STAT 511 su 2020 hw 8

covariance, correlation, independence, hierarchical models

1. Show that for any two rvs X and $Y, \operatorname{Cov}(X, Y)=\mathbb{E} X Y-\mathbb{E} X \mathbb{E} Y$.
2. Let (X, Y) be a pair of random variables such that

$$
\begin{aligned}
Y \mid X & \sim \operatorname{Beta}(3 X, 3(1-X)) \\
X & \sim \operatorname{Uniform}(0,1)
\end{aligned}
$$

The plots below show contours of the joint density of X and Y, with 500 realizations of (X, Y) overlaid, as well as the conditional pdfs of $Y \mid X=x$ for several values of x.

(a) Give the joint pdf of (X, Y).
(b) Check whether X and Y are independent.
(c) Write down the integral which would yield the marginal pdf of Y.
(d) Find $\mathbb{E}[Y \mid X]$.
(e) Find $\mathbb{E} Y$.
(f) Find $\operatorname{Var}[Y \mid X]$.
(g) Find $\operatorname{Var} Y$.
(h) Use the following code to generate 50,000 realizations of (X, Y). Report the mean and the variance of the Y values (check whether these support your results for $\mathbb{E} Y$ and $\operatorname{Var} Y$).

```
n <- 50000
X <- runif(n,0,1)
Y <- rbeta(n, shape1 = 3*X, shape2 = 3*(1-X))
```

3. Consider a game in which a player shoots 3 free throws; if the player makes i free throws, she draws one bill at random from a bag containing $i+1$ ten-dollar bills and $5-(i+1)$ one-dollar bills. Let X be the number of free throws she makes and Y be the amount of money she wins and assume that she makes free-throws with probability $1 / 2$.
(a) Tabulate the marginal probabilities $P(X=x)$ for $x \in \mathcal{X}$.
(b) Tabulate the joint probabilities $P(X=x, Y=y)$ for $(x, y) \in \mathcal{X} \times \mathcal{Y}$.
(c) Tabulate the marginal probabilities $P(Y=y)$ for $y \in \mathcal{Y}$.
(d) Check whether X and Y are independent random variables.
(e) Compute $\mathbb{E} X$.
(f) Compute $\mathbb{E} Y$.
(g) Compute $\operatorname{Cov}(X, Y)$.
(h) Compute $\mathbb{E}[Y \mid X=1]$.
4. Let $\left(Z_{1}, Z_{2}\right)$ be a pair of rvs with the standard bivariate Normal distribution with correlation ρ, so that their joint pdf is given by

$$
f\left(z_{1}, z_{2}\right)=\frac{1}{2 \pi} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{1}{1-\rho^{2}}\left(z_{1}^{2}-2 \rho z_{1} z_{2}+z_{2}^{2}\right)\right] \quad \text { for all } z_{1}, z_{2} \in \mathbb{R}
$$

(a) Show that Z_{1} and Z_{2} are independent if $\rho=0$.
(b) Show that the marginal pdf of Z_{1} is the $\operatorname{Normal}(0,1)$ distribution.
(c) Show that $Z_{2} \mid Z_{1}=z_{1} \sim \operatorname{Normal}\left(\rho z_{1}, 1-\rho^{2}\right)$.
(d) Show that $\operatorname{Cov}\left(Z_{1}, Z_{2}\right)=\rho$. Hint: Obtain $\mathbb{E} Z_{1} Z_{2}$ via iterated expectation.
(e) Show that $\operatorname{corr}\left(Z_{1}, Z_{2}\right)=\rho$.
5. A random spectator is to be selected from the audience of a basketball game and given the chance to shoot 10 free throws. Let Y be the number of free throws made by the selected spectator and let P be the probability with which the selected spectator makes a free throw on any attempt. Assume that P and Y follow the hierarchical model

$$
\begin{aligned}
Y \mid P & \sim \operatorname{Binomial}(10, P) \\
P & \sim \operatorname{Beta}(2,2)
\end{aligned}
$$

(a) Run a Monte Carlo simulation to generate many realizations of Y. Use the following R code:

S <- 10000
P <- rbeta $(S, 2,2)$
Y <- rbinom (S, 10, P)
Use the realizations of Y to get approximate values for i. $\mathbb{E} Y$.
ii. $\operatorname{Var} Y$.
(b) Find $\mathbb{E}[Y \mid P]$
(c) Find $\mathbb{E}[Y]$.
(d) Find $\operatorname{Var}[Y \mid P]$.
(e) Find $\operatorname{Var}[Y]$.
(f) Find values of α and β such that $\mathbb{E} Y=4$ when $P \sim \operatorname{Beta}(\alpha, \beta)$.

