## STAT 511 su 2020 hw 7

joint, marginal, and conditional pdfs and pmfs

1. Let $(X, Y)$ be a pair of random variables with joint pdf given by

$$
f(x, y)=\mathbf{1}(0<x<1,0<y<1)
$$

(a) Find $P(X+Y \leq 1)$.
(b) Find $P(|X-Y| \leq 1 / 2)$.
(c) Find the joint cdf $F(x, y)$ of $(X, Y)$ for all $(x, y) \in \mathbb{R} \times \mathbb{R}$.
(d) Find the marginal pdf $f_{X}$ of $X$.
(e) Find the marginal pdf $f_{Y}$ of $Y$.
(f) Find the conditional pdf $f(x \mid y)$ of $X \mid Y=y$ for $0<y<1$.
2. Let $(X, Y)$ be a pair of random variables with joint pdf given by

$$
f(x, y)=\frac{1}{x^{3}} e^{-1 / x} e^{-y / x} \cdot \mathbf{1}(x>0, y>0) .
$$

The plots below show contours of the joint pdf $f(x, y)$ as well as the conditional densities $f(x \mid y)$ and $f(y \mid x)$ for several values of the conditioning variable.

(a) Find $P(X>Y)$.
(b) Find $E[Y / X]$.
(c) Find the marginal pdf $f_{X}$ of $X$.
(d) Find the marginal pdf $f_{Y}$ of $Y$.
(e) Find the conditional pdf $f(y \mid x)$ of $Y \mid X=x$ for $x>0$.
(f) Find the conditional pdf $f(x \mid y)$ of $X \mid Y=y$ for $y>0$.
3. Let $(X, Y)$ be a pair of random variables with joint pdf given by

$$
f(x, y)=\frac{x}{\theta} e^{-x / \theta} \mathbf{1}(0<y<1 / x, x>0)
$$

(a) Find $P(1 \leq X \leq 2, Y \leq 1)$.
(b) Find the marginal pdf $f_{X}$ of $X$.
(c) Find $\mathbb{E} X$.
(d) Find the marginal pdf $f_{Y}$ of $Y$ and draw a picture of it when $\theta=1$ (you may use software). Hint: You will have to do integration by parts.
(e) Give the conditional pdf $f(x \mid y)$ of $X \mid Y=y$ for $y=1$ when $\theta=1$.
(f) Give the conditional pdf $f(y \mid x)$ of $Y \mid X=x$ for $x>0$.
4. Consider rolling two dice and let $(X, Y)$ be the random variable pair defined such that $X$ is the sum of the rolls and $Y$ is the maximum of the rolls (refer to Lec 11 notes).
Find the following:
(a) $\mathbb{E}[X / Y]$
(b) $P(X>Y)$
(c) $P(X=7)$
(d) $P(Y \leq 4)$
(e) $P(X=7, Y=4)$
5. This exercise is an example of what is called Monte Carlo simulation. Sometimes it is cumbersome to compute a probability or an expected value, so we use a computer to virtually draw a large number of realizations (values of a random variable) from a distribution and we use the output to approximate the probabilities or expectations we are interested in.
Use R to virtually toss two dice 5000 times and use the output to approximate the following quantities (turn in your R code - see example code below-and the numbers you get):
(a) $\mathbb{E}[X / Y]$
(b) $P(X>Y)$
(c) $P(X=7)$
(d) $P(Y \leq 4)$
(e) $P(X=7, Y=4)$
(f) $\mathbb{E}[Y / X]$
(g) $\mathbb{E}\left[Y^{2} / X\right]$

Hint: Use (a)-(e) to check your answers to (a)-(e) of the previous question; your Monte Carlo results should be close to your theoretical results. Use the $R$ code below as a guide.

```
# generate 5000 rolls of a die
roll1 <- sample(1:6,5000,replace=TRUE)
roll2 <- sample(1:6,5000,replace=TRUE)
# combine them to form a matrix with two columns,
# one column for each roll
rolls <- cbind(roll1,roll2)
# take the maximum of each row in the matrix 'rolls' and store these in Y
Y <- apply(rolls,1,max)
# take the sum of each row in the matrix 'rolls' and store these in X
X <- apply(rolls,1,sum)
# compute the average of the ratio X over Y:
mean(X/Y)
# compute the proportion of times X = 7 and Y = 4
mean( (X == 7) & (Y == 4) )
```

Optional (do not turn in) problems for additional study from Wackerly, Mendenhall, Scheaffer, 7th Ed.:

- 5.5, 5.6, 5.8
- 5.2, 5.16, 5.17, 5.18
- $5.20,5.24,5.26,5.36,5.38$
- $5.45,5.49,5.51(\mathrm{a}), 5.52,5.61,5.63$
- 5.81
- 5.89, 5.92
- 5.112

