STAT 511 Summary Sheet

Karl B. Gregory

Throughout, let A and B be events, let X and Y be random variables, and let a and b be constants.

1. Set theory and beginning of probability theory

P(0) =
P(A) <1 for any A.
e P(A9)=1—P(A).
P(ANB¢) = P(A) — P(ANnB).
e PIAUB)=P(A)+ P(B) — P(AN B).
e If AC B then P(A) < P(B).
e Bonferroni’s inequality: P(ANB) > P(A) + P(B) — 1.
o P(A) =57 P(ANC;) for any partition C;,Cs. ..
e Boole’s inequality: P(U2,A;) <> " | P(A;) for any sets Ay, Ay, ...

2. Counting rules

e Number of ways to draw r things from N things

(a) ordered, without replacement: N!/(N —r)!
(b) unordered, without replacement: (%) = N1/[(N —r)!r]]

(c) ordered, with replacement: N”
(d) unordered, with replacement: (“*"~1)
e The number of ways to partition N things into K groups of sizes nq,...,ng, where ny +-- -+
ng = Nis Nl/(nq!---ng!).
3. Conditional probability and independence

e P(A|B)=P(ANB)/P(B).
e Bayes’ Rule: For an event B with P(B) > 0 and a partition Ay, Ao, ...

P(B|A)P(A)
PAIB) = S~ b 314, P(4,)




e Simple version of Bayes’ rule using A and A€ as the partition:

P(B|A)P(A)
(B|A)P(A) + P(B|Ac)P(Ac)

P(A|B) = -

e The events A and B are called independent if P(AN B) = P(A)P(B).
e The following are equivalent:
(a) P(ANB) = P(A)P(B)
(b) P(A|B) = P(A)
(c) P(B|A) = P(B)
4. Random variables and the cdf

e A random variable (rv) X is a function from the sample space to the real numbers.

e The cumulative distribution function (cdf) Fx of a rv X is the function

Fx(z)=P(X <z) forall zeR.

A function Fx(z) is a cdf if and only if the following hold:
(a) lim,,_ o Fx(z) =0 and lim,_,,, Fx(z) = 1.
(b) Fx(z) is non-decreasing in x.

(¢) Fx(z) is right-continuous, i.e. for every x¢, lim,|,, = Fx(zo).

For discrete rvs the cdf is a step function; for continuous rvs the cdf is continuous.

For a continuous rv X, P(X = z) =0 for all z € R, i.e. no probability is assigned to points.

For a continuous rv X

Pla<X <b)=Pla<X<b=Pla<X<b=Pla<X<B)=Fx(b)— Fx(a).

Two rvs X and Y with cdfs Fxy and Fy, respectively, are called identically distributed if
Fx(u) = Fy(u) for all u € R.

5. Probability mass and density functions

e Discrete rvs have probability mass functions (pmfs) and continuous rvs have probability
density functions (pdfs).
e The pmf px of a discrete rv X is the function px(z) = P(X = z) for all 2 € R.

e The pdf fx of a continuous rv X is the function fx which satisfies

b
PX(a<X<b):/fX(:B)d:1:, forall a<beR.



If the cdf Fy of a continuous rv X has a continuous first derivative, then fx(z) = L F(z).

If X is discrete with pmf pyx, the support of X, denoted X, is the set of values for which the
pmf is positive, that is X = {z : px(z) > 0}.

If X is continuous with pdf fx, the support of X, denoted X, is the set of values for which
the pdf is positive, that is X = {z : fx(z) > 0}.

The function px is a pmf if and only if the following hold:
(a) px(x) >0 for all z.

(b) > perpx(z) =1.

The function fy is a pdf if and only if the following hold:
(a) fx(xz) >0 for all z.

(b) fg fx(z)=1.

We write X ~ px when X is a rv with pmf py.

We write X ~ fx when X is a rv with pdf fy.

We write X ~ Fx when X is a rv with cdf Fx.

6. Expected value and variance of rvs

The expected value EX of a rv X is

Zx~px($) if X ~px
EX = zeX

/x-fx(x)dx it X ~ fx.
R

Moreover, for any function g : R — R, the expected value Eg(X) of g(X) is

> g(x)-px(e) it X ~px
Eg(X)={ “%"
/g(x) fx(x)dx if X ~ fx.

R
The variance Var X of a rv X is defined as Var X = E(X — EX)?.
Useful expression: Var X = EX? — (EX)2.
E(aX +b) = aEX + b.
Var(aX +b) = a® Var X.

Chebychev’s Inequality: For any rv X with mean px and variance 0% and any constant K,

1
PX(|X_,U/X|<K0'X)21_E-



7. Suite of discrete rv probability distributions (see table at end).
8. Suite of continuous rv probability distributions (see table at end).
9. Quantiles

e For any rv X with cdf Fy, the 6 quantile of X is defined as inf{z : Fx(x) > 0}, for § € (0,1).
This is the definition we need to use when the cdf of X has jumps or flat parts, which is the
case when X is discrete.

e If X is a continuous rv with pdf fx and a strictly increasing cdf Fx, then the 6 quantile of
X is the (unique) value ¢ which satisfies Fix(q) = 6.

10. Moments and moment generating functions

e The kth moment about the origin is EX*.
e The kth moment about the mean, also called the kth central moment, is E(X — EX)~.

e The moment generating function (mgf) Mx of a rv X is the function given by Mx (1) = Ee'¥X,
as long as this expected value is finite for all values of ¢ in a neighborhood of zero.

e The kth moment of X may be found by taking the kth-order derivative of Mx(t) and evalu-
ating the resulting function of ¢t at t = 0. That is

EXF = d—kMX )| .
dtk t=0

o If My is the mgf of X and My is the mgf of Y and M (t) = My (t) for all ¢ in a neighborhood
of zero, then X and Y are identically distributed.

e The mgf of aX + b is M,x3(t) = e Mx (at).
11. Joint and marginal distributions

e For a pair of discrete rvs (X, Y), the joint pmf p is the function given by p(x,y) = P(X =
x,Y =y) for all x,y € R.

e For a pair of continuous rvs (X,Y), the joint pdf f is the function satisfying
P(X,)Y)e A) = // f(z,y)drdy for all A C R?,
A

where [[, denotes integration over all (z,y) € A.

e We get the marginal pmf/pdf of X by summing/integrating the joint pmf/pdf of (X,Y") over
Y:

px(r) =Y p(r,y)

yey

fx(z) = / £ y)dy



e The joint cdf F' of a pair of rvs (X,Y) is the function given by

F(z,y) = P(X <x,Y <y) forall (z,y) € R

12. Conditional distributions and conditional expectation

e For any value y € R for which py(y) > 0, the conditional pmf of X|Y =y is

for all z € R.

e Likewise, for any y € R for which fy(y) > 0, the conditional pdf of X|Y =y is

f(z,y)
fY(Z/)

flzly) = for all x € R.

e For any function g : R — R and any value y such that py (y) > 0 or fy(y) > 0, the conditional
expectation of g(X) given that Y =y is

Zg(:c) -p(xly) if X is discrete
Eg(X)Y =yl =4 "%*

g(x) - f(z|y)dx if X is continuous.
R

e The conditional variance of X given that Y =y is

Var[X]Y = y] = E[(X — E[X]Y = y])*|Y =y].

e We often choose not to specify a value for the variable on which we condition, leaving it to
be random; that is we write E[X|Y] and Var[X|Y] instead of E[X|Y = y] and Var[X|Y = y]
for the conditional mean and variance of X given Y. The quantities E[X|Y] and Var[X Y],
which depend on the value Y takes, are themselves random variables.

e Useful expression: Var[X|Y] = E[X?|Y] — (E[X|Y])>.
13. Independence of random variables

e If (X,Y) is a discrete pair of rvs with joint pmf p and marginal pmfs px and py, then X and
Y are independent if and only if

p(z,y) = px(z)py (y) for all (z,y) € R



e If (X,Y) is a continuous pair of rvs with joint pdf f and marginal pdfs fy and fy, then X
and Y are independent if and only if

f(z,y) = fx(@)fy(y) for all (z,y) € R

e Shortcut independence check: Let (X,Y) be a pair of discrete or continuous rvs with joint
pmf p or joint pdf f. Then X and Y are independent if and only if there exist functions g
and h such that

p(z,y) = g(z)h(y) for all (z,y) € R?
or
f(a,y) = g(x)h(y) for all (z,y) € R*.
e If X and Y are independent rvs then for any functions g : R — R and A : R — R, we have
Eg(X)h(Y) = Eg(X)Eh(Y),

so that the expectation of a product is the product of expectations.

e If X and Y are independent rvs with mgfs My and My, then the mgf of X 4+ Y is given by

Moy (t) = My (t) My (t).

14. Covariance and correlation and bivariate Normal distribution

e The covariance between two rvs X and Y with means py and py is

Cov(X,Y) =E(X — pux)(Y —py) = oxy.

e The correlation between two rvs X and Y with variances 0% and 0% and covariance oxy is

corr(X,Y) = oxy _, pxy € [—1,1].

e Useful expression: Cov(X,Y)=EXY —EXEY.
e If X and Y are independent then Cov(X,Y) = 0.
e If Cov(X,Y) =0, X and Y are not necessarily independent.

e Exceptionally, if the pair (X,Y’) has the bivariate Normal distribution and Cov(X,Y) = 0,
then X and Y are independent.

o E(aX +bY) = aEX + DEY.
e Var(aX +0Y) = a*Var X + b* Var Y + 2ab Cov(X,Y).
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e For random variables X, ..., X, and constants aq, ..., a,,

Var(zn: a; X;) = z”: a? Var X; + Z a;a; Cov(X;, X;).
i=1

i=1 i£j

15. Hierarchical models
e EY = E(E[Y]|X])
e VarY = E(Var[Y|X]) + Var(E[Y|X])
e Example: For Y|X ~ Binom(X,p) and X ~ Poisson(\),

EY = E(Xp) = \p
VarY = E(Xp(1 —p)) + Var(Xp) = Ap(1 = p) + Ap” = Ap.



Commonly encountered pmfs and pdfs along with their mgfs, expected values, and variances:

pmf/pdf X Mx(t) EX Var X
px(w;p) =p*(1 —p)'~7, x=0,1 pe' + (1 —p) p p(1—p)
px(z;n,p) = (Z)p‘”(l —p)" 7, xr=0,1,...,n [pet + (1 —p)]" np np(1 —p)
px(z;p) = (1= p)*'p, r=1.2,... e p! (1-p)yp~2
px(a;p,r) = (021)(1—p)"p, r=rr+1,... [1,(§’itp)et]r rp~t r(1—pp?
px(;\) = e A\ /! r=0,1,... eMe'=1) A A
px(z; N, M K) = (M) (3 /() 2=0,1,....K icomplicadisimo! L By VR
px(z;K) = + r=1,.. K %Zleem Al %
px(T;a1,. .., T,) = = T=1T1,..,Tn ED BN T= a3 il oy (v — 7)?
Ix(x;p,0%) = %}r exp (—(xg_a’;ﬁ) —00 < T < 00 eht+o?t?/2 1 o?
fx(z;a,P) = F(al)ﬁaxo‘ Lexp <_3) 0<z<oo (1—=pt)~ af aB?
fx(@ia, B) = g5t ee (1 —2) 0 <w < 1 L+ 5 (Hf;é aféir) s TP GTATD

The “multinoulli” and multinomial pmfs and the bivariate Normal pdf:
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