STAT 511 su 2020 hw 8

covariance, correlation, independence, hierarchical models

1. Show that for any two rvs X and Y, $Cov(X, Y) = \mathbb{E}XY - \mathbb{E}X\mathbb{E}Y$.

Writing $\mathbb{E}X = \mu_X$ and $\mathbb{E}Y = \mu_Y$, we have $Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)]$ $= \mathbb{E}[XY - \mu_X Y - X\mu_Y + \mu_X \mu_Y]$ $= \mathbb{E}XY - \mu_X \mu_Y - \mu_X \mu_Y + \mu_X \mu_Y$ $= \mathbb{E}XY - \mu_X \mu_Y.$

2. Let (X, Y) be a pair of random variables such that

$$Y|X \sim \text{Beta}(3X, 3(1-X))$$
$$X \sim \text{Uniform}(0, 1).$$

The plots below show contours of the joint density of X and Y, with 500 realizations of (X, Y) overlaid, as well as the conditional pdfs of Y|X = x for several values of x.

(a) Give the joint pdf of (X, Y).

We have $f(x, y) = f(y|x)f_X(x)$, so that $f(x, y) = \frac{2}{\Gamma(3x)\Gamma(3(1-x))}y^{3x}(1-y)^{3(1-x)} \cdot \mathbf{1}(0 < x < 1)\mathbf{1}(0 < y < 1),$ noting that $\Gamma(3x + 3(1-x)) = \Gamma(3) = 2.$

(b) Check whether X and Y are independent.

Since we cannot factor the joint pdf f(x, y) into the product of a function of only x and a function of only y, the random variables X and Y are not independent.

(c) Write down the integral which would yield the marginal pdf of Y.

The marginal pdf f_Y of Y is given by

$$f_Y(y) = \int_0^1 \frac{2}{\Gamma(3x)\Gamma(3(1-x))} y^{3x} (1-y)^{3(1-x)} dx \cdot \mathbf{1}(0 < y < 1).$$

(d) Find $\mathbb{E}[Y|X]$.

We have

$$\mathbb{E}[Y|X] = \frac{3X}{3X + 3(1-X)} = X.$$

(e) Find $\mathbb{E}Y$.

Using the iterated expectation result, we have

$$\mathbb{E}Y = \mathbb{E}(\mathbb{E}[Y|X]) = \mathbb{E}(X) = 1/2.$$

(f) Find $\operatorname{Var}[Y|X]$.

We have

$$\operatorname{Var}[Y|X] = \frac{3X \cdot 3(1-X)}{(3X+3(1-X))^2(3X+3(1-X)+1)} = \frac{9X(1-X)}{9\cdot 4} = \frac{X(1-X)}{4}.$$

(g) Find $\operatorname{Var} Y$.

Using the iterated variance result, we have

$$Var Y = Var(\mathbb{E}[Y|X]) + \mathbb{E}(Var[Y|X])$$

= Var X + \mathbb{E}[X(1 - X)/4]
= $\frac{1}{12} + \frac{1}{4}[\mathbb{E}X - \mathbb{E}X^2]$
= $\frac{1}{12} + \frac{1}{4}\left[\frac{1}{2} - \left(\frac{1}{12} + \frac{1}{4}\right)\right]$
= $\frac{1}{8}$.

(h) Use the following code to generate 50,000 realizations of (X, Y). Report the mean and the variance of the Y values (check whether these support your results for $\mathbb{E}Y$ and $\operatorname{Var} Y$).

```
n <- 50000
X <- runif(n,0,1)
Y <- rbeta(n, shape1 = 3*X, shape2 = 3*(1-X))</pre>
```

```
I obtained

> var(Y)

[1] 0.124702

> mean(X)

[1] 0.5010046

which supports \mathbb{E}Y = 1/2 and \operatorname{Var} Y = 1/8 = 0.125.
```

- 3. Consider a game in which a player shoots 3 free throws; if the player makes *i* free throws, she draws one bill at random from a bag containing i + 1 ten-dollar bills and 5 (i + 1) one-dollar bills. Let X be the number of free throws she makes and Y be the amount of money she wins and assume that she makes free-throws with probability 1/2.
 - (a) Tabulate the marginal probabilities P(X = x) for $x \in \mathcal{X}$.

We have

(b) Tabulate the joint probabilities P(X = x, Y = y) for $(x, y) \in \mathcal{X} \times \mathcal{Y}$.

The joint probabilities are

		\mathcal{Y}	
		1	10
χ	0	4/40	1/40
	1	9/40	6/40
	2	6/40	9/40
	3	1/40	4/40

We find these as

$$P(X = x, Y = y) = P(Y = y | X = x) P(X = x)$$

=
$$\begin{cases} (i+1)/5 \cdot \binom{3}{x} (1/2)^x (1-1/2)^{3-x}, & y = 1\\ (5-(i+1))/5 \cdot \binom{3}{x} (1/2)^x (1-1/2)^{3-x}, & y = 10 \end{cases}$$

(c) Tabulate the marginal probabilities P(Y = y) for $y \in \mathcal{Y}$.

We have

$$\begin{array}{c|cccc} y & 1 & 10 \\ \hline P(Y=y) & 1/2 & 1/2 \\ \end{array}$$

(d) Check whether X and Y are independent random variables.

We have $P(X = 1, Y = 1) = 4/40 \neq P(X = 1)P(Y = 1) = 1/8(1/2) = 1/16$, so X and Y are not independent.

(e) Compute $\mathbb{E}X$.

Since $X \sim \text{Binomial}(3, 1/2)$, we have $\mathbb{E}X = 3/2$.

(f) Compute $\mathbb{E}Y$.

We have $\mathbb{E}Y = 1(1/2) + 10(1/2) = 11/2 = 5.5$.

(g) Compute Cov(X, Y).

We have
$$\begin{split} \mathbb{E}XY &= (1\cdot 1)(9/40) + (1\cdot 10)(6/40) + (2\cdot 1)(6/40) + (2\cdot 10)(9/40) + (3\cdot 1)(1/40) + (3\cdot 10)(4/40) \\ &= 48/5 \\ &= 9.6. \end{split}$$
So (X,Y) = 48/5 - (3/2)(11/2) = 27/20 = 1.35. (h) Compute $\mathbb{E}[Y|X=1]$.

We may tabulate the conditional probability distribution of Y|X = 1 as $\frac{y}{P(Y = y|X = 1)} \frac{1}{9/15} \frac{10}{6/15}$ So we have $\mathbb{E}[Y|X = 1] = 1 \cdot \frac{9}{15} + 10 \cdot \frac{6}{15} = \frac{69}{15} = \frac{23}{5}.$

4. Let (Z_1, Z_2) be a pair of rvs with the standard bivariate Normal distribution with correlation ρ , so that their joint pdf is given by

$$f(z_1, z_2) = \frac{1}{2\pi} \frac{1}{\sqrt{1 - \rho^2}} \exp\left[-\frac{1}{2} \frac{1}{1 - \rho^2} (z_1^2 - 2\rho z_1 z_2 + z_2^2)\right] \quad \text{for all } z_1, z_2 \in \mathbb{R}.$$

(a) Show that Z_1 and Z_2 are independent if $\rho = 0$.

If $\rho = 0$ then the joint pdf of (Z_1, Z_2) becomes $f(z_1, z_2) = \frac{1}{2\pi} \exp\left[-\frac{1}{2}(z_1^2 + z_2^2)\right]$ $= \frac{1}{\sqrt{2\pi}}e^{-z_1^2/2} \cdot \frac{1}{\sqrt{2\pi}}e^{-z_2^2/2},$

so that it can be factored into the product of a function of only z_1 and a function of only z_2 , implying independence of Z_1 and Z_2 .

(b) Show that the marginal pdf of Z_1 is the Normal(0, 1) distribution.

The marginal pdf
$$f_{Z_1}$$
 is given by

$$f_{Z_1}(z_1) = \int_{-\infty}^{\infty} \frac{1}{2\pi} \frac{1}{\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2} \frac{1}{1-\rho^2} (z_1^2 - 2\rho z_1 z_2 + z_2^2)\right] dz_2$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2} \frac{1}{1-\rho^2} \left((z_2^2 - 2\rho z_1)^2 + z_2^2 - \rho^2 z_2^2\right)\right] dz_2$$

$$= \frac{1}{\sqrt{2\pi}} e^{-z_1^2/2} \underbrace{\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2} \frac{1}{1-\rho^2} (z_2^2 - 2\rho z_1)^2\right] dz_2}_{=1, \text{ integral over Normal}(\rho z_1, 1-\rho^2) \text{ pdf}}$$

$$= \frac{1}{\sqrt{2\pi}} e^{-z_1^2/2},$$
which is the pdf of the Normal(0, 1) distribution

which is the pdf of the Normal(0, 1) distribution.

(c) Show that $Z_2|Z_1 = z_1 \sim \text{Normal}(\rho z_1, 1 - \rho^2)$.

In our work towards finding the marginal pdf f_{Z_1} of Z_1 , we rewrote the joint pdf of Z_1 and Z_2 as

$$f(z_1, z_2; \rho) = \underbrace{\frac{1}{\sqrt{2\pi}}}_{f_{Z_1}(z_1)} \cdot \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2} \frac{1}{1-\rho^2} (z_2^2 - 2\rho z_1)^2\right].$$

We see from here that the conditional pdf $f(z_2|z_1)$ of $Z_2|Z_1 = z_1$ is given by

$$f(z_2|z_1) = \frac{f(z_1, z_2)}{f_{Z_1}(z_1)} = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2} \frac{1}{1-\rho^2} (z_2^2 - 2\rho z_1)^2\right],$$

which is the pdf of the Normal $(\rho z_1, 1 - \rho^2)$ distribution.

(d) Show that $Cov(Z_1, Z_2) = \rho$. *Hint: Obtain* $\mathbb{E}Z_1Z_2$ via iterated expectation.

We have

$$\mathbb{E}Z_1Z_2 = \mathbb{E}(\mathbb{E}[Z_1Z_2|Z_1]) = \mathbb{E}(Z_1\mathbb{E}[Z_2|Z_1]) = \mathbb{E}(Z_1^2\rho) = \rho\mathbb{E}Z_1^2 = \rho,$$

using the fact that $\mathbb{E}Z_1^2 = 1$. Since Z_1 and Z_2 both have mean 0, $\operatorname{Cov}(Z_1, Z_2) = \mathbb{E}Z_1Z_2 = \rho$.

(e) Show that $\operatorname{corr}(Z_1, Z_2) = \rho$.

Since Z_1 and Z_2 both have variance equal to 1, we have

$$\operatorname{corr}(Z_1, Z_2) = \frac{\operatorname{Cov}(Z_1, Z_2)}{\sqrt{\operatorname{Var} Z_1} \sqrt{\operatorname{Var} Z_2}} = \operatorname{Cov}(Z_1, Z_2) = \rho.$$

5. A random spectator is to be selected from the audience of a basketball game and given the chance to shoot 10 free throws. Let Y be the number of free throws made by the selected spectator and let P be the probability with which the selected spectator makes a free throw on any attempt. Assume that P and Y follow the hierarchical model

$$Y|P \sim \text{Binomial}(10, P)$$

 $P \sim \text{Beta}(2, 2).$

- (a) Run a Monte Carlo simulation to generate many realizations of Y. Use the following R code:
 - S <- 10000
 P <- rbeta(S,2,2)
 Y <- rbinom(S,10,P)</pre>

Use the realizations of Y to get approximate values for

i. $\mathbb{E}Y$.

I obtained 5.009.

ii. VarY.

I obtained 7.00502.

(b) Find $\mathbb{E}[Y|P]$

We have $\mathbb{E}[Y|P] = 10P$

(c) Find $\mathbb{E}[Y]$.

We have $\mathbb{E}Y = \mathbb{E}(\mathbb{E}[Y|P]) = \mathbb{E}(10 \cdot P) = 10 \cdot 2/(2+2) = 5.$

(d) Find $\operatorname{Var}[Y|P]$.

We have Var[Y|P] = 10P(1 - P).

(e) Find $\operatorname{Var}[Y]$.

We have

$$\begin{aligned} \operatorname{Var} Y &= \operatorname{Var}(\mathbb{E}[Y|P]) + \mathbb{E}(\operatorname{Var}[Y|P]) \\ &= \operatorname{Var}(10 \cdot P) + \mathbb{E}(10 \cdot P(1-P)) \\ &= 100 \cdot \frac{2 \cdot 2}{(2+2)^2(2+2+1)} + 10(\mathbb{E}P - \mathbb{E}P^2) \\ &= 100 \cdot \frac{1}{20} + 10 \left[\frac{1}{2} - \left(\frac{1}{20} + \frac{1}{4} \right) \right] \\ &= 7. \end{aligned}$$

(f) Find values of α and β such that $\mathbb{E}Y = 4$ when $P \sim \text{Beta}(\alpha, \beta)$.

The value $\alpha = 4$ and $\beta = 6$ satisfy the equation

$$\mathbb{E}Y = 10 \cdot \frac{\alpha}{\alpha + \beta} = 4.$$