STAT 511 su 2020 Final Exam

Karl B. Gregory

This is a take-home test due to the COVID-19 suspension of face-to-face instruction. Do not communicate with classmates about the exam until after its due date/time. You may

- Use your notes and the lecture notes.
- Use books.
- NOT work together with others.

Write all answers on blank sheets of paper; then take pictures and merge to a PDF. Upload a single PDF to Blackboard.

pmf/pdf	X	$M_X(t)$	$\mathbb{E}X$	$\operatorname{Var} X$
$p_X(x;p) = p^x (1-p)^{1-x},$	x = 0, 1	$pe^t + (1-p)$	p	p(1-p)
$p_X(x;n,p) = \binom{n}{x} p^x (1-p)^{n-x},$	$x = 0, 1, \ldots, n$	$[pe^t + (1-p)]^n$	np	np(1-p)
$p_X(x;p) = (1-p)^{x-1}p,$	$x = 1, 2, \ldots$	$\frac{pe^t}{1-(1-p)e^t}$	p^{-1}	$(1-p)p^{-2}$
$p_X(x; p, r) = \binom{x-1}{r-1}(1-p)^{x-r}p^r,$	$x = r, r + 1, \ldots$	$\left[rac{pe^t}{1-(1-p)e^t} ight]^r$	rp^{-1}	$r(1-p)p^{-2}$
$p_X(x;\lambda) = e^{-\lambda} \lambda^x / x!$	$x = 0, 1, \ldots$	$e^{\lambda(e^t-1)}$	λ	λ
$p_X(x; N, M, K) = \binom{M}{x} \binom{N-M}{K-x} / \binom{N}{K}$	$x = 0, 1, \ldots, K$;complicadísimo!	$\frac{KM}{N}$	$\frac{KM}{N} \frac{(N-K)(N-M)}{N(N-1)}$
$p_X(x;K) = \frac{1}{K}$	$x = 1, \ldots, K$	$\frac{1}{K}\sum_{x=1}^{K}e^{tx}$	$\frac{K+1}{2}$	$\frac{(K+1)(K-1)}{12}$
$p_X(x;x_1,\ldots,x_n) = \frac{1}{n}$	$x = x_1, \ldots, x_n$	$\frac{1}{n}\sum_{i=1}^{n}e^{tx_{i}}$	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	$\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})^2$
$f_X(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$-\infty < x < \infty$	$e^{\mu t + \sigma^2 t^2/2}$	μ	σ^2
$f_X(x;\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} \exp\left(-\frac{x}{\beta}\right)$	$0 < x < \infty$	$(1-\beta t)^{-\alpha}$	lphaeta	$lphaeta^2$
$f_X(x;\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	0 < x < 1	$1 + \sum_{k=1}^{\infty} \frac{t^k}{k!} \left(\prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r} \right)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

The table below gives some values of the function $\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$:

z	0.674	0.841	1.036	1.282	1.645	1.96	2.576
$\Phi(z)$	0.75	0.80	0.85	0.9	0.95	0.975	0.995

- 1. Copy down this sentence on your answer sheet and put your signature underneath: I have not collaborated with any other student on this exam. The work I have presented is my own.
- 2. Let X and Y each have the Uniform(0,1) distribution, and suppose corr(X,Y) = 1/2.
 - (a) Give $\operatorname{Var} X$ and $\operatorname{Var} Y$.
 - (b) Find Cov(X, Y).
 - (c) Find $\operatorname{Var}(X+Y)$.
 - (d) Find $\operatorname{Var}(X Y)$.
 - (e) Suppose $\operatorname{corr}(X,Y) = \rho$ for some $\rho \in [-1,1]$. State whether $\mathbb{E}(X-Y)^2$ is an increasing or a decreasing function of ρ . Justify your answer using intuition or by finding the expression for $\mathbb{E}(X-Y)^2$ in terms of ρ .
- 3. Let X and Y be random variables such that

$$Y|X \sim \text{Gamma}(3, 1/X)$$
$$X \sim \text{Gamma}(3, 3).$$

- (a) Write down the joint pdf of the random variable pair (X, Y).
- (b) Write down the integral you would need to solve to obtain the marginal pdf f_Y of Y.
- (c) Find $\mathbb{E}(1/X)$. Simplify any gamma functions.
- (d) Find $\mathbb{E}Y$. Hint: Use iterated expectation.
- (e) Find $\mathbb{E}(1/X^2)$.
- (f) Find $\operatorname{Var} Y$.
- (g) Find Cov(X, Y).
- (h) Find $\operatorname{corr}(X, Y)$.
- 4. Let X_1 and X_2 be independent random variables such that

$$X_1 \sim \text{Gamma}(\alpha_1, \beta)$$
$$X_2 \sim \text{Gamma}(\alpha_2, \beta)$$

for some $\alpha_1, \alpha_2, \beta > 0$.

- (a) Find the mgf of the random variable $S = X_1 + X_2$.
- (b) Identify the distribution of S.
- (c) Find the mgf of

$$\bar{X} = \frac{X_1 + X_2}{2}$$

- (d) Identify the distribution of X.
- (e) Give $\operatorname{Var}(X_1 X_2)$.

5. Let the pair of random variables (X, Y) have the joint pdf given by

$$f(x,y) = \frac{2}{ab(a+b)}(x+y) \cdot \mathbf{1}(0 < x < a, 0 < y < b)$$

for some a, b > 0. The plot below shows contours of the joint pdf under some specific values of a and b with 1,000 realizations of (X, Y) plotted on top.

- (a) State whether X and Y are independent and explain your answer.
- (b) Find the marginal pdf f_X of X.
- (c) Find the conditional pdf f(y|x) of Y|X = x.
- (d) Find $P(Y \le b/2 | X = a/2)$.