STAT 511 Summary Sheet

Karl B. Gregory

Throughout, let A and B be events, let X and Y be random variables, and let a and b be constants.

1. Set theory and beginning of probability theory

- $P(\emptyset)=0$.
- $P(A) \leq 1$ for any A.
- $P\left(A^{c}\right)=1-P(A)$.
- $P\left(A \cap B^{c}\right)=P(A)-P(A \cap B)$.
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
- If $A \subset B$ then $P(A) \leq P(B)$.
- Bonferroni's inequality: $P(A \cap B) \geq P(A)+P(B)-1$.
- $P(A)=\sum_{i=1}^{\infty} P\left(A \cap C_{i}\right)$ for any partition $C_{1}, C_{2} \ldots$
- Boole's inequality: $P\left(\cup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right)$ for any sets A_{1}, A_{2}, \ldots

2. Counting rules

- Number of ways to draw r things from N things
(a) ordered, without replacement: $N!/(N-r)$!
(b) unordered, without replacement: $\binom{N}{r}=N!/[(N-r)!r!]$
(c) ordered, with replacement: N^{r}
(d) unordered, with replacement: $\binom{N+r-1}{r}$
- The number of ways to partition N things into K groups of sizes n_{1}, \ldots, n_{K}, where $n_{1}+\cdots+$ $n_{K}=N$ is $N!/\left(n_{1}!\cdots \cdots n_{K}!\right)$.

3. Conditional probability and independence

- $P(A \mid B)=P(A \cap B) / P(B)$.
- Bayes' Rule: For an event B with $P(B)>0$ and a partition A_{1}, A_{2}, \ldots

$$
P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{j=1}^{\infty} P\left(B \mid A_{j}\right) P\left(A_{j}\right)}
$$

- Simple version of Bayes' rule using A and A^{c} as the partition:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)}
$$

- The events A and B are called independent if $P(A \cap B)=P(A) P(B)$.
- The following are equivalent:
(a) $P(A \cap B)=P(A) P(B)$
(b) $P(A \mid B)=P(A)$
(c) $P(B \mid A)=P(B)$

4. Random variables and the cdf

- A random variable (rv) X is a function from the sample space to the real numbers.
- The cumulative distribution function (cdf) F_{X} of a rv X is the function

$$
F_{X}(x)=P(X \leq x) \quad \text { for all } \quad x \in \mathbb{R}
$$

- A function $F_{X}(x)$ is a cdf if and only if the following hold:
(a) $\lim _{x \rightarrow-\infty} F_{X}(x)=0$ and $\lim _{x \rightarrow \infty} F_{X}(x)=1$.
(b) $F_{X}(x)$ is non-decreasing in x.
(c) $F_{X}(x)$ is right-continuous, i.e. for every $x_{0}, \lim _{x \downarrow x_{0}}=F_{X}\left(x_{0}\right)$.
- For discrete rvs the cdf is a step function; for continuous rvs the cdf is continuous.
- For a continuous rv $X, P(X=x)=0$ for all $x \in \mathbb{R}$, i.e. no probability is assigned to points.
- For a continuous rv X

$$
P(a<X<b)=P(a \leq X<b)=P(a<X \leq b)=P(a \leq X \leq B)=F_{X}(b)-F_{X}(a)
$$

- Two rvs X and Y with cdfs F_{X} and F_{Y}, respectively, are called identically distributed if $F_{X}(u)=F_{Y}(u)$ for all $u \in \mathbb{R}$.

5. Probability mass and density functions

- Discrete rvs have probability mass functions (pmfs) and continuous rvs have probability density functions (pdfs).
- The pmf p_{X} of a discrete rv X is the function $p_{X}(x)=P(X=x)$ for all $x \in \mathbb{R}$.
- The pdf f_{X} of a continuous rv X is the function f_{X} which satisfies

$$
P_{X}(a<X<b)=\int_{a}^{b} f_{X}(x) d x, \quad \text { for all } \quad a<b \in \mathbb{R}
$$

- If the cdf F_{X} of a continuous rv X has a continuous first derivative, then $f_{X}(x)=\frac{d}{d x} F(x)$.
- If X is discrete with $\operatorname{pmf} p_{X}$, the support of X, denoted \mathcal{X}, is the set of values for which the pmf is positive, that is $\mathcal{X}=\left\{x: p_{X}(x)>0\right\}$.
- If X is continuous with pdf f_{X}, the support of X, denoted \mathcal{X}, is the set of values for which the pdf is positive, that is $\mathcal{X}=\left\{x: f_{X}(x)>0\right\}$.
- The function p_{X} is a pmf if and only if the following hold:
(a) $p_{X}(x) \geq 0$ for all x.
(b) $\sum_{x \in \mathcal{X}} p_{X}(x)=1$.
- The function f_{X} is a pdf if and only if the following hold:
(a) $f_{X}(x) \geq 0$ for all x.
(b) $\int_{\mathbb{R}} f_{X}(x)=1$.
- We write $X \sim p_{X}$ when X is a rv with pmf p_{X}.
- We write $X \sim f_{X}$ when X is a rv with $\operatorname{pdf} f_{X}$.
- We write $X \sim F_{X}$ when X is a rv with $\operatorname{cdf} F_{X}$.

6. Expected value and variance of rvs

- The expected value $\mathbb{E} X$ of a rv X is

$$
\mathbb{E} X= \begin{cases}\sum_{x \in \mathcal{X}} x \cdot p_{X}(x) & \text { if } X \sim p_{X} \\ \int_{\mathbb{R}} x \cdot f_{X}(x) d x & \text { if } X \sim f_{X}\end{cases}
$$

- Moreover, for any function $g: \mathbb{R} \rightarrow \mathbb{R}$, the expected value $\mathbb{E} g(X)$ of $g(X)$ is

$$
\mathbb{E} g(X)= \begin{cases}\sum_{x \in \mathcal{X}} g(x) \cdot p_{X}(x) & \text { if } X \sim p_{X} \\ \int_{\mathbb{R}} g(x) \cdot f_{X}(x) d x & \text { if } X \sim f_{X}\end{cases}
$$

- The variance $\operatorname{Var} X$ of a rv X is defined as $\operatorname{Var} X=\mathbb{E}(X-\mathbb{E} X)^{2}$.
- Useful expression: $\operatorname{Var} X=\mathbb{E} X^{2}-(\mathbb{E} X)^{2}$.
- $\mathbb{E}(a X+b)=a \mathbb{E} X+b$.
- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var} X$.
- Chebychev's Inequality: For any rv X with mean μ_{X} and variance σ_{X}^{2} and any constant K,

$$
P_{X}\left(\left|X-\mu_{X}\right|<K \sigma_{X}\right) \geq 1-\frac{1}{K^{2}}
$$

7. Suite of discrete rv probability distributions (see table at end).
8. Suite of continuous rv probability distributions (see table at end).
9. Quantiles

- For any rv X with cdf F_{X}, the θ quantile of X is defined as $\inf \left\{x: F_{X}(x) \geq \theta\right\}$, for $\theta \in(0,1)$. This is the definition we need to use when the cdf of X has jumps or flat parts, which is the case when X is discrete.
- If X is a continuous rv with pdf f_{X} and a strictly increasing cdf F_{X}, then the θ quantile of X is the (unique) value q which satisfies $F_{X}(q)=\theta$.

10. Moments and moment generating functions

- The k th moment about the origin is $\mathbb{E} X^{k}$.
- The k th moment about the mean, also called the k th central moment, is $\mathbb{E}(X-\mathbb{E} X)^{k}$.
- The moment generating function (mgf) M_{X} of a rv X is the function given by $M_{X}(t)=\mathbb{E} e^{t X}$, as long as this expected value is finite for all values of t in a neighborhood of zero.
- The k th moment of X may be found by taking the k th-order derivative of $M_{X}(t)$ and evaluating the resulting function of t at $t=0$. That is

$$
\mathbb{E} X^{k}=\left.\frac{d^{k}}{d t^{k}} M_{X}(t)\right|_{t=0}
$$

- If M_{X} is the mgf of X and M_{Y} is the mgf of Y and $M_{X}(t)=M_{Y}(t)$ for all t in a neighborhood of zero, then X and Y are identically distributed.
- The mgf of $a X+b$ is $M_{a X+b}(t)=e^{t b} M_{X}(a t)$.

11. Joint and marginal distributions

- For a pair of discrete rvs (X, Y), the joint pmf p is the function given by $p(x, y)=P(X=$ $x, Y=y)$ for all $x, y \in \mathbb{R}$.
- For a pair of continuous rvs (X, Y), the joint $\operatorname{pdf} f$ is the function satisfying

$$
P((X, Y) \in A)=\iint_{A} f(x, y) d x d y \quad \text { for all } A \subset \mathbb{R}^{2}
$$

where \iint_{A} denotes integration over all $(x, y) \in A$.

- We get the marginal pmf/pdf of X by summing/integrating the joint pmf/pdf of (X, Y) over Y :

$$
\begin{aligned}
& p_{X}(x)=\sum_{y \in \mathcal{Y}} p(x, y) \\
& f_{X}(x)=\int_{\mathbb{R}} f(x, y) d y
\end{aligned}
$$

- The joint cdf F of a pair of $\operatorname{rvs}(X, Y)$ is the function given by

$$
F(x, y)=P(X \leq x, Y \leq y) \quad \text { for all }(x, y) \in \mathbb{R}^{2} .
$$

12. Conditional distributions and conditional expectation

- For any value $y \in \mathbb{R}$ for which $p_{Y}(y)>0$, the conditional pmf of $X \mid Y=y$ is

$$
p(x \mid y)=\frac{p(x, y)}{p_{Y}(y)} \quad \text { for all } x \in \mathbb{R}
$$

- Likewise, for any $y \in \mathbb{R}$ for which $f_{Y}(y)>0$, the conditional pdf of $X \mid Y=y$ is

$$
f(x \mid y)=\frac{f(x, y)}{f_{Y}(y)} \quad \text { for all } x \in \mathbb{R}
$$

- For any function $g: \mathbb{R} \rightarrow \mathbb{R}$ and any value y such that $p_{Y}(y)>0$ or $f_{Y}(y)>0$, the conditional expectation of $g(X)$ given that $Y=y$ is

$$
\mathbb{E}[g(X) \mid Y=y]= \begin{cases}\sum_{x \in \mathcal{X}} g(x) \cdot p(x \mid y) & \text { if } X \text { is discrete } \\ \int_{\mathbb{R}} g(x) \cdot f(x \mid y) d x & \text { if } X \text { is continuous. }\end{cases}
$$

- The conditional variance of X given that $Y=y$ is

$$
\operatorname{Var}[X \mid Y=y]=\mathbb{E}\left[(X-\mathbb{E}[X \mid Y=y])^{2} \mid Y=y\right]
$$

- We often choose not to specify a value for the variable on which we condition, leaving it to be random; that is we write $\mathbb{E}[X \mid Y]$ and $\operatorname{Var}[X \mid Y]$ instead of $\mathbb{E}[X \mid Y=y]$ and $\operatorname{Var}[X \mid Y=y]$ for the conditional mean and variance of X given Y. The quantities $\mathbb{E}[X \mid Y]$ and $\operatorname{Var}[X \mid Y]$, which depend on the value Y takes, are themselves random variables.
- Useful expression: $\operatorname{Var}[X \mid Y]=\mathbb{E}\left[X^{2} \mid Y\right]-(\mathbb{E}[X \mid Y])^{2}$.

13. Independence of random variables

- If (X, Y) is a discrete pair of rvs with joint pmf p and marginal pmfs p_{X} and p_{Y}, then X and Y are independent if and only if

$$
p(x, y)=p_{X}(x) p_{Y}(y) \text { for all }(x, y) \in \mathbb{R}^{2} .
$$

- If (X, Y) is a continuous pair of rvs with joint pdf f and marginal pdfs f_{X} and f_{Y}, then X and Y are independent if and only if

$$
f(x, y)=f_{X}(x) f_{Y}(y) \text { for all }(x, y) \in \mathbb{R}^{2} .
$$

- Shortcut independence check: Let (X, Y) be a pair of discrete or continuous rvs with joint pmf p or joint pdf f. Then X and Y are independent if and only if there exist functions g and h such that

$$
p(x, y)=g(x) h(y) \text { for all }(x, y) \in \mathbb{R}^{2}
$$

or

$$
f(x, y)=g(x) h(y) \text { for all }(x, y) \in \mathbb{R}^{2} .
$$

- If X and Y are independent rvs then for any functions $g: \mathbb{R} \rightarrow \mathbb{R}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$, we have

$$
\mathbb{E} g(X) h(Y)=\mathbb{E} g(X) \mathbb{E} h(Y)
$$

so that the expectation of a product is the product of expectations.

- If X and Y are independent rvs with mgfs M_{X} and M_{Y}, then the mgf of $X+Y$ is given by

$$
M_{X+Y}(t)=M_{X}(t) M_{Y}(t)
$$

14. Covariance and correlation and bivariate Normal distribution

- The covariance between two rvs X and Y with means μ_{X} and μ_{Y} is

$$
\operatorname{Cov}(X, Y)=\mathbb{E}\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)=: \sigma_{X Y}
$$

- The correlation between two rvs X and Y with variances σ_{X}^{2} and σ_{Y}^{2} and covariance $\sigma_{X Y}$ is

$$
\operatorname{corr}(X, Y)=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}=: \rho_{X Y} \in[-1,1] .
$$

- Useful expression: $\operatorname{Cov}(X, Y)=\mathbb{E} X Y-\mathbb{E} X \mathbb{E} Y$.
- If X and Y are independent then $\operatorname{Cov}(X, Y)=0$.
- If $\operatorname{Cov}(X, Y)=0, X$ and Y are not necessarily independent.
- Exceptionally, if the pair (X, Y) has the bivariate Normal distribution and $\operatorname{Cov}(X, Y)=0$, then X and Y are independent.
- $\mathbb{E}(a X+b Y)=a \mathbb{E} X+b \mathbb{E} Y$.
- Var $(a X+b Y)=a^{2} \operatorname{Var} X+b^{2} \operatorname{Var} Y+2 a b \operatorname{Cov}(X, Y)$.
- For random variables X_{1}, \ldots, X_{n} and constants a_{1}, \ldots, a_{n},

$$
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var} X_{i}+\sum_{i \neq j} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

15. Hierarchical models

- $\mathbb{E} Y=\mathbb{E}(\mathbb{E}[Y \mid X])$
- Var $Y=\mathbb{E}(\operatorname{Var}[Y \mid X])+\operatorname{Var}(\mathbb{E}[Y \mid X])$
- Example: For $Y \mid X \sim \operatorname{Binom}(X, p)$ and $X \sim \operatorname{Poisson}(\lambda)$,

$$
\begin{aligned}
\mathbb{E} Y & =\mathbb{E}(X p)=\lambda p \\
\operatorname{Var} Y & =\mathbb{E}(X p(1-p))+\operatorname{Var}(X p)=\lambda p(1-p)+\lambda p^{2}=\lambda p
\end{aligned}
$$

Commonly encountered pmfs and pdfs along with their mgfs, expected values, and variances:

pmf/pdf	\mathcal{X}	$M_{X}(t)$	$\mathbb{E} X$	$\operatorname{Var} X$
$p_{X}(x ; p)=p^{x}(1-p)^{1-x}$,	$x=0,1$	$p e^{t}+(1-p)$	p	$p(1-p)$
$p_{X}(x ; n, p)=\binom{n}{x} p^{x}(1-p)^{n-x}$,	$x=0,1, \ldots, n$	$\left[p e^{t}+(1-p)\right]^{n}$	$n p$	$n p(1-p)$
$p_{X}(x ; p)=(1-p)^{x-1} p$,	$x=1,2, \ldots$	$\frac{p e^{t}}{1-(1-p) e^{t}}$		
$p_{X}(x ; p, r)=\binom{x-1}{r-1}(1-p)^{x-r} p^{r}$,	$x=r, r+1, \ldots$	$\left[\frac{p e^{t}}{1-(1-p) e^{t}}\right]^{r}$	p^{-1}	$(1-p) p^{-2}$
$p_{X}(x ; \lambda)=e^{-\lambda} \lambda^{x} / x!$	$x=0,1, \ldots$	$e^{\lambda\left(e^{t}-1\right)}$	$r p^{-1}$	$r(1-p) p^{-2}$
$p_{X}(x ; N, M, K)=\binom{M}{x}\binom{N-M}{K-x} /\binom{N}{K}$	$x=0,1, \ldots, K$	j complicadísimo!	$\frac{K M}{N}$	$\frac{K M}{N} \frac{(N-K)(N-M)}{N(N-1)}$
$p_{X}(x ; K)=\frac{1}{K}$	$x=1, \ldots, K$	$\frac{1}{K} \sum_{x=1}^{K} e^{t x}$	$\frac{K+1}{2}$	$\frac{(K+1)(K-1)}{12}$
$p_{X}\left(x ; x_{1}, \ldots, x_{n}\right)=\frac{1}{n}$	$x=x_{1}, \ldots, x_{n}$	$\frac{1}{n} \sum_{i=1}^{n} e^{t x_{i}}$	$\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$	
$f_{X}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$	$-\infty<x<\infty$	$e^{\mu t+\sigma^{2} t^{2} / 2}$	μ	σ^{2}
$f_{X}(x ; \alpha, \beta)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} \exp \left(-\frac{x}{\beta}\right)$	$0<x<\infty$	$(1-\beta t)^{-\alpha}$	$\alpha \beta$	$\alpha \beta^{2}$
$f_{X}(x ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$	$0<x<1$	$1+\sum_{k=1}^{\infty} \frac{t^{k}}{k!}\left(\prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r}\right)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$

The "multinoulli" and multinomial pmfs and the bivariate Normal pdf:
$p_{\left(X_{1}, \ldots, X_{K}\right)}\left(x_{1}, \ldots, x_{K} ; p_{1}, \ldots, p_{K}\right)=p_{1}^{x_{1}} \cdots p_{K}^{x_{K}} \cdot \mathbf{1}\left\{\left(x_{1}, \ldots, x_{K}\right) \in\{0,1\}^{K}: \sum_{k=1}^{K} x_{k}=1\right\}$
$p_{\left(Y_{1}, \ldots, Y_{K}\right)}\left(y_{1}, \ldots, y_{K} ; n, p_{1}, \ldots, p_{K}\right)=\left(\frac{n!}{y_{1}!\cdots y_{K}!}\right) p_{1}^{y_{1}} \cdots p_{K}^{y_{K}} \cdot \mathbf{1}\left\{\left(y_{1}, \ldots, y_{K}\right) \in\{0,1, \ldots, n\}^{K}: \sum_{k=1}^{K} y_{k}=n\right\}$ $f_{(X, Y)}\left(x, y ; \mu_{X}, \mu_{Y}, \sigma_{X}^{2}, \sigma_{Y}^{2}, \rho\right)=\frac{1}{2 \pi} \frac{1}{\sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} \exp \left(-\frac{1}{2}\left[\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}-2 \rho\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}\right]\right)$

