{t \theta}{2}+\frac{(t \theta)^{2}}{3!}+\frac{(t \theta)^{3}}{4!}+\frac{(t \theta)^{4}}{5!}+\ldots
$$

Hint: Make use of the series representation

$$
e^{a}= \begin{cases}\sum_{i=0}^{\infty} a^{i} / i!, & a \neq 0 \\ 1, & a=0\end{cases}
$$

For $t \neq 0$, the mgf of X can be written

$$
\begin{aligned}
M_{X}(t) & =\mathbb{E} e^{t X} \\
& =\int_{0}^{\theta} e^{t x} \cdot \frac{1}{\theta} d x \\
& =\frac{1}{\theta} \int_{0}^{\theta} \sum_{i=0}^{\infty} \frac{(t x)^{i}}{i!} d x \\
& =\frac{1}{\theta} \sum_{i=0}^{\infty} \frac{t^{i}}{i!} \int_{0}^{\theta} x^{i} d x \\
& =\frac{1}{\theta} \sum_{i=0}^{\infty} \frac{t^{i}}{i!} \frac{\theta^{i+1}}{(i+1)} \\
& =\sum_{i=0}^{\infty} \frac{(t \theta)^{i}}{(i+1)!} \\
& =1+\frac{t \theta}{2}+\frac{(t \theta)^{2}}{3!}+\frac{(t \theta)^{3}}{4!}+\frac{(t \theta)^{4}}{5!}+\ldots
\end{aligned}
$$

(b) Identify the distribution of the rv $Y=X / \theta$ by finding its mgf.

We have

$$
M_{Y}(t)=M_{X / \theta}(t)=M_{X}(t / \theta)=1+\frac{t}{2}+\frac{t^{2}}{3!}+\frac{t^{3}}{4!}+\frac{t^{4}}{5!}+\ldots
$$

which is the mgf of the $\operatorname{Uniform}(0,1)$ distribution, so $Y \sim \operatorname{Uniform}(0,1)$.
3. Let $X \sim \operatorname{Gamma}(2,2)$. Hint: Make use of the pgamma() and qgamma() functions in R.
(a) Give $P(X>2)$.

Using R, we have 1 - pgamma(2,2, scale $=2)=0.7357589$.
(b) Give the median of X.

Using R, we have qgamma $(1 / 2,2$, scale $=2)=3.356694$.
(c) Find the mgf of the rv $Y=2 X-4$ and state whether Y has a Gamma distribution.

We have

$$
M_{Y}(t)=M_{2 X-4}(t)=e^{-4 t} M_{X}(2 t)=e^{-4 t}(1-4 t)^{-2} .
$$

This is not the mgf of a Gamma distribution, so Y does not have a Gamma distribution.
(d) Find $P(Y<1)$.

We have

$$
P(Y<1)=P(2 X-4<1)=P(X<(1+4) / 2)=\operatorname{pgamma}(5,2, \text { scale }=2)=0.7127025
$$

(e) Find the mgf of the rv $W=2 X$ and state whether W has a Gamma distribution.

We have

$$
M_{W}(t)=M_{2 X}(t)=M_{X}(2 t)=(1-4 t)^{-2}
$$

which is the mgf of the $\operatorname{Gamma}(2,4)$ distribution, so $W \sim \operatorname{Gamma}(2,4)$.
(f) Find $P(1<W<2)$.

We have

$$
\begin{aligned}
P(1<W<2) & =P(W \leq 2)-P(W \leq 1) \\
& =\operatorname{pgamma}(2,2, \text { scale }=4)-\operatorname{pgamma}(1,2, \text { scale }=4) \\
& =0.06370499
\end{aligned}
$$

\square
4. Find the quantile function $Q_{X}(\theta):(0,1) \rightarrow \mathcal{X}$ for each of the following random variables (Hint: Set up the equation $F_{X}(q)=\theta$ and solve for q):
(a) $X \sim \operatorname{Exponential}(\lambda)$.

Note that X has cdf

$$
F_{X}(x)=1-e^{-x / \lambda} \quad \text { for } \quad x \leq 0
$$

So setting $F_{X}(q)=\theta$ and solving for q, we obtain

$$
Q_{X}(\theta)=-\lambda \log (1-\theta) \quad \text { for } \quad \theta \in(0,1)
$$

(b) X having cdf given by

$$
F_{X}(x)=\frac{1}{\left[1+e^{-\tau(x-\mu)}\right]^{1 / \nu}}, \quad-\infty<x<\infty
$$

for some $\tau>0, \nu>0$, and $\mu \in \mathbb{R}$.

Setting $F_{X}(q)=\theta$ and solving for q, we obtain

$$
Q_{X}(\theta)=\mu+\frac{1}{\tau} \log \left(\frac{1-\theta^{\nu}}{\theta^{\nu}}\right) \quad \text { for } \quad \theta \in(0,1)
$$

5. Consider the set of data points

$$
\begin{array}{cccccccccc}
0.27 & -0.63 & 0.87 & 1.73 & 0.02 & 0.37 & -1.31 & 0.74 & 0.04 & -1.05 .
\end{array}
$$

(a) Find the θ-quantile of the empirical distribution of these data points for $\theta=(i-0.5) / 10$, for $i=1, \ldots, 10$.

These are the quantiles $0.05,0.15, \ldots, 0.95$, and they are given by the sorted data values, since $x_{(\lceil 10 * 0.05\rceil)}, \ldots, x_{(\lceil 10 * 0.95\rceil)}=x_{(1)}, \ldots, x_{(10)}$. The sorted data values are

$$
\begin{array}{cccccccccc}
-1.31 & -1.05 & -0.63 & 0.02 & 0.04 & 0.27 & 0.37 & 0.74 & 0.87 & 1.73
\end{array}
$$

(b) Give the θ-quantile for $\theta=(i-0.5) / 10$, for $i=1, \ldots, 10$ of the $\operatorname{Normal}(0,1)$ distribution.

We obtain these as $\Phi^{-1}((i-0.5) / 10)$, for $i=1, \ldots, 10$, where $P h i^{-1}$ is the inverse of the standard Normal cdf. The R code round (qnorm ((c(1:10) - .5)/ 10), 3) gives the values

$$
\begin{array}{cccccccccc}
-1.645 & -1.036 & -0.674 & -0.385 & -0.126 & 0.126 & 0.385 & 0.674 & 1.036 & 1.645
\end{array}
$$

(c) Make a plot of the empirical distribution quantiles (on the vertical axis) versus the $\operatorname{Normal}(0,1)$ quantiles. Use whatever software you want. Print the plot or take a picture of it on your screen.

The R code

```
emp.quantiles <- c(-1.31, -1.05, -0.63, 0.02, 0.04, 0.27, 0.37, 0.74, 0.87, 1.73)
```

theo.quantiles <- qnorm((c(1:10) - .5)/ 10)
plot(emp.quantiles ~ theo.quantiles,
ylab = "Quantiles of empirical distribution",
xlab = "Quantiles of Normal(0,1) distribution")
produces the plot

(d) You should see that the points fall roughly along a straight line. What is your interpretation of this?

That the points fall roughly on a straight line indicates that the quantiles of the empirical distribution are close to the corresponding quantiles of the $\operatorname{Normal}(0,1)$ distribution.

Therefore, we might assume that the data values were sampled from the $\operatorname{Normal}(0,1)$ distribution.
6. Let $X \sim \operatorname{Binomial}(3,1 / 2)$.
(a) Make a drawing of the cdf of X.
(b) Find the θ-quantile of X for all the values $\theta=2 / 16,3 / 16,8 / 16,9 / 16,15 / 16$.

We have

$$
\begin{array}{c|ccccc}
\theta & 2 / 16 & 3 / 16 & 8 / 16 & 9 / 16 & 15 / 16 \\
\hline q_{\theta} & 0 & 1 & 1 & 2 & 3
\end{array}
$$

Optional (do not turn in) problems for additional study from Wackerly, Mendenhall, Scheaffer, 7th Ed.f:

- $3.145,3.146,3.147,3.148,3.149,3.150,3.153,3.154$
- 4.42, 4.61
- 4.136, 4.139, 4.144, 4.145
*Ignore all references in the textbook to applets and just use R to compute probabilities that cannot be computed by hand.

