STAT 511 su 2020 hw 7

joint, marginal, and conditional pdfs and pmfs

1. Let (X, Y) be a pair of random variables with joint pdf given by

$$
f(x, y)=\mathbf{1}(0<x<1,0<y<1)
$$

(a) Find $P(X+Y \leq 1)$.

We have

$$
\begin{aligned}
P(X+Y \leq 1) & =\int_{0}^{1} \int_{0}^{1-x} 1 \cdot d y d x \\
& =\int_{0}^{1}(1-x) d x \\
& =\left.\left[x-\frac{x^{2}}{2}\right]\right|_{0} ^{1} \\
& =1 / 2
\end{aligned}
$$

(b) Find $P(|X-Y| \leq 1 / 2)$.

We can find this probability by setting up the corresponding double integral; however, noting that the joint pdf has a constant height of 1 over the entire joint support $(0,1) \times(0,1)$, we see can we can compute $P(|X-Y| \leq 1 / 2)$ by simply computing the area of the set

$$
\{(x, y):|x-y| \leq 1 / 2,0<x<1,0<y<1\} .
$$

If we draw a picture, we can see that the area of this set is equal to $3 / 4$.
(c) Find the joint $\operatorname{cdf} F(x, y)$ of (X, Y) for all $(x, y) \in \mathbb{R} \times \mathbb{R}$.

We have

$$
F(x, y)= \begin{cases}1, & x \geq 1, y \geq 1 \\ x y, & 0<x<1,0<y<1 \\ x, & 0<x<1, y \geq 1 \\ y, & x \geq 1,0<y<1 \\ 0, & \text { otherwise } .\end{cases}
$$

(d) Find the marginal pdf f_{X} of X.

We have

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} 1 \cdot \mathbf{1}(0<x<1,0<y<1) d y \\
& =\int_{0}^{1} 1 \cdot d y \mathbf{1}(0<x<1) \\
& =\mathbf{1}(0<x<1),
\end{aligned}
$$

so that $X \sim \operatorname{Uniform}(0,1)$.
(e) Find the marginal pdf f_{Y} of Y.

We find also $f_{Y}(y)=\mathbf{1}(0<y<1)$, so that $Y \sim \operatorname{Uniform}(0,1)$.
(f) Find the conditional pdf $f(x \mid y)$ of $X \mid Y=y$ for $0<y<1$.

For $0<y<1$ and $0<x<1$ we have

$$
f(x \mid y)=\frac{1}{1}
$$

so that $X \mid Y=y \sim \operatorname{Uniform}(0,1)$ for all $0<y<1$.
2. Let (X, Y) be a pair of random variables with joint pdf given by

$$
f(x, y)=\frac{1}{x^{3}} e^{-1 / x} e^{-y / x} \cdot \mathbf{1}(x>0, y>0)
$$

The plots below show contours of the joint pdf $f(x, y)$ as well as the conditional densities $f(x \mid y)$ and $f(y \mid x)$ for several values of the conditioning variable.

(a) Find $P(X>Y)$.

$$
\begin{aligned}
& \text { We have } \\
& \qquad \begin{aligned}
P(X>Y) & =\int_{0}^{\infty} \int_{0}^{x} \frac{1}{x^{3}} e^{-1 / x} e^{-y / x} d y d x \\
& =\int_{0}^{\infty} \frac{1}{x^{2}} e^{-1 / x} \underbrace{\int_{0}^{x} \frac{1}{x} e^{-y / x} d y d x}_{=1-e^{-1}} \\
& =\left(1-e^{-1}\right) \underbrace{\int_{0}^{\infty} \frac{1}{x^{2}} e^{-1 / x} d x}_{=1, \text { by } u \text {-sub: } u=1 / x} \\
& =1-e^{-1}
\end{aligned}
\end{aligned}
$$

(b) Find $E[Y / X]$.

We have

$$
\begin{aligned}
\mathbb{E}[Y / X] & =\int_{0}^{\infty} \int_{0}^{\infty} \frac{y}{x} \cdot \frac{1}{x^{3}} e^{-1 / x} e^{-y / x} d y d x \\
& =\int_{0}^{\infty} \frac{1}{x^{3}} e^{-1 / x} \underbrace{\int_{0}^{\infty} \frac{y}{x} e^{-y / x} d y}_{=x, \text { mean of } \operatorname{Exp}(x)} d x \\
& =\int_{0}^{\infty} \frac{1}{x^{2}} e^{-1 / x} d x \\
& =1 . \quad(\text { by } u \text {-sub: } u=1 / x)
\end{aligned}
$$

(c) Find the marginal pdf f_{X} of X.

We have

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} \frac{1}{x^{3}} e^{-1 / x} e^{-y / x} \mathbf{1}(x>0, y>0) d y \\
& =\frac{1}{x^{2}} e^{-1 / x} \underbrace{\int_{0}^{\infty} \frac{1}{x} e^{-y / x} d y}_{=1, \text { pdf of } \operatorname{Exp}(x)} \cdot \mathbf{1}(x>0) \\
& =\frac{1}{x^{2}} e^{-1 / x} \cdot \mathbf{1}(x>0) .
\end{aligned}
$$

(d) Find the marginal pdf f_{Y} of Y.

We have

$$
\begin{aligned}
f_{Y}(y) & =\int_{-\infty}^{\infty} \frac{1}{x^{3}} e^{-1 / x} e^{-y / x} \mathbf{1}(x>0, y>0) d x \\
& =\int_{0}^{\infty} \frac{1}{x^{3}} e^{-\frac{1}{x}(1+y)} d x \cdot \mathbf{1}(y>0) \\
& =\frac{1}{(1+y)^{2}} \underbrace{\int_{0}^{\infty} u e^{-u} d u \cdot \mathbf{1}(y>0) \quad\left(u \text {-sub: } u=\frac{1}{x}(1+y)\right)}_{=1} \\
& =\frac{1}{(1+y)^{2}} \cdot \mathbf{1}(y>0)
\end{aligned}
$$

(e) Find the conditional pdf $f(y \mid x)$ of $Y \mid X=x$ for $x>0$.

For $x>0$ and $y>0$, we have

$$
f(y \mid x)=\frac{\frac{1}{x^{3}} e^{-1 / x} e^{-y / x}}{\frac{1}{x^{2}} e^{-1 / x}}=\frac{1}{x} e^{-y / x},
$$

so that $Y \mid X=x \sim \operatorname{Exponential}(x)$.
(f) Find the conditional pdf $f(x \mid y)$ of $X \mid Y=y$ for $y>0$.

For $x>0$ and $y>0$, we have

$$
f(x \mid y)=\frac{\frac{1}{x^{3}} e^{-1 / x} e^{-y / x}}{1 /(1+y)^{2}} .
$$

3. Let (X, Y) be a pair of random variables with joint pdf given by

$$
f(x, y)=\frac{x}{\theta} e^{-x / \theta} \mathbf{1}(0<y<1 / x, x>0) .
$$

(a) Find $P(1 \leq X \leq 2, Y \leq 1)$.

We have

$$
\begin{aligned}
P(1 \leq X \leq 2, Y \leq 1) & =\int_{1}^{2} \int_{0}^{1 / x} \frac{x}{\theta} e^{-x / \theta} d y d x \\
& =\int_{1}^{2} \frac{1}{\theta} e^{-x / \theta} d x \\
& =e^{-1 / \theta}-e^{-2 / \theta} .
\end{aligned}
$$

(b) Find the marginal pdf f_{X} of X.

We have

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} \frac{x}{\theta} e^{-x / \theta} \mathbf{1}(0<y<1 / x, x>0) d y \\
& =\int_{0}^{1 / x} \frac{x}{\theta} e^{-x / \theta} d y \mathbf{1}(x>0) \\
& =\frac{1}{\theta} e^{-x / \theta} \mathbf{1}(x>0)
\end{aligned}
$$

so that $X \sim \operatorname{Exponential}(\theta)$.
(c) Find $\mathbb{E} X$.

Since $X \sim \operatorname{Exponential}(\theta)$, we have $\mathbb{E} X=\theta$.
(d) Find the marginal pdf f_{Y} of Y and draw a picture of it when $\theta=1$ (you may use software). Hint: You will have to do integration by parts.

We have

$$
\begin{aligned}
f_{Y}(y) & =\int_{-\infty}^{\infty} \frac{x}{\theta} e^{-x / \theta} \mathbf{1}(0<y<1 / x, x>0) d x \\
& =\int_{0}^{1 / y} x \cdot \frac{1}{\theta} e^{-x / \theta} d x \cdot \mathbf{1}(y>0) \\
& \left.=\left[-\left.x e^{-x / \theta}\right|_{0} ^{1 / y}-\int_{0}^{1 / y}-e^{-x / \theta} d x\right] \cdot \mathbf{1}(y>0) \quad \text { (by parts: } u=x, d v=\theta^{-1} e^{-x / \theta}\right) \\
& =\left[\theta-e^{-1 /(y \theta)}\left(\theta+\frac{1}{y}\right)\right] \cdot \mathbf{1}(y>0) .
\end{aligned}
$$

With $\theta=1$, the function looks like this:

(e) Give the conditional pdf $f(x \mid y)$ of $X \mid Y=y$ for $y=1$ when $\theta=1$.

For $0<y<1 / x$ and $x>0$ (which is the same as $0<x<1 / y, y>0$), we have

$$
f(x \mid y)=\frac{\frac{x}{\theta} e^{-x / \theta}}{\theta-e^{-1 /(y \theta)}\left(\theta+\frac{1}{y}\right)},
$$

so, for $y=1$ and $\theta=1$, we have

$$
f(x \mid 1)=\frac{x e^{-x}}{1-2 e^{-1}} \mathbf{1}(0<x<1) .
$$

(f) Give the conditional pdf $f(y \mid x)$ of $Y \mid X=x$ for $x>0$.

We have

$$
f(y \mid x)=\frac{\frac{x}{\theta} e^{-x / \theta}}{\frac{1}{\theta} e^{-x / \theta}} \mathbf{1}(0<y<1 / x)=x \cdot \mathbf{1}(0<y<1 / x),
$$

so that $Y \mid X=x \sim \operatorname{Uniform}(0,1 / x)$.
4. Consider rolling two dice and let (X, Y) be the random variable pair defined such that X is the sum of the rolls and Y is the maximum of the rolls (refer to Lec 11 notes).
Find the following:
(a) $\mathbb{E}[X / Y]$

We have $\mathbb{E} X=57 / 36$.
(b) $P(X>Y)$

We have $P(X>Y)=1$, since the sum of the rolls must always exceed the maximum of the rolls.
(c) $P(X=7)$

We have $P(X=7)=1 / 6$.
(d) $P(Y \leq 4)$

We have $P(Y \leq 4)=4 / 9$
(e) $P(X=7, Y=4)$

We have $P(X=7, Y=4)=1 / 18$.
5. This exercise is an example of what is called Monte Carlo simulation. Sometimes it is cumbersome to compute a probability or an expected value, so we use a computer to virtually draw a large number of realizations (values of a random variable) from a distribution and we use the output to approximate the probabilities or expectations we are interested in.

Use R to virtually toss two dice 5000 times and use the output to approximate the following quantities (turn in your R code - see example code below-and the numbers you get):
(a) $\mathbb{E}[X / Y]$
(b) $P(X>Y)$
(c) $P(X=7)$
(d) $P(Y \leq 4)$
(e) $P(X=7, Y=4)$
(f) $\mathbb{E}[Y / X]$
(g) $\mathbb{E}\left[Y^{2} / X\right]$

Hint: Use (a)-(e) to check your answers to (a)-(e) of the previous question; your Monte Carlo results should be close to your theoretical results. Use the R code below as a guide.

```
# generate 5000 rolls of a die
roll1 <- sample(1:6,5000,replace=TRUE)
roll2 <- sample(1:6,5000,replace=TRUE)
# combine them to form a matrix with two columns,
# one column for each roll
rolls <- cbind(roll1,roll2)
```

\# take the maximum of each row in the matrix 'rolls' and store these in Y
Y <- apply (rolls,1, max)
\# take the sum of each row in the matrix 'rolls' and store these in X
X <- apply(rolls,1,sum)
\# compute the average of the ratio X over Y :
mean (X/Y)
\# compute the proportion of times $X=7$ and $Y=4$
$\operatorname{mean}((X==7) \&(Y==4))$

Optional (do not turn in) problems for additional study from Wackerly, Mendenhall, Scheaffer, 7th Ed.:

- 5.5, 5.6, 5.8
- $5.2,5.16,5.17,5.18$
- $5.20,5.24,5.26,5.36,5.38$
- 5.45, 5.49, 5.51(a), 5.52, 5.61, 5.63
- 5.81
- 5.89, 5.92
- 5.112

