STAT 511 su 2020 hw 8

covariance, correlation, independence, hierarchical models

1. Show that for any two rvs X and $Y, \operatorname{Cov}(X, Y)=\mathbb{E} X Y-\mathbb{E} X \mathbb{E} Y$.

Writing $\mathbb{E} X=\mu_{X}$ and $\mathbb{E} Y=\mu_{Y}$, we have

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbb{E}[(X-\mathbb{E} X)(Y-\mathbb{E} Y)] \\
& =\mathbb{E}\left[X Y-\mu_{X} Y-X \mu_{Y}+\mu_{X} \mu_{Y}\right] \\
& =\mathbb{E} X Y-\mu_{X} \mu_{Y}-\mu_{X} \mu_{Y}+\mu_{X} \mu_{Y} \\
& =\mathbb{E} X Y-\mu_{X} \mu_{Y} .
\end{aligned}
$$

2. Let (X, Y) be a pair of random variables such that

$$
\begin{aligned}
Y \mid X & \sim \operatorname{Beta}(3 X, 3(1-X)) \\
X & \sim \operatorname{Uniform}(0,1) .
\end{aligned}
$$

The plots below show contours of the joint density of X and Y, with 500 realizations of (X, Y) overlaid, as well as the conditional pdfs of $Y \mid X=x$ for several values of x.

(a) Give the joint pdf of (X, Y).

We have $f(x, y)=f(y \mid x) f_{X}(x)$, so that

$$
f(x, y)=\frac{2}{\Gamma(3 x) \Gamma(3(1-x))} y^{3 x}(1-y)^{3(1-x)} \cdot \mathbf{1}(0<x<1) \mathbf{1}(0<y<1)
$$

noting that $\Gamma(3 x+3(1-x))=\Gamma(3)=2$.
(b) Check whether X and Y are independent.

Since we cannot factor the joint pdf $f(x, y)$ into the product of a function of only x and a function of only y, the random variables X and Y are not independent.
(c) Write down the integral which would yield the marginal pdf of Y.

The marginal pdf f_{Y} of Y is given by

$$
f_{Y}(y)=\int_{0}^{1} \frac{2}{\Gamma(3 x) \Gamma(3(1-x))} y^{3 x}(1-y)^{3(1-x)} d x \cdot \mathbf{1}(0<y<1)
$$

(d) Find $\mathbb{E}[Y \mid X]$.

We have

$$
\mathbb{E}[Y \mid X]=\frac{3 X}{3 X+3(1-X)}=X
$$

(e) Find $\mathbb{E} Y$.

Using the iterated expectation result, we have

$$
\mathbb{E} Y=\mathbb{E}(\mathbb{E}[Y \mid X])=\mathbb{E}(X)=1 / 2
$$

(f) Find $\operatorname{Var}[Y \mid X]$.

We have

$$
\operatorname{Var}[Y \mid X]=\frac{3 X \cdot 3(1-X)}{(3 X+3(1-X))^{2}(3 X+3(1-X)+1)}=\frac{9 X(1-X)}{9 \cdot 4}=\frac{X(1-X)}{4}
$$

(g) Find Var Y.

Using the iterated variance result, we have

$$
\begin{aligned}
\operatorname{Var} Y & =\operatorname{Var}(\mathbb{E}[Y \mid X])+\mathbb{E}(\operatorname{Var}[Y \mid X]) \\
& =\operatorname{Var} X+\mathbb{E}[X(1-X) / 4] \\
& =\frac{1}{12}+\frac{1}{4}\left[\mathbb{E} X-\mathbb{E} X^{2}\right] \\
& =\frac{1}{12}+\frac{1}{4}\left[\frac{1}{2}-\left(\frac{1}{12}+\frac{1}{4}\right)\right] \\
& =\frac{1}{8}
\end{aligned}
$$

(h) Use the following code to generate 50,000 realizations of (X, Y). Report the mean and the variance of the Y values (check whether these support your results for $\mathbb{E} Y$ and $\operatorname{Var} Y$).

```
n <- 50000
X <- runif(n,0,1)
Y <- rbeta(n, shape1 = 3*X, shape2 = 3*(1-X))
```

I obtained
> $\operatorname{var}(\mathrm{Y})$
[1] 0.124702
$>$ mean (X)
[1] 0.5010046
which supports $\mathbb{E} Y=1 / 2$ and $\operatorname{Var} Y=1 / 8=0.125$.
3. Consider a game in which a player shoots 3 free throws; if the player makes i free throws, she draws one bill at random from a bag containing $i+1$ ten-dollar bills and $5-(i+1)$ one-dollar bills. Let X be the number of free throws she makes and Y be the amount of money she wins and assume that she makes free-throws with probability $1 / 2$.
(a) Tabulate the marginal probabilities $P(X=x)$ for $x \in \mathcal{X}$.

We have

$$
\begin{array}{c|cccc}
x & 0 & 1 & 2 & 3 \\
\hline P(X=x) & 1 / 8 & 3 / 8 & 3 / 8 & 1 / 8
\end{array}
$$

(b) Tabulate the joint probabilities $P(X=x, Y=y)$ for $(x, y) \in \mathcal{X} \times \mathcal{Y}$.

The joint probabilities are

		\mathcal{Y}	
		1	10
\mathcal{X}	0	$4 / 40$	$1 / 40$
	1	$9 / 40$	$6 / 40$
	2	$6 / 40$	$9 / 40$
	3	$1 / 40$	$4 / 40$

We find these as

$$
\begin{aligned}
P(X=x, Y=y) & =P(Y=y \mid X=x) P(X=x) \\
& = \begin{cases}(i+1) / 5 \cdot\binom{3}{x}(1 / 2)^{x}(1-1 / 2)^{3-x}, & y=1 \\
(5-(i+1)) / 5 \cdot\binom{3}{x}(1 / 2)^{x}(1-1 / 2)^{3-x}, & y=10\end{cases}
\end{aligned}
$$

(c) Tabulate the marginal probabilities $P(Y=y)$ for $y \in \mathcal{Y}$.

We have

$$
\begin{array}{c|cc}
y & 1 & 10 \\
\hline P(Y=y) & 1 / 2 & 1 / 2
\end{array}
$$

(d) Check whether X and Y are independent random variables.

We have $P(X=1, Y=1)=4 / 40 \neq P(X=1) P(Y=1)=1 / 8(1 / 2)=1 / 16$, so X and Y are not independent.
(e) Compute $\mathbb{E} X$.

Since $X \sim \operatorname{Binomial}(3,1 / 2)$, we have $\mathbb{E} X=3 / 2$.
(f) Compute $\mathbb{E} Y$.

We have $\mathbb{E} Y=1(1 / 2)+10(1 / 2)=11 / 2=5.5$.
(g) Compute $\operatorname{Cov}(X, Y)$.

We have

$$
\begin{aligned}
\mathbb{E} X Y & =(1 \cdot 1)(9 / 40)+(1 \cdot 10)(6 / 40)+(2 \cdot 1)(6 / 40)+(2 \cdot 10)(9 / 40)+(3 \cdot 1)(1 / 40)+(3 \cdot 10)(4 / 40) \\
& =48 / 5 \\
& =9.6
\end{aligned}
$$

So $(X, Y)=48 / 5-(3 / 2)(11 / 2)=27 / 20=1.35$.
(h) Compute $\mathbb{E}[Y \mid X=1]$.

We may tabulate the conditional probability distribution of $Y \mid X=1$ as

$$
\begin{array}{c|cc}
y & 1 & 10 \\
\hline P(Y=y \mid X=1) & 9 / 15 & 6 / 15
\end{array}
$$

So we have

$$
\mathbb{E}[Y \mid X=1]=1 \cdot \frac{9}{15}+10 \cdot \frac{6}{15}=\frac{69}{15}=\frac{23}{5}
$$

4. Let $\left(Z_{1}, Z_{2}\right)$ be a pair of rvs with the standard bivariate Normal distribution with correlation ρ, so that their joint pdf is given by

$$
f\left(z_{1}, z_{2}\right)=\frac{1}{2 \pi} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{1}{1-\rho^{2}}\left(z_{1}^{2}-2 \rho z_{1} z_{2}+z_{2}^{2}\right)\right] \quad \text { for all } z_{1}, z_{2} \in \mathbb{R}
$$

(a) Show that Z_{1} and Z_{2} are independent if $\rho=0$.

If $\rho=0$ then the joint pdf of $\left(Z_{1}, Z_{2}\right)$ becomes

$$
\begin{aligned}
f\left(z_{1}, z_{2}\right) & =\frac{1}{2 \pi} \exp \left[-\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}\right)\right] \\
& =\frac{1}{\sqrt{2 \pi}} e^{-z_{1}^{2} / 2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-z_{2}^{2} / 2}
\end{aligned}
$$

so that it can be factored into the product of a function of only z_{1} and a function of only z_{2}, implying independence of Z_{1} and Z_{2}.
(b) Show that the marginal pdf of Z_{1} is the $\operatorname{Normal}(0,1)$ distribution.

The marginal pdf $f_{Z_{1}}$ is given by

$$
\begin{aligned}
f_{Z_{1}}\left(z_{1}\right) & =\int_{-\infty}^{\infty} \frac{1}{2 \pi} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{1}{1-\rho^{2}}\left(z_{1}^{2}-2 \rho z_{1} z_{2}+z_{2}^{2}\right)\right] d z_{2} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{1}{1-\rho^{2}}\left(\left(z_{2}^{2}-2 \rho z_{1}\right)^{2}+z_{2}^{2}-\rho^{2} z_{2}^{2}\right)\right] d z_{2} \\
& =\frac{1}{\sqrt{2 \pi}} e^{-z_{1}^{2} / 2} \underbrace{\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{1}{1-\rho^{2}}\left(z_{2}^{2}-2 \rho z_{1}\right)^{2}\right] d z_{2}}_{=1, \text { integral over Normal }\left(\rho z_{1}, 1-\rho^{2}\right) \operatorname{pdf}} \\
& =\frac{1}{\sqrt{2 \pi}} e^{-z_{1}^{2} / 2},
\end{aligned}
$$

which is the pdf of the $\operatorname{Normal}(0,1)$ distribution.
(c) Show that $Z_{2} \mid Z_{1}=z_{1} \sim \operatorname{Normal}\left(\rho z_{1}, 1-\rho^{2}\right)$.

In our work towards finding the marginal pdf $f_{Z_{1}}$ of Z_{1}, we rewrote the joint pdf of Z_{1} and Z_{2} as

$$
f\left(z_{1}, z_{2} ; \rho\right)=\underbrace{\frac{1}{\sqrt{2 \pi}} e^{-z_{1}^{2} / 2}}_{f_{Z_{1}}\left(z_{1}\right)} \cdot \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{1}{1-\rho^{2}}\left(z_{2}^{2}-2 \rho z_{1}\right)^{2}\right]
$$

We see from here that the conditional pdf $f\left(z_{2} \mid z_{1}\right)$ of $Z_{2} \mid Z_{1}=z_{1}$ is given by

$$
f\left(z_{2} \mid z_{1}\right)=\frac{f\left(z_{1}, z_{2}\right)}{f_{Z_{1}}\left(z_{1}\right)}=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{1}{1-\rho^{2}}\left(z_{2}^{2}-2 \rho z_{1}\right)^{2}\right]
$$

which is the pdf of the $\operatorname{Normal}\left(\rho z_{1}, 1-\rho^{2}\right)$ distribution.
(d) Show that $\operatorname{Cov}\left(Z_{1}, Z_{2}\right)=\rho$. Hint: Obtain $\mathbb{E} Z_{1} Z_{2}$ via iterated expectation.

We have

$$
\mathbb{E} Z_{1} Z_{2}=\mathbb{E}\left(\mathbb{E}\left[Z_{1} Z_{2} \mid Z_{1}\right]\right)=\mathbb{E}\left(Z_{1} \mathbb{E}\left[Z_{2} \mid Z_{1}\right]\right)=\mathbb{E}\left(Z_{1}^{2} \rho\right)=\rho \mathbb{E} Z_{1}^{2}=\rho
$$

using the fact that $\mathbb{E} Z_{1}^{2}=1$. Since Z_{1} and Z_{2} both have mean $0, \operatorname{Cov}\left(Z_{1}, Z_{2}\right)=\mathbb{E} Z_{1} Z_{2}=\rho$.
(e) Show that $\operatorname{corr}\left(Z_{1}, Z_{2}\right)=\rho$.

Since Z_{1} and Z_{2} both have variance equal to 1 , we have

$$
\operatorname{corr}\left(Z_{1}, Z_{2}\right)=\frac{\operatorname{Cov}\left(Z_{1}, Z_{2}\right)}{\sqrt{\operatorname{Var} Z_{1}} \sqrt{\operatorname{Var} Z_{2}}}=\operatorname{Cov}\left(Z_{1}, Z_{2}\right)=\rho
$$

5. A random spectator is to be selected from the audience of a basketball game and given the chance to shoot 10 free throws. Let Y be the number of free throws made by the selected spectator and let P be the probability with which the selected spectator makes a free throw on any attempt. Assume that P and Y follow the hierarchical model

$$
\begin{aligned}
Y \mid P & \sim \operatorname{Binomial}(10, P) \\
P & \sim \operatorname{Beta}(2,2)
\end{aligned}
$$

(a) Run a Monte Carlo simulation to generate many realizations of Y. Use the following R code:

```
S <- 10000
P <- rbeta(S,2,2)
Y <- rbinom(S,10,P)
```

Use the realizations of Y to get approximate values for
i. $\mathbb{E} Y$.

I obtained 5.009.
ii. $\operatorname{Var} Y$.

I obtained 7.00502.
(b) Find $\mathbb{E}[Y \mid P]$

We have $\mathbb{E}[Y \mid P]=10 P$
(c) Find $\mathbb{E}[Y]$.

We have $\mathbb{E} Y=\mathbb{E}(\mathbb{E}[Y \mid P])=\mathbb{E}(10 \cdot P)=10 \cdot 2 /(2+2)=5$.
(d) Find $\operatorname{Var}[Y \mid P]$.

We have $\operatorname{Var}[Y \mid P]=10 P(1-P)$.
(e) Find $\operatorname{Var}[Y]$.

We have

$$
\begin{aligned}
\operatorname{Var} Y & =\operatorname{Var}(\mathbb{E}[Y \mid P])+\mathbb{E}(\operatorname{Var}[Y \mid P]) \\
& =\operatorname{Var}(10 \cdot P)+\mathbb{E}(10 \cdot P(1-P)) \\
& =100 \cdot \frac{2 \cdot 2}{(2+2)^{2}(2+2+1)}+10\left(\mathbb{E} P-\mathbb{E} P^{2}\right) \\
& =100 \cdot \frac{1}{20}+10\left[\frac{1}{2}-\left(\frac{1}{20}+\frac{1}{4}\right)\right] \\
& =7
\end{aligned}
$$

(f) Find values of α and β such that $\mathbb{E} Y=4$ when $P \sim \operatorname{Beta}(\alpha, \beta)$.

The value $\alpha=4$ and $\beta=6$ satisfy the equation

$$
\mathbb{E} Y=10 \cdot \frac{\alpha}{\alpha+\beta}=4
$$

