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Throughout, let A and B be events, let X and Y be random variables, and let a and b be constants.

1. Set theory and beginning of probability theory

• P (∅) = 0.

• P (A) ≤ 1 for any A.

• P (Ac) = 1− P (A).

• P (A ∩Bc) = P (A)− P (A ∩B).

• P (A ∪B) = P (A) + P (B)− P (A ∩B).

• If A ⊂ B then P (A) ≤ P (B).

• Bonferroni’s inequality: P (A ∩B) ≥ P (A) + P (B)− 1.

• P (A) =
∑∞

i=1 P (A ∩ Ci) for any partition C1, C2 . . .

• Boole’s inequality: P (∪∞i=1Ai) ≤
∑n

i=1 P (Ai) for any sets A1, A2, . . .

2. Counting rules

• Number of ways to draw r things from N things

(a) ordered, without replacement: N !/(N − r)!
(b) unordered, without replacement:

(
N
r

)
= N !/[(N − r)!r!]

(c) ordered, with replacement: N r

(d) unordered, with replacement:
(
N+r−1

r

)
• The number of ways to partition N things into K groups of sizes n1, . . . , nK , where n1 + · · ·+
nK = N is N !/(n1! · · · · · nK !).

3. Conditional probability and independence

• P (A|B) = P (A ∩B)/P (B).

• Bayes’ Rule: For an event B with P (B) > 0 and a partition A1, A2, . . .

P (Ai|B) =
P (B|Ai)P (Ai)∑∞
j=1 P (B|Aj)P (Aj)

.
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• Simple version of Bayes’ rule using A and Ac as the partition:

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
.

• The events A and B are called independent if P (A ∩B) = P (A)P (B).

• The following are equivalent:

(a) P (A ∩B) = P (A)P (B)

(b) P (A|B) = P (A)

(c) P (B|A) = P (B)

4. Random variables and the cdf

• A random variable (rv) X is a function from the sample space to the real numbers.

• The cumulative distribution function (cdf) FX of a rv X is the function

FX(x) = P (X ≤ x) for all x ∈ R.

• A function FX(x) is a cdf if and only if the following hold:

(a) limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.

(b) FX(x) is non-decreasing in x.

(c) FX(x) is right-continuous, i.e. for every x0, limx↓x0 = FX(x0).

• For discrete rvs the cdf is a step function; for continuous rvs the cdf is continuous.

• For a continuous rv X, P (X = x) = 0 for all x ∈ R, i.e. no probability is assigned to points.

• For a continuous rv X

P (a < X < b) = P (a ≤ X < b) = P (a < X ≤ b) = P (a ≤ X ≤ B) = FX(b)− FX(a).

• Two rvs X and Y with cdfs FX and FY , respectively, are called identically distributed if
FX(u) = FY (u) for all u ∈ R.

5. Probability mass and density functions

• Discrete rvs have probability mass functions (pmfs) and continuous rvs have probability
density functions (pdfs).

• The pmf pX of a discrete rv X is the function pX(x) = P (X = x) for all x ∈ R.

• The pdf fX of a continuous rv X is the function fX which satisfies

PX(a < X < b) =

∫ b

a

fX(x)dx, for all a < b ∈ R.
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• If the cdf FX of a continuous rv X has a continuous first derivative, then fX(x) = d
dx
F (x).

• If X is discrete with pmf pX , the support of X, denoted X , is the set of values for which the
pmf is positive, that is X = {x : pX(x) > 0}.
• If X is continuous with pdf fX , the support of X, denoted X , is the set of values for which

the pdf is positive, that is X = {x : fX(x) > 0}.
• The function pX is a pmf if and only if the following hold:

(a) pX(x) ≥ 0 for all x.

(b)
∑

x∈X pX(x) = 1.

• The function fX is a pdf if and only if the following hold:

(a) fX(x) ≥ 0 for all x.

(b)
∫
R fX(x) = 1.

• We write X ∼ pX when X is a rv with pmf pX .

• We write X ∼ fX when X is a rv with pdf fX .

• We write X ∼ FX when X is a rv with cdf FX .

6. Expected value and variance of rvs

• The expected value EX of a rv X is

EX =


∑
x∈X

x · pX(x) if X ∼ pX∫
R
x · fX(x)dx if X ∼ fX .

• Moreover, for any function g : R→ R, the expected value Eg(X) of g(X) is

Eg(X) =


∑
x∈X

g(x) · pX(x) if X ∼ pX∫
R
g(x) · fX(x)dx if X ∼ fX .

• The variance VarX of a rv X is defined as VarX = E(X − EX)2.

• Useful expression: VarX = EX2 − (EX)2.

• E(aX + b) = aEX + b.

• Var(aX + b) = a2 VarX.

• Chebychev’s Inequality: For any rv X with mean µX and variance σ2
X and any constant K,

PX(|X − µX | < KσX) ≥ 1− 1

K2
.

3



7. Suite of discrete rv probability distributions (see table at end).

8. Suite of continuous rv probability distributions (see table at end).

9. Quantiles

• For any rv X with cdf FX , the θ quantile of X is defined as inf{x : FX(x) ≥ θ}, for θ ∈ (0, 1).
This is the definition we need to use when the cdf of X has jumps or flat parts, which is the
case when X is discrete.

• If X is a continuous rv with pdf fX and a strictly increasing cdf FX , then the θ quantile of
X is the (unique) value q which satisfies FX(q) = θ.

10. Moments and moment generating functions

• The kth moment about the origin is EXk.

• The kth moment about the mean, also called the kth central moment, is E(X − EX)k.

• The moment generating function (mgf) MX of a rv X is the function given by MX(t) = EetX ,
as long as this expected value is finite for all values of t in a neighborhood of zero.

• The kth moment of X may be found by taking the kth-order derivative of MX(t) and evalu-
ating the resulting function of t at t = 0. That is

EXk =
dk

dtk
MX(t)

∣∣∣
t=0
.

• If MX is the mgf of X and MY is the mgf of Y and MX(t) = MY (t) for all t in a neighborhood
of zero, then X and Y are identically distributed.

• The mgf of aX + b is MaX+b(t) = etbMX(at).

11. Joint and marginal distributions

• For a pair of discrete rvs (X, Y ), the joint pmf p is the function given by p(x, y) = P (X =
x, Y = y) for all x, y ∈ R.

• For a pair of continuous rvs (X, Y ), the joint pdf f is the function satisfying

P ((X, Y ) ∈ A) =

∫∫
A

f(x, y)dxdy for all A ⊂ R2,

where
∫∫

A
denotes integration over all (x, y) ∈ A.

• We get the marginal pmf/pdf of X by summing/integrating the joint pmf/pdf of (X, Y ) over
Y :

pX(x) =
∑
y∈Y

p(x, y)

fX(x) =

∫
R
f(x, y)dy
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• The joint cdf F of a pair of rvs (X, Y ) is the function given by

F (x, y) = P (X ≤ x, Y ≤ y) for all (x, y) ∈ R2.

12. Conditional distributions and conditional expectation

• For any value y ∈ R for which pY (y) > 0, the conditional pmf of X|Y = y is

p(x|y) =
p(x, y)

pY (y)
for all x ∈ R.

• Likewise, for any y ∈ R for which fY (y) > 0, the conditional pdf of X|Y = y is

f(x|y) =
f(x, y)

fY (y)
for all x ∈ R.

• For any function g : R→ R and any value y such that pY (y) > 0 or fY (y) > 0, the conditional
expectation of g(X) given that Y = y is

E[g(X)|Y = y] =


∑
x∈X

g(x) · p(x|y) if X is discrete∫
R
g(x) · f(x|y)dx if X is continuous.

• The conditional variance of X given that Y = y is

Var[X|Y = y] = E[(X − E[X|Y = y])2|Y = y].

• We often choose not to specify a value for the variable on which we condition, leaving it to
be random; that is we write E[X|Y ] and Var[X|Y ] instead of E[X|Y = y] and Var[X|Y = y]
for the conditional mean and variance of X given Y . The quantities E[X|Y ] and Var[X|Y ],
which depend on the value Y takes, are themselves random variables.

• Useful expression: Var[X|Y ] = E[X2|Y ]− (E[X|Y ])2.

13. Independence of random variables

• If (X, Y ) is a discrete pair of rvs with joint pmf p and marginal pmfs pX and pY , then X and
Y are independent if and only if

p(x, y) = pX(x)pY (y) for all (x, y) ∈ R2.
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• If (X, Y ) is a continuous pair of rvs with joint pdf f and marginal pdfs fX and fY , then X
and Y are independent if and only if

f(x, y) = fX(x)fY (y) for all (x, y) ∈ R2.

• Shortcut independence check: Let (X, Y ) be a pair of discrete or continuous rvs with joint
pmf p or joint pdf f . Then X and Y are independent if and only if there exist functions g
and h such that

p(x, y) = g(x)h(y) for all (x, y) ∈ R2

or
f(x, y) = g(x)h(y) for all (x, y) ∈ R2.

• If X and Y are independent rvs then for any functions g : R→ R and h : R→ R, we have

Eg(X)h(Y ) = Eg(X)Eh(Y ),

so that the expectation of a product is the product of expectations.

• If X and Y are independent rvs with mgfs MX and MY , then the mgf of X + Y is given by

MX+Y (t) = MX(t)MY (t).

14. Covariance and correlation and bivariate Normal distribution

• The covariance between two rvs X and Y with means µX and µY is

Cov(X, Y ) = E(X − µX)(Y − µY ) =: σXY .

• The correlation between two rvs X and Y with variances σ2
X and σ2

Y and covariance σXY is

corr(X, Y ) =
σXY
σXσY

=: ρXY ∈ [−1, 1].

• Useful expression: Cov(X, Y ) = EXY − EXEY .

• If X and Y are independent then Cov(X, Y ) = 0.

• If Cov(X, Y ) = 0, X and Y are not necessarily independent.

• Exceptionally, if the pair (X, Y ) has the bivariate Normal distribution and Cov(X, Y ) = 0,
then X and Y are independent.

• E(aX + bY ) = aEX + bEY .

• Var(aX + bY ) = a2 VarX + b2 VarY + 2abCov(X, Y ).

6



• For random variables X1, . . . , Xn and constants a1, . . . , an,

Var(
n∑
i=1

aiXi) =
n∑
i=1

a2
i VarXi +

∑
i 6=j

aiaj Cov(Xi, Xj).

15. Hierarchical models

• EY = E(E[Y |X])

• VarY = E(Var[Y |X]) + Var(E[Y |X])

• Example: For Y |X ∼ Binom(X, p) and X ∼ Poisson(λ),

EY = E(Xp) = λp

VarY = E(Xp(1− p)) + Var(Xp) = λp(1− p) + λp2 = λp.

7



Commonly encountered pmfs and pdfs along with their mgfs, expected values, and variances:

pmf/pdf X MX(t) EX VarX

pX(x; p) = px(1− p)1−x, x = 0, 1 pet + (1− p) p p(1− p)

pX(x;n, p) =
(
n
x

)
px(1− p)n−x, x = 0, 1, . . . , n [pet + (1− p)]n np np(1− p)

pX(x; p) = (1− p)x−1p, x = 1, 2, . . . pet

1−(1−p)et p−1 (1− p)p−2

pX(x; p, r) =
(
x−1
r−1

)
(1− p)x−rpr, x = r, r + 1, . . .

[
pet

1−(1−p)et

]r
rp−1 r(1− p)p−2

pX(x;λ) = e−λλx/x! x = 0, 1, . . . eλ(et−1) λ λ

pX(x;N,M,K) =
(
M
x

)(
N−M
K−x

)
/
(
N
K

)
x = 0, 1, . . . , K ¡complicad́ısimo! KM

N
KM
N

(N−K)(N−M)
N(N−1)

pX(x;K) = 1
K

x = 1, . . . , K 1
K

∑K
x=1 e

tx K+1
2

(K+1)(K−1)
12

pX(x;x1, . . . , xn) = 1
n

x = x1, . . . , xn
1
n

∑n
i=1 e

txi x̄ = 1
n

∑n
i=1 xi

1
n

∑n
i=1(xi − x̄)2

fX(x;µ, σ2) = 1√
2π

1
σ

exp
(
− (x−µ)2

2σ2

)
−∞ < x <∞ eµt+σ

2t2/2 µ σ2

fX(x;α, β) = 1
Γ(α)βα

xα−1 exp
(
−x
β

)
0 < x <∞ (1− βt)−α αβ αβ2

fX(x;α, β) = Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1 0 < x < 1 1 +
∑∞

k=1
tk

k!

(∏k−1
r=0

α+r
α+β+r

)
α

α+β
αβ

(α+β)2(α+β+1)

The “multinoulli” and multinomial pmfs and the bivariate Normal pdf:

p(X1,...,XK)(x1, . . . , xK ; p1, . . . , pK) = px11 · · · p
xK
K · 1

{
(x1, . . . , xK) ∈ {0, 1}K :

∑K
k=1 xk = 1

}
p(Y1,...,YK)(y1, . . . , yK ;n, p1, . . . , pK) =

(
n!

y1!···yK !

)
py11 · · · p

yK
K · 1

{
(y1, . . . , yK) ∈ {0, 1, . . . , n}K :

∑K
k=1 yk = n

}
f(X,Y )(x, y;µX , µY , σ

2
X , σ

2
Y , ρ) = 1

2π
1

σXσY
√

1−ρ2
exp

(
−1

2

[(
x−µX
σX

)2

− 2ρ
(
x−µX
σX

)(
y−µY
σY

)
+
(
y−µY
σY

)2
])
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