STAT 511 su 2020 Final Exam

Karl B. Gregory

This is a take-home test due to the COVID-19 suspension of face-to-face instruction. Do not communicate with classmates about the exam until after its due date/time. You may

- Use your notes and the lecture notes.
- Use books.
- NOT work together with others.

Write all answers on blank sheets of paper; then take pictures and merge to a PDF. Upload a single PDF to Blackboard.

pmf $/ \mathrm{pdf}$	\mathcal{X}	$M_{X}(t)$	$\mathbb{E} X$	$\operatorname{Var} X$
$p_{X}(x ; p)=p^{x}(1-p)^{1-x}$,	$x=0,1$	$p e^{t}+(1-p)$	p	$p(1-p)$
$p_{X}(x ; n, p)=\binom{n}{x} p^{x}(1-p)^{n-x}$,	$x=0,1, \ldots, n$	$\left[p e^{t}+(1-p)\right]^{n}$	$n p$	$n p(1-p)$
$p_{X}(x ; p)=(1-p)^{x-1} p$,	$x=1,2, \ldots$	$\frac{p e^{t}}{1-(1-p) e^{t}}$	p^{-1}	$(1-p) p^{-2}$
$p_{X}(x ; p, r)=\binom{x-1}{r-1}(1-p)^{x-r} p^{r}$,	$x=r, r+1, \ldots$	$\left[\frac{p e^{t}}{1-(1-p) e^{t}}\right]^{r}$	$r p^{-1}$	$r(1-p) p^{-2}$
$p_{X}(x ; \lambda)=e^{-\lambda} \lambda^{x} / x!$	$x=0,1, \ldots$	$e^{\lambda\left(e^{t}-1\right)}$	λ	λ
$p_{X}(x ; N, M, K)=\binom{M}{x}\binom{N-M}{K-x} /\binom{N}{K}$	$x=0,1, \ldots, K$	$i \operatorname{complicadísimo!}$	$\frac{K M}{N}$	$\frac{K M}{N} \frac{(N-K)(N-M)}{N(N-1)}$
$p_{X}(x ; K)=\frac{1}{K}$	$x=1, \ldots, K$	$\frac{1}{K} \sum_{x=1}^{K} e^{t x}$	$\frac{K+1}{2}$	$\frac{(K+1)(K-1)}{12}$
$p_{X}\left(x ; x_{1}, \ldots, x_{n}\right)=\frac{1}{n}$	$x=x_{1}, \ldots, x_{n}$	$\frac{1}{n} \sum_{i=1}^{n} e^{t x_{i}}$	$\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$	
$f_{X}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$	$-\infty<x<\infty$	$e^{\mu t+\sigma^{2} t^{2} / 2}$	μ	σ^{2}
$f_{X}(x ; \alpha, \beta)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} \exp \left(-\frac{x}{\beta}\right)$	$0<x<\infty$	$(1-\beta t)^{-\alpha}$	$\alpha \beta$	$\alpha \beta^{2}$
$f_{X}(x ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} 0<x<1$	$1+\sum_{k=1}^{\infty} \frac{t^{k}}{k!}\left(\prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r}\right)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$	

The table below gives some values of the function $\Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t$:

$$
\begin{array}{c|ccccccc}
z & 0.674 & 0.841 & 1.036 & 1.282 & 1.645 & 1.96 & 2.576 \\
\hline \Phi(z) & 0.75 & 0.80 & 0.85 & 0.9 & 0.95 & 0.975 & 0.995
\end{array}
$$

1. Copy down this sentence on your answer sheet and put your signature underneath: I have not collaborated with any other student on this exam. The work I have presented is my own.
2. Let X and Y each have the $\operatorname{Uniform}(0,1)$ distribution, and suppose $\operatorname{corr}(X, Y)=1 / 2$.
(a) Give $\operatorname{Var} X$ and $\operatorname{Var} Y$.
(b) Find $\operatorname{Cov}(X, Y)$.
(c) Find $\operatorname{Var}(X+Y)$.
(d) Find $\operatorname{Var}(X-Y)$.
(e) Suppose $\operatorname{corr}(X, Y)=\rho$ for some $\rho \in[-1,1]$. State whether $\mathbb{E}(X-Y)^{2}$ is an increasing or a decreasing function of ρ. Justify your answer using intuition or by finding the expression for $\mathbb{E}(X-Y)^{2}$ in terms of ρ.
3. Let X and Y be random variables such that

$$
\begin{aligned}
Y \mid X & \sim \operatorname{Gamma}(3,1 / X) \\
X & \sim \operatorname{Gamma}(3,3)
\end{aligned}
$$

(a) Write down the joint pdf of the random variable pair (X, Y).
(b) Write down the integral you would need to solve to obtain the marginal pdf f_{Y} of Y.
(c) Find $\mathbb{E}(1 / X)$. Simplify any gamma functions.
(d) Find $\mathbb{E} Y$. Hint: Use iterated expectation.
(e) Find $\mathbb{E}\left(1 / X^{2}\right)$.
(f) Find Var Y.
(g) Find $\operatorname{Cov}(X, Y)$.
(h) Find $\operatorname{corr}(X, Y)$.
4. Let X_{1} and X_{2} be independent random variables such that

$$
\begin{aligned}
& X_{1} \sim \operatorname{Gamma}\left(\alpha_{1}, \beta\right) \\
& X_{2} \sim \operatorname{Gamma}\left(\alpha_{2}, \beta\right)
\end{aligned}
$$

for some $\alpha_{1}, \alpha_{2}, \beta>0$.
(a) Find the mgf of the random variable $S=X_{1}+X_{2}$.
(b) Identify the distribution of S.
(c) Find the mgf of

$$
\bar{X}=\frac{X_{1}+X_{2}}{2} .
$$

(d) Identify the distribution of \bar{X}.
(e) Give $\operatorname{Var}\left(X_{1}-X_{2}\right)$.
5. Let the pair of random variables (X, Y) have the joint pdf given by

$$
f(x, y)=\frac{2}{a b(a+b)}(x+y) \cdot \mathbf{1}(0<x<a, 0<y<b)
$$

for some $a, b>0$. The plot below shows contours of the joint pdf under some specific values of a and b with 1,000 realizations of (X, Y) plotted on top.

(a) State whether X and Y are independent and explain your answer.
(b) Find the marginal pdf f_{X} of X.
(c) Find the conditional pdf $f(y \mid x)$ of $Y \mid X=x$.
(d) Find $P(Y \leq b / 2 \mid X=a / 2)$.

